
	 1	

CS	211	Review	Guide	
	

Test	#1	Review	Guide	
	

The	 first	 test	 covers	 everything	 we	 have	 discussed	 about	 basic	 Java	 programming,	 through	 control	
structures,	 arrays,	 methods,	 visibility,	 and	 inheritance	 (including	 abstract	 and	 final	 keywords	 when	
applied	to	classes	and	methods).		
	
In	 preparing	 for	 your	 test,	 you	 should	 be	 aware	 that	 anything	 in	 the	 required	 readings,	 anything	
presented	in	lecture,	and	anything	covered	in	the	labs	and	assignments,	is	valid	testing	material.		I	will	try	
to	create	a	 laundry	 list	of	 topics	here,	but	 it	 is	not	a	guarantee	that	things	won't	show	up	on	the	exam.		
Since	 I'm	 the	one	making	 the	study	guide	and	our	 test,	 it's	a	pretty	good	bet	 that	 it	will	 indeed	be	 the	
same	listing	of	things	I	feel	is	important;	just	be	sure	you	study	everything	at	your	disposal,	even	if	this	
review	guide	serves	to	focus	your	time	on	specific	topics.	
	
This	class,	and	especially	this	first	test,	has	a	significant	focus	on	being	able	to	write	programs	in	the	Java	
language.		This	course	also	has	a	significant	focus	on	being	able	to	describe	the	object-oriented	concepts	
that	we	have	learned,	so	as	a	transition	from	CS	112,	there	will	likely	be	an	increased	(but	not	extreme)	
focus	on	more	theoretical	questions,	such	as	"why	is	X	a	good	idea",	or	"how	does	Y	make	Z	exhibit	more	
encapsulation?".	We	will	 still	 have	 questions	 that	 test	 your	 ability	 to	 program	 in	 Java,	 just	 as	 CS	 112	
would	test	your	ability	to	write	Python	code.		But	now	we	will	also	have	a	slightly	shifted	focus	towards	
the	 concepts	 of	 OO.	 	 Sometimes	 the	 theoretical	 part	 doesn't	 occupy	 quite	 as	 much	 a	 portion	 of	 our	
presentation	time,	because	the	details	of	writing	Java	code	dwarf	the	theory;	but	that	doesn't	mean	the	
theory	was	less	important.	
	
This	guide	does	not	attempt	to	go	into	complete	detail,	especially	when	that	detail	is	available	already	in	
our	slides	and	in	the	book.	
	
Throughout	the	slides,	there	are	many	"Practice	Problems"	slides;	they	are	an	excellent	starting	point	for	
the	sorts	of	sample	problems	you	might	expect	to	see	on	the	exam.	Other	examples	(not	explicitly	listed	
as	practice	problems)	in	the	slides	are	also	quite	instructive	of	what	to	expect	on	the	test.	
	

	 2	

Java	Basics	
	

• The	 Java	 compiler	 translates	 from	 source	 code	 to	 bytecode,	 which	 runs	 on	 the	 "Java	 Virtual	
Machine".	 Many	 different	 systems	 have	 interpreters	 that	 translate	 bytecode	 to	 machine	
instructions	for	their	particular	CPU's.	

• syntax:	the	way	to	write	something	in	a	language.		semantics:	the	meaning	of	a	language	feature	or	
specific	piece	of	code.	

• errors:	
o compile-time	errors.	E.g.,	syntax	errors	(can't	be	interpreted	as	valid	code	in	the	language);	

type	errors	(misuse	of	language	features	so	that	it	is	not	valid	code).	
o run-time	errors.	Code	compiled,	but	attempted	something	illegal/impossible	(e.g.,	divide	by	

zero,	out-of-bounds	array	index,	using	null	like	an	actual	object	value).	
o semantic	errors.	The	code	compiles	and	runs	(doing	what	it	implied),	but	we	have	written	

code	that	doesn't	do	quite	what	we	want	to	occur	(such	as	dividing	instead	of	multiplying,	
or	not-quite-finding	the	maximum	in	an	array).	

• Edit-Compile-Run	 cycle:	 When	 writing	 code,	 we	 first	 edit	 a	 document;	 then	 we	 compile	 it	 (to	
translate	to	Java	bytecode,	in	this	class),	which	generates	the	.class	file;	last,	we	run	it.	No	matter	
what	development	environment,	or	 language,	 this	 three-phase	cycle	 is	occurring,	even	when	the	
steps	are	blurred	by	DrJava	or	Eclipse	or	some	other	IDE.	

• HelloWorld:	be	able	 to	write	out	 the	 "hello,	world"	program.	Although	we	haven't	 learned	what	
quite	all	the	parts	of	it	mean,	we	are	making	great	progress	already.	 	Also,	running	any	program	
amounts	to	this	basic	piece	of	code.	

o on	the	test,	you	won't	always	have	to	write	code	to	make	a	full	program;	read	carefully	if	a	
question	just	asks	for	a	method,	or	lines	of	code	that	would	do	something	when	run.		We're	
usually	just	looking	for	the	couple	lines	or	so	that	relate	to	a	specific	task.	

• Whitespace:	any	whitespace	allowed	between	any	identifiers,	operators,	etc.	(as	long	as	they	can	
be	distinguished,	we	don't	even	need	whitespace:	x+=1*foo(a,b);	versus	x	+=	1	*	 foo	(a	 ,	b)	 ;).		
Only	 exception:	 can't	 have	 newlines	 within	 a	 string	 literal	 (between	 matching	 ""'s).	 Thus	
whitespace	doesn't	have	the	indentation	meaning	that	we	saw	in	Python,	even	though	we	strongly	
encourage	indentations	again.	

• Comments:	/*	multi	line	*/	and	//to-end-of-line	styles.	
• identifiers:	 names	 for	 things	 in	our	 code.	 	 Consist	 of	 letters,	 numbers,	 underscores,	 and	$'s,	 but	

don't	start	with	numbers.	(Please	don't	use	$'s:	they	are	for	code	that	writes	code).	
• keywords:	identifiers	that	have	built-in	meaning	in	the	language,	such	as:	for	while	if	case	switch	

public	private	…	
• primitive	types	versus	reference	types:		

o primitive	 types:	 8	 basic	 types	 where	 the	 values	 are	 atomic	 (no	 sub-portions)	 and	 of	 a	
known,	small,	fixed	size.	They	are:	boolean,	char,	byte,	short,	int,	long,	float,	double.	

§ literals:	know	how	to	create	literals	in	all	primitive	types.	Recall	hexadecimal	input,	
F	suffix	for	float,	L	suffix	for	longs.	

o reference	 types:	 types	created	 through	a	class	definition	or	array	definition	 (whether	we	
write	the	class	or	we	get	it	from	a	library	of	code,	such	as	java.util	or	java.lang).	

	

	 3	

	
	

• casting:	a	conversion	from	a	value	of	one	type	to	a	value	of	another	type.	
o implicit	casting	conversions:	when	no	information	is	lost,	Java	will	convert	between	types	

for	 us.	 E.g.,	 from	 int	 to	 double;	 from	 short	 to	 int;	 from	 anything	 to	 String	 (for	 printing	
purposes,	usually;	uses	the	toString()	method	for	objects).	

o explicit	 casting	 conversions:	 programmer-specified	 conversions.	 	 Usually	 required	 when	
the	conversion	 loses	precision	or	other	 information;	 tells	 Java	 that	 it	 is	 'okay'	 to	perform	
the	lossy	action.		E.g.:	from	double	to	int;	from	long	to	short.	

o Be	able	to	identify	when	Java	performs	implicit	casts.	
o Be	able	to	use	explicit	casts	to	get	data	into	the	right	format	(type).	

• Creating	Variables	
o declaration:	 a	 type	 and	 an	 identifier.	 Tells	 Java	 that	 there	 should	 be	 a	 named	 storage	

location	that	can	contain	one	value	of	the	given	type,	and	will	be	accessed	using	the	given	
identifier.	Only	declared	variables	can	be	used,	ever.	

• Expressions	vs.	Statements	
o Expression:	 a	 representation	 of	 a	 calculation	 that	 can	 be	 evaluated	 to	 result	 in	 a	 single	

value;	no	indication	what	to	do	with	the	value.	
§ Be	comfortable	identifying	expressions.	
§ Understand	the	ternary	?:	expression.	

o Statement:	 a	 command/instruction	 for	 the	 computer	 to	 perform	 some	 action;	 often,	
statements	contain	expressions.	

§ Be	comfortable	identifying	statements	versus	expressions.	
• Strings	

o concatenation:	+	operator.	
o implicit	conversion	of	everything	to	String	values	when	added	to	a	String,	or	when	a	String	

value	is	needed.	
o escape	sequences:	\t,	\n,	\",	\\,	etc.	
o checking	for	string	equality:	can't	just	use	==.	Use	the	equals	method:	e.g.,	s1.equals(s2).	
o Strings	are	immutable	(can't	change).	

• printing:	via	System.out.println(),	System.out.print(),	System.out.printf().	
• Scanner:	 class	 providing	 convenient	 methods	 to	 read	 text	 input	 from	 a	 source	 (such	 as	

keyboard/System.in).	
o Be	able	to	use	basic	scanner	methods:	nextInt(),	nextDouble(),	next(),	nextLine(),	etc.	

