
CS	211,	Lab	1	–	Exercise	 	 	 	 	 (due:	Mon	1/29,	11:59pm)	
Installations	and	Introductions		

		
Our	goal	is	to	get	all	tools	installed,	and	then	write	a	simple	program.	We	will	have	a	few	very	simple	test	
cases,	and	you	will	learn	how	to	run	the	test	cases	before	turning	in	your	work.	This	will	prepare	you	for	
the	exact	process	we	use	in	all	of	our	lab	exercises	and	projects.	
	

	
Files:	
	

• download	these	files	for	testing	into	a	folder	named	with	your	userid	and	lab	number:			
gmason76_L1_230	
	
	 http://cs.gmu.edu/~marks/211/labs/Tester1e.java	
	 https://cs.gmu.edu/~marks/211/share/junit-cs211.jar	

	
• Grading:	entirely	test-case	based.	

	
• mac/unix:	we	use	a	colon	to	separate	items	on	the	classpath.	

	 javac	-cp	.:junit-cs211.jar	*.java	
	 java	-cp	.:junit-cs211.jar	Tester1e	

• Windows:	we	use	a	semi-colon	to	separate	items	on	the	classpath.	
	 javac	-cp	.;junit-cs211.jar	*.java	
	 java	-cp	.;junit-cs211.jar	Tester1e	

	
As	this	is	an	Exercise,	you	can	read	any	and	all	materials,	ask	us	questions,	talk	with	other	students,	and	
learn	however	you	best	learn	in	order	to	solve	the	task.	Just	create	your	own	solution	from	those	
experiences,	and	turn	in	your	work.	
	
	
Installing	Java	
	
We	need	to	get	Java	installed	before	we	can	do	anything.	Specifically,	we	need	the	Java	SDK,	not	the	JRE.	
We	also	need	version	8	of	Java;	at	the	end	of	the	semester	we	will	finally	use	the	newer	features	in	Java	8,	
so	go	ahead	and	install	it	now.	
(Java	9	is	out	recently,	but	is	not	yet	supported	by	DrJava;	stick	with	8	for	now.)	
	
We	already	have	a	good	short	guide	on	installing	Java	in	our	free	CS211	textbook:	
https://cs.gmu.edu/~marks/211/textbook/	
	
Follow	the	link,	and	get	java	and	an	editor	installed,	such	as	DrJava	(officially	supported	in	class).	
	
Read	as	far	as	installing	java	and	an	editor,	but	realize	that	you	have	to	complete	different	work	(and	test	
it!)	to	complete	this	lab.		
	
	



Task	
	
Begin	by	copying	in	this	sample	code	into	a	file	named	HelloLab.java	
(the	file	name	and	the	class	name	have	to	match)		
	

public	class	HelloLab	{	
			
		public	static	void	main(String[]	args){	
				System.out.println("Hello,	Lab!");	
		}	
}	

	
For	now	that's	just	some	boilerplate	code	you	should	start	with	for	any	new	class,	other	than	the	name	
(HelloLab)	and	what	your	code	does	(like	printing	a	message,	here).	Before	too	long	you	should	know	the	
meaning	and	purpose	of	each	word	here.	Java	is	quite	explicit,	requiring	every	detail	to	be	written	into	
the	code,	and	we	don't	know	all	of	those	details	yet.	That's	okay.	
	
Next,	create	the	file	CSWisdom.java	using	the	same	template,	but	replacing	HelloLab	with	CSWisdom.	
	
We	can	still	use	"\n"	as	the	representation	of	a	newline	character.	Modify	your	CSWisdom	code	so	that	it	
prints	the	following	quote,	including	the	blank	line	and	attribution:	
	

Computer	science	is	
no	more	about	computers	
than	astronomy	is	
about	telescopes.	
	
	-	Edsger	Dijkstra	

	
You	may	have	to	play	carefully	with	spacing	to	ensure	you	match	the	tester's	output.	Pay	close	attention	
to	any	error	messages	you	get,	and	remember	that	System.out.println(someString)	will	always	add	a	
newline	at	the	end	of	the	requested	content.	
	