• Constant:	a	'variable'	whose	value	will	never	change	from	its	initial	value.		Indicated	with	the	final	
keyword.	

o naming	convention:	all	caps.	ex:	MIN_HEIGHT,	NUM_PONIES.	
• increment/decrement:	e.g.,	x++,	++x,	x--,	--x.		"syntactic	sugar"	for	an	increment	on	the	previous	or	

following	 line.	See	our	slide	examples	 for	 their	semantics.	Be	ready	to	examine	code	using	them	
and	report	what	happens.	We	ought	not	have	more	than	one	of	these	per	variable	per	statement…	

	

	 4	

Control	Flow	
	

• heavy	use	of	boolean	expressions.	(expressions	that	result	in	a	boolean	value).	
• if/if-else.	(No	elif:	since	we	use	{}'s	instead	of	indentation,	we	can	get	the	same	effect	with	chained	

if-else's).	
• switch:	old-fashioned,	fast	way	to	branch.	

o can	only	switch	based	on	primitive	value	(or	enum,	or	String	as	of	Java	1.7).	
o cases	must	be	values,	not	expressions.	
o use	break	statements	to		manually	leave	after	each	case	statement	(or	don't,	with	unusual	

control	flow	behavior	compared	to	if-elses).	
o default	case	can	catch	all	non-cased	values.	

• while	loop:	keep	executing	body	as	long	as	guard	(boolean	expression)	is	true.	Body	might	execute	
zero	times	(if	guard	is	false	first	time).	

• do-while	loop:	like	while	loop,	but	guaranteed	to	run	at	least	once	(guard	checked	after	each	loop	
iteration,	not	before).	

• for	loop:	init,	guard,	update.		See	slides	for	detailed	examples/while	loop	version.	
• for-each	 loop:	 requires	 an	 'Iterator'	 (arrays	 are	 Iterators).	 Looks	 like	 value-based	 for	 loop	 from	

Python;	avoids	index	usage	but	still	lets	us	access/modify	each	element	in	the	Iterator	(array,	for	
us	for	now).	

• break,	 continue:	 ways	 to	 modify	 loop/switch	 control	 flow.	 Try	 not	 to	 use	 them	 too	 often,	 but	
sometimes	they	really	do	make	a	block	of	code	simpler.		

	
Arrays	

• arrays	are	 fixed-length	sequences	of	values,	all	of	a	single	 type.	e.g.,	an	array	of	 integers	(where	
each	slot	holds	one	integer,	like	an	integer	variable).	

• representing	 an	 array	 type:	 place	 []'s	 after	 a	 type	 to	 indicate	 an	 array	 of	 that	 type.	 	 String	→	
String[].		int	→	int[].	Defines	an	array	type.	

o can	add	multiple	dimensions:	int[][],	float[][][],	etc.	
• Declaration:	as	always,	give	a	type	and	an	identifier;	now	the	type	is	an	array	type.	ex:			int[]			xs		;	
• Instantiation:	must	indicate	exact	length.	

o {vals,like,this}	//allowed	at	declaration	time	only.	
o new	int[]{vals,like,this}	//	allowed	anywhere	
o new	int[10].	(Fills	with	default	values:	0,	false,	null,	as	appropriate	for	the	type).	

• accessing/update:	using	xs[index].		index	must	be	an	expression	yielding	an	integer	value.	
o No	slicing	like	Python	allowed.	

• usage	with	loops.	A	lot	of	code	examples	used	loops	and	arrays;	be	comfortable	doing	these	sorts	
of	things.	

	
Classes	and	Objects	

• Class:	a	class	is	a	type.	It	is	like	a	blueprint	for	making	objects.	It	defines	the	state	that	each	object	
will	have,	and	what	behaviors	(methods)	are	available	for	those	objects.	

• Object:	an	object	 is	a	value.	 (A	value	of	a	particular	class	 type).	 It	 is	an	 instance	of	 its	class	(one	
distinct	value	of	that	type).	It	has	its	own	copy	of	each	instance	variable	and	method.	

• Terminology:	a	type	defined	through	a	class	is	called	a	"reference	type",	because	we	don't	have	the	
direct	 value	 as	 with	 ints;	 instead,	 we	 deal	 with	 references	 to	 the	 object	 value	 that	 resides	 in	
memory.	

	

	 5	

Variable	versus	Reference	versus	Object:	
	

• A	 variable	 is	 a	 named	 container	 (on	 the	 stack).	 	 A	 reference	 is	 just	 a	 (type,address)	 pair	 of	 an	
address	 of	 an	 object	 in	 memory	 that	 also	 knows	 what	 type	 it	 points	 to.	 Some	 variables	 only	
contain	primitive	values	(no	reference),	while	other	variables	only	contain	references	(the	value	
is	elsewhere).	An	object	is	an	instance	of	a	class	(it's	a	value),	and	it	resides	in	the	heap	memory.	
The	object	contains	its	own	copy	of	each	instance	variable	and	method.		

• many	references	can	have	 the	address	of	 the	same	object;	 they	are	called	aliases.	 	Since	 there's	
only	one	object	involved,	updates	via	one	reference	are	visible	through	the	other	references.	

• instance	variable:	a	(non-static)	variable	declared	inside	a	class,	indicating	that	each	object	of	the	
class	will	have	its	own	maintained	copy	of	this	variable.	E.g.,	the	Square	class	has	a	side	instance	
variable.	A	Coordinate	class	could	have	both	x	and	y	instance	variables.	

• constructor:	special	method	that	is	used	when	creating	a	new	object.	
o no	return	type	listed	(returns	reference	to	object	of	the	class's	type)	
o method	name	must	be	the	class	name	exactly.	
o parameters:	entirely	at	programmer's	discretion.	(Often	one	per	instance	variable).	
o default	 constructor:	 If	 a	 class	 definition	 does	 not	 explicitly	 list	 a	 constructor	 definition,	

then	 a	 default	 implementation	 is	 available:	 no	 parameters,	 and	 all	 instance	 variables	
receive	default	values:	0,	false,	and	null	(for	reference	types).	

	
Methods	
	

• named	block	of	code	that	can	be	called.	
• defined	in	a	class	→	thus	has	access	to	things	defined	in	the	class	(no	matter	what	visibility).	
• available	modifiers:	visibility	(public/private/…),	static	or	not,	final	or	not,	others	we	haven't	seen.	
• method	signature:	modifiers,						return	type,				name,					parameter	list.	

o example:					public	static							void														main							(String[]	args)	
• parameters:	 formal	 parameters	 defined	 in	 parameter	 list	 (declares	 them);	 when	 a	 method	 is	

called,	 the	actual	parameters	 (arguments)	 are	 supplied	 to	 instantiate	 the	 formal	parameters	 for	
this	particular	invocation	of	the	method.	Parameters	are	local	variables.	

• return	type:	Java	enforces	that	the	method	will	always	return	a	value	of	the	specified	return	type.	
o void:	 indicates	 that	control	 flow	should	return	without	a	 return-value.	 Java	enforces	 this,	

too.	All	possible	paths	must	guarantee	a	return	of	the	correct	type	of	value.	
• method	overloading:	when	two	methods	share	the	same	name,	but	are	still	distinguished	by	their	

parameter	lists,	Java	allows	them	to	coexist	(never	ambiguity	which	one	is	being	called).	
o only	the	name,	number	of	params,	and	types	of	params	can	distinguish	them.	
o constructor	methods	can	also	be	overloaded!	This	is	a	great	thing.	

• Control	 Flow:	 understand	 how	 control	 flow	 passes	 through	multiple	methods	 as	 they	 call	 each	
other.		Our	diagrams	of	the	stack	of	method	frames	exhibited	both	this	control	flow	as	well	as	the	
location	 of	 local	 data	 (in	 the	 frames,	 dying	 as	methods	were	 exited)	 and	 objects	 (in	 the	 heap	 –	
meaning	 space	 to	 the	 right	 in	 our	 diagrams,	 which	 could	 last	 arbitrarily	 long,	 as	 long	 as	 our	
references	meant	Java	wouldn't	garbage	collect	them).	

	
References	
	

• the	result	of	a	constructor	call	is	not	the	object	itself	–	it	is	a	reference	to	that	object.	
• A	reference	is	simply	an	address	of	an	object.	

	

	 6	

Method	Calling	Conventions	(how	are	actual	parameters	actually	transmitted?)	
• only	 values	 are	 ever	 sent	 across	 from	actual	 parameters	 of	 a	method	 call	 to	 formal	parameters	

during	execution	of	method	body.	
• primitive	types:	a	copy	of	 the	primitive	value	 is	sent.	No	effect	on	the	original	primitive	value	 is	

possible	(or	wherever	it	may	have	been	stored).	
• reference	types:	a	copy	of	the	reference	value	is	sent	(creating	an	alias).		No	effect	on	the	original	

reference	is	possible;	however,	these	aliases	both	point	to	the	same	object	in	memory	and	thus	can	
witness	each	others'	updates	to	that	object.	

• We	 had	 examples	 of	 each	 of	 these,	 to	 understand	 what	 effect	 on	 memory	 was	 possible	 when	
passing	primitive/reference	types	for	parameters.	

Static	
• modifier	that	indicates	there	should	only	be	one	definition	for	the	entire	class.	
• Note:	static	doesn't	mean	"unchanging"!	That's	what	the	final	keyword	is	for.	
• static	variable:	a	"class	variable".		One	copy	overall,	regardless	how	many	objects	are	made	(zero	

to	many,	it	doesn't	matter).	Access	as	Classname.varname, or, as varname inside the class.	
• static	 method:	 like	 a	 regular	 method,	 but	 cannot	 use	 instance	 variables.	 Therefore,	 accessible	

without	 an	 object,	 directly	 through	 class	 (since	 no	 object	 is	 used	 to	 call	 it).	 Access	 as	
Classname.method(..), or inside the class definition as just method(..)	

• Usage	example:	main	is	static	(because	we	don't	make	an	object	of	the	class	to	run	main).	 	If	we	
want	'helper'	methods	for	main,	they	must	also	be	static:	

o static	 things	 can't	use	non-static	 things!	 (Local	variables	 in	a	 static	method	seem	 like	an	
exception,	but	it's	still	inside	a	static	location).	

	
Object	class	

• ancestor	of	all	classes.		Provides	the	toString()	and	equals(Object	o)	methods,	among	others.		
o we	can	redefine	toString()	 to	aid	 in	printing	(Java	uses	this	 toString	method	to	String-ify	

any	object,	quite	often	with	printing	in	mind).	
	
Scope	

• scope	of	data	is	the	area	in	a	program	where	that	data	can	be	referenced	(used).	
• data	declared	at	the	class	level	can	be	referenced	by	all	methods	in	that	class.	
• data	declared	within	a	method	is	called	"local	data",	and	can	only	be	used	in	that	method.	

	
	
Terminology	

• variables	defined	in	a	class,	whether	static	or	non-static,	are	called	fields.	
• fields	and	methods	are	all	called	"members"	of	a	class.	

	
Visibility	

• class	members	(and	classes)	can	be	given	a	visibility.	For	now,	just	consider	public	and	private.	
• public:	anyone	with	access	 to	 this	object	 is	allowed	 to	use	 this	public	portion	of	 it	 (whether	 it's	

reading/writing	a	public	variable,	or	calling	a	public	method).	
• private:	access	 to	 this	member	 is	 restricted	 to	other	members	 inside	 the	class:	meaning	 that	an	

object	can	use	this	private	thing	while	performing	its	own	calculations,	but	the	outside	world	can't	
use	it.	

	 7	

o Good	 for	 enforcing	 encapsulation:	 presentation	 to	 outside	 world	 is	 the	 public	 stuff,	
internal-only	representations	and	methods	are	private	stuff.	

• Based	on	current	view	of	an	object:	internal	vs.	external.	(internal:	everything	available;	external:	
only	public	stuff	available).	

• public	methods:	"service	methods".	private	methods:	"support	methods".	
• accessor/mutator	 methods	 (getters	 and	 setters):	 ways	 to	 individually	 restore	 read/write	

privileges	to	users	of	private	variables.	
• public	 stuff	 defines	 the	 "interface"	 (we	 called	 it	 the	 API/application	 programming	 interface	 in	

Python)	to	the	object.	
	

Inheritance	
• Allows	a	new	sort	of	code	reuse:	similar	state	(fields)	and	behavior	(methods)	can	be	"inherited"	

from	one	class	to	another.	
o Establishes	a	"parent-child"	relationship.	Also	called	"superclass/subclass",	"base	

class/derived	class".	
o indicated	with	extends	keyword:	class Car extends Vehicle	

• Perhaps	most	importantly,	we	now	have	a	supertype/subtype	relationship.		All	the	child	classes'	
objects	can	be	used	where	the	parent	class's	objects	were	expected.	

• Inheriting	things:	any	fields	or	methods	of	the	parent	class	are	automatically	a	part	of	the	child	
class.		They	can	never	be	removed.		Methods	may	be	re-implemented	(with	the	parent	class's	
approval	–	non-final	methods).	
	

• Visibility:			
o public:	anyone	that	can	name	it	can	access	it.	
o protected:	anyone	in	the	package,	and	child	classes	outside	the	package,	can	access	it.	
o default	(package-private	vis.):	all	in	package	can	see	it;	nobody	outside	of	the	package,	not	

even	children,	can	see	it.	
o private:	only	visible	to	this	specific	class	(not	to	children	or	co-package	members).	

	
• super :	refers	to	the	parent	class.	

o note:	this	referred	to	an	instance;	super	refers	to	a	class.	
o uses:		 calling	parent	constructors:		super(any,args)	

	 finding	shadowed	(overridden)	parent	members:	super.fieldName	
	

• constructors:	only	thing	that	isn't	directly	inherited	(we	must	make	our	own	constructors	too).	
o a	child	class	constructor	must	call	its	parent	constructor	as	its	very	first	statement,	using	

super(any,args); and	correctly	matching	the	parameters	list	of	an	actual	constructor	
for	the	parent	class.	

§ Java	actually	adds	super();	to	any	child	class	constructor	that	doesn't	explicitly	
call	its	parent	constructor.		If	no	such	zero-parameters	constructor	existed	in	the	
parent	class,	it	is	a	compilation	error.	

	
• single	inheritance:	Java	allows	exactly	one	parent	class,	always.	

o if	no	parent	class	is	specified,	the	Object class	is	the	parent	class.	
o we	can	simulate	multiple	inheritance	with	interfaces	later	on.	

	

	 8	

• Overriding	Methods:	
o child	class	can	provide	a	new	implementation	of	a	method	inherited	from	parent	class.	
o the	method	signature	must	exactly	match:	name,	parameters'	types	/	ordering	/	number,	

and	also	the	return	type.	
o No	matter	at	what	type	we're	viewing	the	child	object,	if	we	call	the	overridden	method,	we	

get	the	child's	specialized	implementation.	
§ we	call	methods	on	objects;	whenever	that	particular	object	was	instantiated	it	had	

a	specific	type	(the	class	containing	that	specific	constructor	used)	
→	That	type	always	dictates	what	versions	are	used,	no	matter	where	else	(and	at	
what	type)	we	eventually	call	methods	on	that	object.	e.g.,	we'd	get	the	same	
implementation	of	makeNoise():	
 Labrador spot = new Labrador(..);	

 spot.makeNoise(); // uses Labrador version.
 ((Dog)d).makeNoise(); // still uses Labrador version.

• Overriding	Fields	(a	bad,	bad	idea):	
you	can	also	override	fields,	but	my	opinion	is	that	this	will	almost	always	be	a	programming	
bug	–	competing	versions	of	the	same-named	variable	(perhaps	different	types),	where	
inherited	methods	use	the	parent's	version,	and	new/overridden	methods	use	the	child's	
version.		Ugly	bugly!	
	

• Difference:	Overloading	vs.	Overriding	
o overloading:	providing	same-named	methods	that	purposefully	have	different	method	

signatures	(parameter	list	#/types),	to	provide	multiple	implementations	based	on	
different	inputs.	Especially	useful	for	constructors.		Possible	without	any	inheritance	
involved.	The	different	versions	co-exist	in	peace.	

o overriding:	requires	parent/child,	inheritance.		Child	class	inherits	method,	yet	re-defines	
what	it	will	do	when	that	method	is	called	by	purposefully	having	the	same	method	
signature,	but	providing	a	new	body.	There	can	be	only	one!	

	
• Object	class	

o it	is	always	an	ancestor	(parent,	grandparent,	..)	of	every	class.	
o provides	a	few	useful	methods:	equals(..),	toString(),	others.	
o we	prefer	always	overriding	these	methods.	

	
• Abstract	class	(PUSHED	BACK	TO	TEST	#2):	

o a	class	that	cannot	(yet)	be	instantiated	(we	can't	make	objects	of	this	exact	type).	
o The	opposite	of	an	"abstract"	class	is	a	"concrete"	class.	

§ concrete	classes	may	be	instantiated	
o abstract	class:	achieved	by	adding	the	abstract	keyword	to	class	declaration.	

 public abstract class Shape { .. }	
o abstract	classes	also	may	optionally	include	abstract	methods:	methods	that	are	declared	

(with	abstract	modifier),	but	have	no	body	(a	;	instead	of	{..}).	
§ just	like	all	other	members,	abstract	methods	will	be	inherited.	

o abstract	classes	may	still	have	child	classes.		If	the	child	class	overrides	every	abstract	
method	that	was	inherited,	then	the	child	may	be	concrete.	

o Just	like	other	classes,	an	abstract	class	is	a	type.	The	collection	of	fields	and	methods	we	
introduced	are	all	guaranteed	to	exist	(and	be	concrete)	for	all	actual	instances	from	child	

	 9	

classes.		This	is	the	whole	point	of	introducing	an	abstract	class	into	our	class	hierarchy:	to	
have	a	formal	way	to	group	related	child	classes	and	use	them	uniformly.	

	
• final 	classes,	final 	methods:	

o if	a	class	is	declared	to	be	final,	it	may	not	be	extended	(no	child	classes	are	allowed).	
o if	a	method	is	declared	to	be	final,	it	may	not	be	overridden	(no	child	class	may	ever	

change	its	implementation	of	this	method).	
	

	
	

	 10	

Test	#2	Review	Guide	
	

Remember,	the	abstract	keyword	(methods,	classes)	is	also	on	this	test.	
In	 preparing	 for	 your	 test,	 you	 should	 be	 aware	 that	 anything	 in	 the	 required	 readings,	 anything	
presented	in	lecture,	and	anything	covered	in	the	labs	and	assignments,	is	valid	testing	material.		I	will	try	
to	create	a	laundry	list	of	topics	here,	but	omission	here	is	not	a	guarantee	that	things	won't	show	up	on	
the	exam.		Since	I'm	the	one	making	the	study	guide	and	the	test	(for	Snyder's	sections,	anyways),	it's	a	
pretty	good	bet	that	it	will	indeed	be	the	same	listing	of	things	I	feel	is	important;	just	be	sure	you	study	
everything	at	your	disposal,	even	if	this	review	guide	serves	to	focus	your	time	on	specific	topics.	 	This	
guide	does	not	attempt	to	go	into	great	detail	(such	as	exhaustive	examples),	especially	when	that	detail	
is	available	already	in	our	slides,	lab	tutorials,	and	in	the	book.	
	