Running	the	Tester	
You	can	run	the	tester	independently	of	any	IDE,	directly	on	the	command	line.	JUnit	is	a	testing	
framework,	not	directly	a	part	of	java,	so	you	will	always	need	to	have	a	copy	of	the	JUnit	code	available	
when	running	any	JUnit	test	suite.	This	is	provided	as	a	.jar	file,	which	is	secretly	just	a	mislabeled	.zip	file	
of	java	code	in	disguise!	Download	junit-cs211.jar	at	the	provided	link	above,	and	put	it	next	to	your	code.	
Open	up	a	terminal,	and	browse	to	the	same	location	of	your	files.	Then,	run	the	following	commands:	
	

(Windows	users,	you	must	replace	colons	(:)	with	semi-colons	(;)	in	the	commands	below)	
	

• compile	all	.java	files,	with	the	"class	path"	including	the	current	directory	(.)	and	the	junit	jar	file	
(junit-cs211.jar)	as	places	to	look	for	needed	code.	
	 	 javac	-cp	.:junit-cs211.jar	*.java		

• with	the	class	path	again	containing	the	current	directory	and	the	junit	jar	file,	find	a	compiled	
class	named	Tester1e,	and	call	its	main	method.	
	 	 java	-cp	.:junit-cs211.jar	Tester1e	

	
or,	with	DrJava,	click	the	magic	Test	button	when	the	Tester1e.java	file	is	open.	



	
Turning	in	your	Assignment	
	
Each	time	we	turn	in	code	for	this	class,	we	will	create	a	folder	to	hold	all	your	documents,	a	quick	
identifying	document,	and	then	we'll	turn	in	a	.zip	file	of	this	folder.	
	

• the	folder	name	must	be	your	lab	section	number,	your	userID,	and	the	assignment	kind/number	
separated	by	underscores.	For	example,	the	correct	pattern	for	this	assignment	would	look	like	
this	for	George	Mason	(gmason76)	enrolled	in	lab	section	230:	
	
	 230_gmason76_L1/	

• For	this	assignment,	put	both	your	files	in	that	folder:	
o HelloLab.java	
o CSWisdom.java	

• Also	create	a	textfile	named	ID.txt,	containing	the	following	information	tailored	to	yourself.	You	
will	need	this	for	every	single	project/lab	you	turn	in.	
Full	Name:	George	Mason	
userID:	gmason76	
G#:	00000001	
Lecture	section:	003	
Lab	Section:	230	

• Next,	create	a	.zip	file	from	this	folder.	
o Mac:	just	right-click	and	select	"compress	folder…",	and	it	will	generate	it	for	you.	
o Windows:	right-click	the	folder,	"Send	to…",	"Compressed	(zipped)	folder",	and	it	will	

generate	it	for	you.	
o Linux:	you've	already	decided	you	like	to	do	things	your	own	way,	so	I'm	sure	you've	got	

this.	
• Last,	upload	this	zip	file	to	Blackboard	under	the	correct	assignment.	This	time,	it	has	three	files	in	

it:	HelloLab.java,	CSWisdom.java,	and	ID.txt.	
	
	
Important	Notes	
	

• Whenever	using	the	command	line,	just	retype	things	instead	of	trying	to	copy	from	a	pdf.	Dashes	
and	quotes	and	other	fancy	characters	usually	get	mangled	in	the	process,	and	unfortunately	you	
often	can't	even	tell	by	looking	at	it!	

• We	don't	need	the	tester	file;	please	do	not	include	any	files	we	provided	you	in	your	submissions.	
• We	can't	inspect	your	work	with	the	compiled	(.class)	versions	of	your	code;	those	receive	zero	

credit!	We	always,	always,	always	need	the	.java	files.	
• Make	sure	you	"Submit"	the	assignment	on	Blackboard.	If	you	only	"save",	then	you	are	"saving	it	

for	later	but	not	giving	it	to	anyone	right	now".	And	you'll	completely	miss	the	deadline	and	get	no	
points	and	be	sad.	

• You	can	submit	your	work	as	many	times	as	needed.	You	can	also	check	your	submission(s)	and	
re-download	them,	to	make	sure	you	turned	in	the	correct	copy.	It	is	your	responsibility	as	an	
adult	taking	a	college	class	to	make	sure	you	actually	turn	in	the	correct	work!	Just	make	
double-checking	your	submission	be	part	of	your	normal	process.	

	