As	is	often	the	case,	if	you	are	not	running	Java	code	while	you	study,	you	will	likely	not	do	well	on	the	
test.	Don't	 restrict	 yourself	 to	 just	 catching	 up	 on	 reading;	 be	 sure	 you	 actually	 practice	writing	 code!	
Throughout	the	slides,	there	are	those	"Practice	Problems"	slides;	they	are	an	excellent	starting	point	for	
the	 sorts	 of	 sample	problems	you	might	 expect	 to	 see	 on	 the	 exam.	The	quizzes	 are	 another	 excellent	
resource	 for	 sample	 question	 styles.	Other	 examples	 (not	 explicitly	 listed	 as	 practice	 problems)	 in	 the	
slides	are	also	quite	instructive	of	what	to	expect	on	the	test.	 	We've	posted	a	lot	of	code	samples	from	
class;	 review	 that	 code	 as	 a	 way	 to	 see	 the	 ways	 we	 introduced	 topics,	 and	 think	 back	 to	 how	 we	
discussed	why	we	would	do	things,	followed	by	how	we	would	do	them.		Lastly,	if	you	haven't	completed	
the	lab	tutorials	yet,	that's	a	great	source	of	practice!	 	Don't	just	skim	over	examples	because	you	don't	
see	any	difficult	situations	arising;	code	it	up,	make	sure	it	compiles,	make	sure	it	works.	I	have	a	hunch	
people	are	omitting	the	lab	chapter	exercises,	and	that	might	be	a	telling	factor	in	who	does	well	on	the	
test	or	not.	
	
Format	will	again	likely	be	part	multiple	choice,	part	short	answer,	part	longer	responses.	
	

Topics	
	
Packages	

• means	of	grouping	Java	classes	for	distribution/usage	in	multiple	projects.	
• utilizes	actual	folder	structure	to	make	package	structure.	Files	must	include	package	statements.	
• aids	code	reuse,	avoids	name	clashes,	organizes	code.	
• some	class	libraries	(packages)	are	provided	with	Java:	java.util,	java.lang,	etc.	
• a	jar	file	is	a	"Java	Archive":	a	single-file	approach	to	providing	entire	libraries	of	Java	classes	(still	

maintains	package	hierarchy).	It	is	actually	just	a	zip	file!	
• Classpath	

o specifies	where	Java	(javac,	 java)	should	look	for	class	definitions.	By	putting	a	package's	
directory	on	the	classpath	(or	a	jar	file	directly	on	the	classpath),	Java	can	find	all	classes	
defined	in	the	package.	

• package	usage:	
o we	could	just	fully	qualify	a	class	from	a	package	at	each	and	every	usage:	

§ java.util.Scanner	sc	=	new	java.util.Scanner(System.in);	
o But	we	tend	to	import	it	first:	

§ import	java.util.*;	//	outside	of	class	
§ Scanner	sc	=	new	Scanner	(System.in);	//	inside	method	

o Consider	our	package	example.	

	 11	

	
	Interfaces	
	

• Java's	"controlled	simulation	of	multiple	inheritance".	
• An	interface	is	a	type.	
• defines	a	group	of	abstract	methods	that	any	class	may	implement.	

o an	interface	never	has	any	fields.	Add	getters/setters	to	pretend.	
• A	class	"signs	the	contract"	of	an	interface	by	claiming	it	implements	it:	

	 public class Car implements Sellable { ..	
• A	class	"fulfills	the	contract"	by	actually	implementing	(overriding)	every	single	method	of	the	

interface.		If	even	a	single	method	from	the	interface	is	left	out,	the	class	must	be	abstract	
(allowing	for	abstract	methods	to	be	passed	on	to	child	classes),	or	else	it	didn't	actually	
implement	the	interface,	and	a	compiler	error	occurs.	

• Examples	of	interfaces	in	Java's	standard	libraries:	
o Comparable:	provides	just	the	compareTo(..) method.	Allows	an	understanding	of	

ordering.		Useful	for	sorting	and	such.	
o Iterator:	provides hasNext(), next(),and	remove().	
o Serializable:	no	methods.	But	clues	Java	in	to	make	the	class	representable	for	storing	in	

a	file	or	transmitting	over	a	network.	
• Advanced	interfaces:	

o interfaces	may	inherit	from	each	other!	We	didn't	try	this,	but	it's	interesting	how	rich	and	
related	the	types	we	can	introduce	in	Java	may	be.	

Enumerations	

• basically,	a	finite	set	of	values	that	are	grouped	into	a	new	type.	
• simple	examples:	

o enum TrafficLight {RED, AMBER, GREEN}	 	
o enum Day {MON, TUES, WED, THURS, FRI, SAT, SUN}	

• internal	implementation	(good	mental	model):	as	a	class,	except	that	constructors	must	be	private	
(so	 no	 extra	 values	 are	 created	 anywhere	 else),	 and	 the	 finite	 list	 of	 values	 are	 included	 at	 the	
beginning	 of	 the	 class	 definition	 once	 and	 for	 all	 (as	 static	 fields).	 	 Otherwise,	we	 can	 still	 add	
methods,	fields,	all	the	usual	class	stuff.	

• Simple	Usage:	
o in	general,	access	with EnumName.EnumValue (e.g.,	Grade.A).		
o in	 switch:	 access	 with	 EnumValue.	 (Java	 already	 knows	 EnumName	 b/c	 of	 the	 switch	

expression)	
o in	foreach	loop	(utilizing	the	array	returned	by	values()):	 	 	

 for (Grade g : Grade.values()) { ... }	
• Advanced	features:	

o add	three	things	at	once:	
§ fields	(any	visibility)	
§ private/package-default	constructors	(not	public:	can't	be	accessed	outside	package	

ever,	and	no	protected:	enums	can't	be	extended)	
§ "constructor	calls"	to	the	enumerated	values	to	give	state	to	the	values	(see	slides)	

o add	methods	to	the	entire	enumeration.	(static	or	non-static;	different	visibilities	ok	except	
protected)		
	

	 12	

Exceptions	
• Idea:	Java's	representation	of	"something	went	wrong	that	can't	be	handled	right	here".	

o when	thrown,	an	exception	causes	normal	control	flow	to	be	abandoned,	like	a	rogue	
return	statement.	

o There	are	many	Exception	classes,	related	in	a	class	hierarchy	(using	inheritance).		We	can	
extend	these	classes	with	our	own	child	classes,	letting	us	hook	into	Java's	exception	and	
exception	handling	effort.	

o Exception	classes	to	know	about	(know	of	an	example	if	starred):	
§ Throwable

§ Exception
• RuntimeException

o NullPointerException
o ArrayIndexOutOfBoundsException
o ClassCastException
o ArithmeticException

• IOException
o FileNotFoundException

• Causing	exceptions:	

o call	a	method	that	throws	an	exception	(e.g.	,	file	not	found)	
o expression	that's	nonsensical	(e.g.,	5/0	or	xs[-3])	
o manually	throw	one	(e.g.,	throw new MyException("L");)	

• Handling	exceptions:	
o wrap	the	suspicious	code	in	a	try	block.		
o immediately-following	catch	blocks	specify	how	to	handle	exceptions	of	the	particular	type	

listed	in	the	catch	block.	
o we	can	have	multiple	catch	blocks	for	one	try	block,	where	each	catch	block	handles	a	

different	exception.	
§ order	catch	blocks	from	most	specific	(most	childly)	to	most	general	(most	

ancestral,	such	as	Exception	itself).	
o we	also	may	have	a	finally	block	after	all	the	catch	blocks.	This	block	always	runs	–	

whether	no	exceptions	occur,	or	an	exception	occurs	and	is	caught,	or	an	exception	occurs	
and	won't	be	caught	(the	finally	block	still	gets	to	run	before	the	propagation	continues,	
and	if	the	finally	block	throws	its	own	exception	then	the	original	one	is	lost).	

	
• Propagating	exceptions:	

o means	we	allow	it	to	crash	this	part	of	the	program,	if	the	exception	actually	occurs.	
o when	a	try	block	has	no	corresponding	catch	block	(or	we	didn't	even	have	a	try).	
o Checked	vs.	Unchecked	exceptions:	

§ checked	exceptions	that	are	propagated	must	be	admitted	in	the	signature:	
 public int foo (int a) throws IOException {..}	

§ unchecked	exceptions	that	are	propagated	don't	have	to	be	admitted,	but	may	be.	
§ unchecked	exceptions	are	the	RuntimeException 	class,	Error 	class,	and	their	

children.	They	tend	to	represent	program	bugs	and	hardware	failure	respectively,	so	
should	be	solved/fixed	(for	bugs)	or	dealt	with	gracefully.	

§ checked	exceptions	represent	things	beyond	programmer's	control	that	still	must	be	
dealt	with.	e.g.:	

• FileNotFoundException	when	trying	to	read	a	file	
• InputMismatchException	when	Scanner	token	is	wrong	

	 13	

o side	effects	and	control	flow:	
§ any	side	effects	(reassigning	a	variable,	printing)	that	occurred	before	the	exception	

cannot	be	undone.	
§ the	current	statement	isn't	even	finished	(so	maybe	a	method	call	wasn't	attempted	

if	the	argument's	evaluation	generated	an	exception;	or,	the	assignment	statement	
didn't	happen	because	we	generated	an	exception	trying	to	get	a	value	for	it).	

§ blocks	of	code	are	abruptly	exited	in	search	of	an	enclosing	try-catch-block,	
meaning	some	side-effectful	lines	that	would	normally	have	been	executed	next	will	
instead	not	be	run.		

• Creating	your	own	exception	classes	
o write	a	child	class	of	any	throwable	class	(includes	all	the	Exception	classes	mentioned).	

§ Extending	RuntimeException	(or	Error)	makes	yours	unchecked;	extending	
Exception	makes	yours	checked.	

§ Any	(non-final)	Exception	class	may	be	extended.	
§ Use	of	fields,	methods,	overriding	toString()	highly	encouraged.	

o Create	objects	of	your	exception	class	as	normal	(with	constructor	call):	
§ MyExc me = new MyExc ("problem studying", 410); 	

o throw	your	exception	manually:
 throw me; //following previous code snippet	

Wrapper	Classes	
	

• class-versions	of	the	primitive	types.	
o Sometimes	 only	 objects	 are	 allowed;	 these	 also	 can	 group	 more	 info,	 like	 methods	 and	

static	things,	with	the	type.	
• Auto-boxing:	 casting	 between	 the	 primitive	 types	 and	 their	 wrapper-class	 equivalents	 occurs	

implicitly	(automatically).		Java	is	able	to	meaningfully	convert	between	them	so	it	occurs.	

	

Command-Line	Arguments	

• Since	running	a	Java	program	means	running	the	main	method,	we	can	pass	in	an	array	of	String	
arguments	on	the	command-line	when	we	execute	our	Java	program:	 	
 demo$ java MyProgram args here 123 "spacey ones in quotes" too	

Only	strings	available:	main	method	signature	has	(String[] args)	parameter	list.
• values	are	separated	by	spaces.		matching	single-	or	double-quotes	may	be	used	to	create	a	single	

String	that	contains	a	space	(e.g.,	"spacey arg").	
• getting	numbers:	use	Integer.parseInt(s)	or	Double.parseDouble(s),	based	on	any	

String s.		(e.g.,	Integer.parseInt(args[0])).	
	

	 14	

Testing	and	Tools	

• javadoc:	a	tool	for	generating	API	documentation	based	on	Java	packages	(and	classes).	
o generates	a	lot	of	HTML	(good	to	put	in	separate	directory.	Then,	open	index.html)	
o always	"scrapes"	source	code	for	things	like	inheritance	hierarchy,	implemented	interfaces,	

listing	out	fields/methods.	
o can	write	special	/**	javadoc	*/	comments	that	are	also	inspected	by	javadoc.	

§ use	@tags	to	label	more	info:	@param,	@return,	@exception,	@author,	etc.	
o can	limit	what	levels	of	visibility	are	included	
o can	generate	API	documentation	for	many	packages/sub-packages	all	together.	
o might	add	package-info.java	files	to	document	entire	packages.	

• debugger:	a	tool	for	interactively	inspecting	values	of	a	running	program.	
o breakpoints:	 when	 these	 statements	 are	 reached,	 execution	 pauses	 (allows	 user	 to	 take	

control	and	inspect/change	things).	
o stepping:	advancing	one	statement	at	a	time.	

§ step	into:	allow	steps	to	travel	with	method	calls	and	step	there	too.	(follow	calls)	
§ step	over:	allow	steps	of	method	calls	to	call-return	in	one	atomic	step.	(stay	local)	
§ step	out:	keep	stepping	until	a	return	statement	is	reached	(let's	leave	now)	

o watches	/	watch	lists:	a	set	of	variable	names	that	the	debugger	will	show	values	for	at	each	
pause	 (of	 course,	 can't	 display	 anything	 when	 nothing	 of	 that	 name	 is	 in	 scope).	 Just	
variables/fields	available.	(DrJava	now	allows	tracking	of	expressions,	cool!)	

o modifications:	
§ user	can	directly	change	a	variable's	memory	to	see	effects	(but	doesn't	change	what	

original	program	will	do	when	run	again)	
§ user	 can	 run	 expressions/statements	 interactively	 (to	 inspect	 more	 than	 just	

variables).	
§ direct	edits	 to	source	code	generally	will	not	affect	debugger's	behavior	until	next	

compilation/debug-run.	
• Testing	

o gaining	assurance	that	code	works	as	expected	
o catching	bugs	in	earlier	phases	saves	orders	of	magnitude	of	effort!	
o test	case:	specific	inputs	and	expected	outputs	for	some	part	of	the	program.	
o regression	testing:	after	making	any	changes,	we	re-run	old	tests	that	had	passed,	to	double	

check	that	nothing	was	broken.	
o Testing	styles:	

§ black	box	 testing:	 test	cases	that	 focus	on	the	meaning	of	the	code:	with	no	view	
inside	the	"black	box",	what	behavior	is	expected?	

§ white	box	 testing:	test	cases	that	are	aware	of	the	particular	implementation,	and	
attempt	to	get	code	coverage.	Each	part	of	the	code	(loop,	if-else,	etc)	gets	test	cases	
to	 try	 and	 use	 that	 piece	 of	 code.	 In	 general,	 test	 cases	 that	 focus	 on	 the	
implementation	more	 than	 the	 general	 meaning	 of	 the	 code	 could	 be	 considered	
white	box	testing.	

o passing	all	 tests	doesn't	mean	program	is	necessarily	correct.	 (Can't	usually	 test	all	cases	
anyways).	Defining	correctness	is	very	hard!	

o unit	testing:	writing	tests	for	the	smallest	parts	of	a	program.	
o test-driven	 development:	 writing	 tests	 before	 (or	 at	 least	 alongside)	 implementation	

	

	

	 15	

• JUnit:	a	unit	testing	framework	for	Java.	
o java	package	that	can	be	imported	(and	used	to	run	test	cases/report	on	results)	
o offers	annotations:	@Test	methods	are	test	cases.		Also,	@Before,	@After.	
o require	 behavior	 by	 using	 assertWhatever	 methods:	 assertEqual(..),	

assertTrue(..),	assertNull(..).		Report	failures	with	fail().	

	
	
Generics	
	
• generics	allow	us	to	add	type	parameters	to	classes	or	methods	(or	interfaces).	

o This	 gives	 us	 parametric	 polymorphism	 –	 entire	 class	 /	 method	 /	 interface	 definitions	
parameterized	over	any	type.		

o type	 parameters	 on	 a	 class	 let	 us	 effectively	 create	 a	 whole	 batch	 of	 class	 definitions:	
public class ArrayList<E> { .. }	 	 gives	 us	 ArrayList<String>,	 ArrayList<Integer>,	
ArrayList<Person>,	 and	 ArrayLists	 of	 any	 other	 type.	 	 Even	 more	 exotic	 ones,	 like	
ArrayList<ArrayList<Integer>>.	

• Problem	that	is	solved:	Java	sometimes	"loses"	a	type.	 	The	original	ArrayList	only	stored	Object	
values.	 	Even	 if	we	only	put	Integer	values	 in	 it,	 Java	could	only	remember	 that	 it	was	an	Object	
value,	 requiring	 lots	 of	 casting.	 (For	 instance,	 inside	 foreach	 loops).	 The	 programmer	 is	 now	
responsible	for	this	"type	checking",	and	can	easily	mess	up.	
o Generics	allow	use	to	introduce	a	type	parameter	that,	once	instantiated,	gives	Java	a	reminder	of	

the	only	acceptable	type	of	inputs	that	are	allowed	for	this	particular	ArrayList	value.	
	
• Class-definition	generics	

o we	may	introduce	a	list	of	type	parameters	in	a	class	declaration.	
§ example:		 public class Pair <R,S> { R first; S second; }	

o those	types	are	now	usable	anywhere	inside	the	class	definition	(e.g.,	for	field	types,	return	types,	
parameter	types,	and	local	definition	types).	Note:	no	extra	<	>'s	here	after	the	type	parameter	list	

o the	type	parameters	must	be	instantiated	at	each	constructor	call,	locking	in	the	correct	type	
	

	 16	

• Method-definition	generics	
o we	may	introduce	a	list	of	type	parameters	in	a	method	declaration.	

§ example:		
public <U> U choose (U left, U right, boolean selector) {	

	 return b ? first : second;
 }	
§ Not	connected	to	class	 type	parameters:	 these	are	only	 instantiated/used	 inside	 the	method,	

and	possibly	at	different	types	for	each	call	of	the	method.	
§ Offers	a	sort	of	"infinite	overloading",	but	 lets	us	constrain	different	types	via	equality	of	 the	

same	type	parameter,	though	it	will	become	some	specific	type	whenever	the	method	is	called.	
• Our	Examples:	

o we	 looked	 at	 a	 simplistic	 view	 of	 the	 ArrayList	 class	 as	 an	 example	 of	 generics.	 We	 also	 had	
extensive	examples	of	Pairs	and	Boxes	in	the	lab.	

	
• Going	further:	

o There	are	more	advanced	notions	of	generics,	involving	notions	of	subtyping,	extending	multiple	
types	(both	from	class	inheritance	and	interfaces,	despite	frugal	re-usage	of	the	extends	keyword),	
and	even	wildcards.		Just	be	aware	that	we	can	get	more	than	this	basic	parametric	polymorphism.	

• Example	usage:	ArrayList.	
o Supply	 a	 type	 in	 <>'s	 to	 create	 the	 actual	 type,	 which	 then	 is	 used	 to	 declare	 variables	 or	 call	

constructors:	(all	in	one	line	here:)	
	
	 ArrayList<Integer>	intlist	=	new	ArrayList<Integer>();		 //	decl/constr:	give	type	params.	

	 	 intlist.add(5);				intlist.add(7);					intlist.add(12);	 	 //	usage	(no	explicit	types	are	given)	
	 	 int	sum	=	0;	

	 for	(Integer	i	:	intlist)	{	 sum	+=	i;		}	 	 	 	 //	Java	knows	only	Integers	are	present.	

	
	
Java	Collections	
	
• Java	standard	library	versions	of	common	patterns	of	data.	
• Implemented	through	a	series	of	inheritance-linked	interfaces,	with	many	generics-enhanced	classes	

implementing	 these	 interfaces	 through	different	means	 (e.g.,	 ArrayList<E>	 class	 and	LinkedList<E>	
class	 both	 implement	 the	 List<E>	 interface	 with	 different	 underlying	 data	 representations	 and	
correspondingly	different	behaviors).	

• Shining	examples	of	data	structures!	(A	taste	of	things	to	come	in	CS	310).	
	
ArrayList<E>	
• part	 of	 the	 Java	 Collections	 Framework,	 ArrayList<E>	 represents	 a	 List<E>	 structure	 (and	 has	 an	

underlying	array	implementation,	hence	the	name	"ArrayList").	
• As	a	class,	all	list	operations	are	through	methods:	e.g.,	xs.get(i),	xs.set(i,val)	instead	of	xs[i].	
• as	 a	 list,	 it	 has	more	 functionality	 than	 just	 an	 array:	we	 can	 add/remove	 elements	 (changing	 the	

length	 of	 the	 structure),	 and	we	 can	 do	 so	 at	 any	 index	 (not	 just	 the	 end).	 	 Feels	 like	 Python	 lists	
(because	it	is	a	list,	not	an	array!).	All	these	behaviors	come	from	implementing	List<E>.	

• extra	methods	available	due	to	the	array	implementation:	ensureCapacity,	trimToSize,	more	constrs.	
• Uses	generics	to	allow	it	to	contain	any	specific	type	of	element.		(see	generics	for	more	info).	

	

	 17	

	

CS	211		
	

Final	Review	Guide	
	
	

This	review	guide	covers	the	last	third	of	the	course	(everything	after	our	second	test's	materials).	Given	
the	timing	of	our	tests,	this	is	really	more	like	a	quarter	of	the	semester.	
	
The	 final	 exam	 itself	 will	 be	 cumulative:	 you	 should	 anticipate	 roughly	 1/3	 the	 exam	 to	 cover	 the	
materials	 listed	 here,	 and	 the	 rest	 should	 cover	 the	 materials	 of	 the	 first	 two	 tests.	 	 The	 lab	 manual	
chapters	go	into	far	better	details	than	will	be	shown	here;	you	should	consider	the	lab	manual	readings,	
lab	exercises,	quizzes,	tasks,	and	slides	as	other	good	sources	for	ideas	on	what	is	important,	as	well	as	
what	sorts	of	questions	might	be	asked.	Of	course,	the	textbook	readings	should	have	been	completed	by	
now	as	well.	Good	luck!	
	
	
Recursion	
• Recursion	generally	means	that	something	is	defined	in	terms	of	itself.	

o code	can	be	recursive	–	a	method	may	call	itself.	
o data	can	be	recursive	–	a	class	may	contain	a	field	whose	type	is	the	class	type	itself.	

	
• Code	Recursion	

o Split	the	possible	actions	into	base	cases	and	recursive	cases.	
§ Base	Case:	 for	specific	 inputs,	we	memorize/know	the	answer,	and	report	 it	directly	without	

having	to	call	ourselves.	
§ Recursive	Case:	for	a	given	input,	we	know	how	to	rephrase	the	solution	in	terms	of	a	call	to	

the	same	method	on	"smaller"	inputs	(closer	to	a	base	case).	
o Recursion(through	recursive	cases)	must	be	terminated	(by	reaching	a	base	case),	or	else	it's	just	

like	an	infinite	loop:	never	ending.	(Actual	result	would	be	a	StackOverflowError).	
§ The	recursive	calls	of	a	method	must	be	on	a	"smaller"	version	of	the	problem.	This	could	mean	

subtracting	one	from	some	counter,	calling	on	a	list	whose	length	is	shorter	than	the	current	
call's	arguments,	or	anything	that	represents	progress	towards	a	base	case.	

o Each	recursive	call	 is	distinct:	 it	has	 its	own	 frame	on	 the	stack,	meaning	 it	has	 its	own	copy	of	
local	data	(parameters,	local	declarations),	and	after	the	recursive	call	it	made	is	complete,	it	will	
continue	its	own	execution	until	returning.	

o Base	cases	must	be	tested	before	recursive	cases,	to	ensure	the	recursion	can	stop.	
§ error	conditions	(e.g.,	negative	numbers	for	factorial)	can	be	handled	like	base	cases.	

o Recursion	 can	 be	 used	 to	 solve	 the	 same	 problems	 that	 iteration	 can	 –	 just	 as	 we	 can	 choose	
between	a	for-loop	and	a	while-loop,	we	can	choose	between	recursion	and	iteration.		Each	one	is	
better-suited	to	certain	problems.	
§ Often,	 definitions	 themselves	 are	 recursive,	 so	 it's	 convenient	 (translation:	 low	 cognitive	

effort)	to	write	the	definitions	the	same	way.			
§ Iterative	definitions	are	often	faster	by	a	negligible	to	noticeable	amount,	so	it	might	be	worth	

the	effort	to	craft	an	iterative	implementation.		

	 18	

o Recursion	is	sometimes	far	 less	efficient	than	an	iterative	approach.	 	For	example,	Fibonacci	can	
lead	to	a	drastic	amount	of	duplicated	calculations.		This	is	certainly	not	automatically	the	case	for	
recursive	 solutions,	 but	 it	means	we	must	 be	 conscious	 of	 the	 decision	 to	write	 a	 recursive	 or	
iterative	solution.	To	spot	these	cases,	consider	the	size	of	your	input	(e.g.	length	of	array,	value	of	
some	number)	and	think	about	if	the	number	of	recursive	calls	could	be	as	large	as	the	input	size	
(recursion	might	be	okay),	could	be	far	larger	(recursion	is	probably	a	bad	choice),	or	could	never	
be	more	than	a	fraction	of	the	size	(like	log	or	gcd,	where	recursion	is	probably	a	very	nice	option).	
If	 the	number	of	 recursive	calls	 is	based	on	one	variable's	value	 like	 in	Fibonacci,	 then	 that	 is	a	
horrendous	time	to	use	recursion.	

	
• Data	Recursion	

o Data	can	be	recursive:	the	definition	of	the	data's	structure	may	include	a	field	of	the	type	being	
defined.	

o The	base	case	is	null.	
o The	recursive	case	is	the	field	of	the	same	type.	
o Data	Structures	are	often	written	with	recursive	definitions.		Now	the	notion	of	some	value	may	be	

represented	by	many	objects	of	 the	recursive	type,	 instead	of	one.	 	This	 is	really	the	same	as	an	
object	having	fields,	except	that	the	fields	happen	to	be	of	the	same	type	in	this	recursive	example.	

o Example:	Linked	Lists	can	be	represented	as	two	fields:	a	value	and	another	LinkedList.	(see	the	
lab	for	more	details)	

	

Searching	and	Sorting	
	
• Searching:	given	some	collection	of	data,	and	some	key	 that	will	 identify	 the	piece	of	data	we	seek,	

search	through	that	collection	and	return	the	data.	
o some	possible	 returns:	 a	 reference	 to	 the	object;	 the	 index	within	 the	 collection	 that	 can	be	

used	to	quickly	re-find	the	data.	
• Sorting:	 given	 some	 collection	of	 data,	 and	 the	notion	of	 some	 sequential	 traversal,	 relocate	 values	

within	the	collection	so	that	the	traversal	will	visit	values	in	some	ordered	fashion.	
o examples:	sorting	an	array	of	Person	objects	by	name,	or	alternatively	sorting	by	age.	Sorting	

numbers	ascending.	
• You	should	be	capable	of	writing	a	search	algorithm	and	of	writing	a	sort	algorithm	of	your	choosing.	

(Easy	choices	would	be	linear	search	and	bubble	sort).	
	
	
Searching	
• Basic	Searching	Example:	Linear	Search	

o assuming	no	ordering	of	the	data,	must		check	every	location	for	the	desired	value.	
o just	loop	over	each	location	and	check	for	a	match.	
o for	a	list	of	length	n,	might	take	n	inspections	before	completing	(complexity:	O(N)).		

• Faster	Searching	Example:	Binary	Search	
o assumes/requires	that	the	data	are	sorted	in	order.	
o given	 a	 range	 that	would	 contain	 the	 key	 if	 present,	 check	 the	middle	 value.	 	 Either	 it's	 the	

match	(done),	or	else	we	know	that	the	key	would	have	to	be	in	just	the	lower	half,	or	just	the	
upper	half,	of	our	range.	Search	again	in	that	smaller	half.	

o repeatedly	search	on	that	side	range,	until	either	a	match	is	found,	or	there	is	no	place	left	to	
look	(the	remaining	range	is	of	size	zero).	

o for	a	list	of	length	n,	only	requires	log2(n)	recursive	calls	at	worst	to	find	the	key.	(complexity:	
O(lg(N)).	

	 19	

Sorting	
	
• Basic	Sorting	Example:	Bubble	Sort	

o idea:	one	traversal	will	step	through	the	list	from	front	to	back,	comparing	each	adjacent	pair	
of	values,	swapping	if	they're	out	of	order.	

§ each	traversal	guarantees	that	at	least	one	more	item	is	sorted	at	the	end	–	larger	values	
'bubble'	up	to	their	correct	location.	

§ after	n	traversals	(for	a	list	of	length	n),	the	entire	list	is	definitely	sorted.	
§ complexity:	O(N2).	

o improvements	to	the	basic	double-for-loop	algorithm:	
§ each	successive	iteration	doesn't	have	to	run	all	the	way	to	the	end	of	the	list	–	after	k	

traversals,	the	last	k	elements	don't	need	to	be	compared.	
§ if	no	swaps	occurred	in	a	traversal,	the	entire	list	is	sorted	–	stop!	

• Selection	Sort:	
o idea:	keep	finding	and	swapping	the	smallest	remaining	value	to	the	earliest	unsorted	spot.	

§ find	the	minimum	value	in	the	list	(traverse	it)	
§ swap	this	min-value	to	the	lowest	unsorted	spot	in	the	list.	That	least	spot	is	done.	
§ keep	repeating	min-find	and	swap	to	 lowest	unsorted	spot	until	sorted	portion	grows		

to	cover	entire	list.	
o complexity:	still	O(N2).	

• More-Advanced	Sorting	Example:	Merge	Sort	
o idea:	we	realize	that	merging	two	already-sorted	lists	into	a	single	sorted	list	isn't	very	hard.	So	

keep	splitting	 the	 list	 in	half,	until	we	have	 lists	of	 length	1	(or	0),	which	are	already	sorted.		
Then	re-merge	them	together	preserving	the	orderedness.	Easily	defined	via	recursion,	though	
not	necessary	for	an	implementation.	

o merging	two	lists	together:	keep	inspecting	the	front	item	of	our	two	lists;	the	lower	value	is	
removed	from	that	list	and	added	to	our	result.	

o the	simple	approach	of	creating	two	sub-lists:	copies	all	the	values,	resulting	in	a	lot	of	space	
usage.	

	
Search	and	Sort	Summary	

• There	are	many	other	ways	to	search	or	sort	data,	we	simply	looked	at	a	simplistic	and	then	
more	involved	version	of	each.		

• Different	issues	of	efficiency,	both	in	time	taken	and	space	needed	during	the	calculation,	arise.	
	

Compara(tor/ble)<T>	
• both	provide	ways	to	compare	two	objects	of	the	same	type.	The	less-than,	equal-to,	and	greater-

than	relations	are	indicated	with	negative,	zero,	or	positive	return	values	respectively.	
• interface	Comparable<T>	

o when	there's	one	best	way	to	compare,	class	Foo	should	implement	Comparable<Foo>.	
o public	int	compareTo(T	other)	

• interface	Comparator<T>	
o Should	 be	 used	 when	 either	 no	 Comparable<T>	 instance	 was	 provided,	 or	 we	 want	 a	

different	meaning	of	comparison	(e.g.	comparing	people	by	name	instead	of	age).	
o This	"bystander"	object	will	look	at	two	T	values,	and	return	the	relation	as	an	int	as	above.	
o public	int	compare(T	arg1,	T	arg2)		

	
	

	 20	

Extra	Topics	
We	covered	many	extra	things	at	the	semester's	end;	though	the	test	won't	ask	you	to	read	or	write	code	
on	the	following,	they	are	both	useful	as	a	programmer,	and	for	possible	extra	credit	questions.	
	
Anonymous	Classes	
When	we	need	a	single	object	of	some	class	–	whether	to	make	a	concrete	object	from	an	abstract	class,	to	
provide	an	object	that	implements	an	interface,	even	odder	situations	like	filling	in	abstract	methods	in	
enumerations	 –	 going	 through	 the	 effort	 of	 creating	 a	 separate	 class	 and	 invoking	 its	 constructor	 just	
once	is	cumbersome.	Anonymous	classes	let	us	create	this	one-use	class	and	the	object	of	it.	We	supply	
what	looks	like	a	constructor	call,	followed	by	{}'s	containing	any	extra	needed	definitions.	
	 abstract	class	AlmostComplete	{	int	c;					AlmostComplete(int	c){this.c=c;}				public	abstract	void	increment();	}	}	
	 interface	Predicate<T>	{	public	boolean	test(T	t);	}	
	 enum	Mulls	{	 			 	 	 // anonymous classes to provide int go(int) implementations	
	 			twoTimes		(){@Override	int	go(int	x){	return	x*2;}},		
	 			threeTimes(){@Override	int	go(int	x){	return	x*3;}},	
	 			fourTimes	(){@Override	int	go(int	x){	return	x*4;}};	
	 			abstract	int	go(int	x);	
	 	}	
	 …	
	 AlmostComplete	ac	=	new	AlmostComplete(5){	@Override	public	void	increment()	{	c++	;	}	};	
	 Predicate<Integer>	over5	=	new	Predicate<Integer>(){	@Override	public	boolean	test(Integer	i)	{	return	i>5;	}};	
	 ac.increment();	
	 System.out.println(over5.test(ac.x));	
• We	 always	 need	 the	 parameters	 list,	 even	when	 using	 anonymous	 classes	 to	 instantiate	 interfaces	

(which	have	no	constructors	themselves).	
• When	there's	 just	one	abstract	method	 in	the	 interface,	you've	got	a	 functional	interface	and	can	do	

more	with	it	(see	below).	
	
Advanced	Interfaces	
Interfaces	can	include	or	do	all	of	the	following:	
• extend	other	 interfaces;	 the	child	 interface	thus	promises	all	of	 the	methods	 from	its	parents	and	

itself.	Multiple	interfaces	may	be	extended	by	a	single	interface	for	a	multiple	inheritance	situation:	
o interface	I	extends	J,	K,	L	{	…	}	

• static	methods.	Since	a	static	method	doesn't	need	an	object	 in	order	 to	be	called,	 this	 is	really	no	
different	than	it	being	written	in	a	class	file,	other	than	convenience's	sake.	

• static	final	fields.	The	modifiers	static	and	final	are	assumed	for	all	fields.	
• default	 methods.	 Interfaces	 can	 provide	 inheritable	 implementations;	 both	 child	 interfaces	 and	

implementing	classes	obtain	this	version,	but	are	all	allowed	to	replace	it.	
When	an	interface	inherits	multiple	versions	of	the	same-signature	method:	
• if	 all	 versions	were	 abstract,	 the	 interface	may	do	 either	 nothing	 or	@Override	 to	 provide	 the	 one	

definition	that	gets	used.	
• if	one	or	more	were	provided	(defaults),	it	must	@Override	to	arbitrate	what	gets	called.	

o as	part	of	its	default @Override	implementation,	it	can	call	a	parent's	version	with:	
• ParentName.super.methodName(args) 	

	

	 21	

Things	in	Classes	
You	can	put	just	about	anything	in	a	class	as	a	member,	including	the	following:	
• enumerations	and	interfaces	can	be	placed	inside	a	class.	
• classes	can	be	defined	inside	classes	–	called	the	enclosing	class	(outer)	and	the	enclosed	class	(inner).	

o static	classes:	inside	another	class,	with	static	modifier.	Behaves	as	static	member.	
o inner	 classes:	 inside	another	class,	without	 the	static	modifier.	Associated	with	one	 instance	of	

the	enclosing	class,	and	may	access	its	instance	members.	
o local	classes:	defined	inside	a	method.	can	access	local	(effectively-final)	things.	

	
Streams	
We	 find	 ourselves,	 writing	many	 repetitive	 patterns	 of	 code,	 such	 as	 loop-over-list,	 update-each-item,	
remove-items-that-fail-a-condition,	 combine-list-items-into-a-single-value.	 We	 can	 collapse	 these	
common	blocks	of	 code	 into	a	different	 function	call	 if	we	get	one	new	capability:	 the	ability	 to	pass	a	
chunk	of	code	 in	 as	 a	parameter.	 Since	we	 can't	pass	 in	methods	directly,	 Java	needs	use	 to	pass	 in	 an	
object	that	contains	the	method	we	want	to	use.	By	adding	some	special	syntax,	and	an	extra	bit	of	library	
code,	Java	lets	us	create	anonymous	class	instances	of	single-function	interfaces	to	accomplish	this	task.	
• Functional	 Interface:	 any	 Java	 interface	 that	 has	 exactly	 one	 abstract	method	 in	 it	 is	 a	 functional	

interface.	 It	 can	 be	 used	 like	 any	 other	 interface,	 but	 we	 may	 also	 create	 an	 anonymous		
	 @FunctionalInterface	public	interface	Predicate<T>{	boolean	test(T	t);	}	

• Lambda	 Expression:	 special	 syntax	 that	 creates	 an	 anonymous	 class	 instance	 that	 implements	 a	
functional	interface.		Consists	of:	parameters	list;	arrow	->	;	expression	to	be	returned.		

	 Predicate<Integer>	over5	=	(Integer	i)	->	i>5	;	
• Stream:	Any	Collection	or	array	can	be	converted	to	a	stream.	It	represents	a	consumable	sequence	of	

values	that	might	actually	be	infinite!	
• Many	operations	on	streams	exist,	needing	many	functional	interface	arguments.	

o some	methods	from	interface	Stream<T>:	
§ <R>	Stream<R>	map(Function<T,R>	f).	Given	a	Stream<T>	and	Function	that	can	convert	T	

values	to	R	values,	applies	f	to	each	item,	generating	a	Stream<R>.	
§ Stream<T>	 filter(Predicate<T>	 p).	 Given	 a	 Stream<T>	 and	 a	way	 to	 ask	 a	 question	 about	

each	value,	generate	a	Stream<T>	of	just	the	original	stream's	values	that	got	a	yes-answer.	
§ T	 reduce(T	 identity,	 BinaryOperator<T>	 accumulator).	 Starting	 with	 identity,	 combine	

each	item	from	stream	using	the	binary	operator	to	get	a	single	value.	Example:	Start	with	0,	
keep	using	(+)	to	add	numbers	from	a	list	to	get	the	sum.	

o many	other	operations,	functional	interfaces,	and	Stream	specializations	exist!	
	
Generic	Wildcards,	Bounded	Wildcards	
When	we	 don't	 need	 to	 use	 a	 particular	 generic	 type,	 we	 can	 supply	 a	 ?	 symbol	 to	 fill	 the	 void	 (e.g.,	
List<?>),	 and	get	 away	with	 less	 information	needed.	 Just	 like	 regular	 type	parameters,	 they	 can	have	
upper	and	lower	bounds.	Here	are	some	examples:	
• static	<T>	Pair<T>	firsts(List<Pair<T,?>>	pairs){	
	 List<T>	ans	=	new	ArrayList<T>();				for	(Pair<T,?>	pair	:	pairs){	ans.add(pair.first());	}					return	ans;	
										}	
• wildcard	as	a	supertype:	Collections.addAll:	

o static	<T>	boolean	addAll(Collection<?	super	T>	c,	T...	elements)	
• wildcard	as	a	super-	and	sub-type	in	different	places:	

o static	<T>	int	binarySearch(List<?	extends	T>	list,	T	key,	Comparator<?	super	T>	c)	
• wildcard	as	a	super-	and	sub-type	at	once:	Collections.sort,	Collections.binarySearch:		

o static	<T	extends	Comparable<?	super	T>>	void	sort(List<T>	list)	
o static	<T>	int	binarySearch(List<?	extends	Comparable<?	super	T>>	list,	T	key)	

	 22	

	
Subtyping	and	Generics	
• A	common	misconception	arises	when	we	combine	generics	and	subtyping.	Plugging	in	a	parent	type	

and	child	type	into	the	same	generic	parameter	does	not	create	two	subtyped	things	–	 for	example,	
List<Child>	is	not	a	subtype	of	List<Parent>.	Tracing	this	bit	of	code	may	help	understand,	as	a	Parent	
object	would	have	been	stored	to	a	List<Child>	if	it	were	allowed.	

 List<Child> kids = new ArrayList<Child>();
 List<Parent> rents = kids; // doesn't compile! Our misconception might have us think otherwise.
 rents.add(new Parent()); // rents aliases kids, so we have basically called kids.add(new Parent()).

	
Not	Covered	This	Semester	
Each	semester	we	change	focus	a	bit	here	and	there.	The	following	topics	have	been	covered	in	previous	
semesters,	but	we	will	not	be	covering	them	this	time.	The	course	evolves	a	bit	each	semester.	
	
Regular	Expressions	
• a	way	to	describe	a	pattern	within	Strings	that	we	are	interested	in	finding.	
• can	be	used	to	check	if	a	given	String	matches,	or	contains,	the	pattern.	
• we	can	also	then	extract	different	parts	of	the	match	for	further	calculations.	
• Basics:	
o any	character	without	special	meaning	matches	itself.	(This	includes	the	space	character!)	
o the	period	(.)	matches	any	single	character	
o repetition:	

§ *		 	 :	match	zero	or	more	of	the	previous	thing.	
§ +	 	 :	match	one	or	more	of	the	previous	thing.	
§ ?	 	 :	match	zero	or	one	of	the	previous	thing.	
§ {n}		 :	match	exactly	n	of		the	previous	thing.	
§ {n,m}	 :	match	between	n	and	m	inclusive	of	the	previous	thing.	
§ {n,}	 :	match	n	or	more	of	the	previous	thing.		

o (parentheses)	:	groups	things	together.	(e.g.,	for	use	with	the	repetition	meta-characters)		
o |	 :	the	vertical	bar	indicates	"or",	allowing	the	pattern	on	its	left	or	right	to	be	chosen.	Can	be	

used	(with|many|choices|still|choosing|one|of|many).	
o character	classes:	

§ used	to	define	how	to	match	a	single	acceptable	character.	Just	list	them	inside	[]'s:				[aeiou]	
§ [a-z]	 :			the	dash(-)	indicates	a	range	on	the	ASCII	chart;	must	be	ascending.	
§ [^abcde]		 :	 the	 caret	 (^),	 only	 when	 it	 is	 the	 first	 symbol	 in	 a	 character	 class,	 indicates	

	 	 				"not	the	characters	in	this	character	class".	
§ [nested[classes]]	:	union.	(any	single	character	from	either	can	be	selected).	
§ [nested&&[classes]]	 :	intersection.	Only	a	character	from	both	classes	may	be	matched.	

o pre-defined	groups:	many	common	character	classes	have	shortcut	names.	
§ \d	 :	[0-9]	 	 (digits)	
§ \s	 :	[\t\n	\f\r]		 (whitespace)	
§ \w	:	[a-zA-Z0-9_]	(identifier	characters)	
§ \D,	\S,	\W	:	 [^0-9],	[^\t\n	\f\r],	[^a-zA-Z0-9_]	(non-whatever	versions)	
§ other	special	pre-defined	groups	also	exist.	(see	Java	Pattern	class	API	if	you're	interested).	

	
o anchors:	represent	some	property	other	than	a	specific	character.	

	 23	

§ ^	 :	the	beginning	of	line.	
§ $:	the	end	of	line.	
§ \b	 :	a	word-boundary,	the	point	between	a	word-character	\w	and	a	non-word	character	\W.	
§ \B	 :	a	non-word-boundary.	(the	point	between	2	word-characters	or	2	non-word	characters).	

o embedded	flags:	ways	to	affect	the	overall	meaning	of	a	regular	expression.	
§ (?i)		 :	case	insensitive.	
§ (?d)	 :	unix	newlines	(only	\n	means	newline)	
§ (?m)	 :	let	^,	$	match	on	each	line	in	the	string,	not	just	actual	begin/end	of	entire	string.	
§ there	are	more	of	these…	we	just	want	to	be	comfortable	with	the	basic	idea.	

	
• Representing	Regular	Expressions	in	Java.	

o We	 represent	 a	 regex	 inside	 of	 a	 Java	 String.	 This	 means	 that	 escaping	 characters	 becomes	
complicated.	
§ any	quote	characters	must	be	escaped	(because	it's	in	a	String).	
§ any	occurrence	of	a	backslash	that	was	escaping	something	in	the	regular	expression	becomes	

a	double	backslash	(so	that	the	String	contains	the	backslash	character	itself,	and	doesn't	try	to	
escape	something).	

§ regex's	might	already	have	a	double	backslash	to	represent	a	backslash	character	itself;	it'll	be	
a	quadruple	backslash	in	the	String!	

§ →	good	approach:	write	the	regex	normally	first	(perhaps	in	a	comment	in	your	source	code),	
then	represent	each	individual	symbol	in	a	Java	String	as	necessary	to	obey	Java	String	syntax.	

	
• examples	of	methods	we	might	use	with	regular	expressions	

o String	class	
§ boolean matches(String regex)
§ String replace (String target, String replacement)

• replaces	ALL	matches	of	the	target	string	(which	isn't	a	regex)	
§ String replaceAll (String regex, String replacement)

• replaces	ALL	matches	of	the	target	regex	
§ String[] split (string regexDelimiter)

o Scanner	class	
§ String findInLine (String regex)
§ String findWithinHorizon (String regex, int horizon)	
§ String next()	//	relies	upon	the	regex	delimiter,	settable	with	useDelimiter()	method.

• Capture	Groups

o each	parenthesized	portion	of	a	regular	expression	is	a	capture	group.	They	are	numbered	1	and	
up,	 found	 by	 scanning	 through	 the	 regex	 from	 left	 to	 right	 and	 numbering	 each	 opening	
parenthesis	found.	(The	entire	regex	is	considered	group	0).

• Pattern	and	Matcher	classes	
o In	order	to	speed	up	loop	bodies	or	use	further	functionality,	we	can	use	the	Pattern	and	Matcher	

classes.	
o Pattern:	allows	us	to	represent	a	"compiled"	regular	expression	as	an	object	with	useful	methods,	

rather	than	just	hiding	it	in	a	String.	
§ public static Pattern compile (String regex)
§ public Matcher matcher(String candidate)

o Matcher:	Provides	functionality	related	to	checking	for	matches	or	finding	the	next	match	within	a	
Pattern.	Also	provides	the	group	method	for	extracting	capture	groups'	values.	
§ public boolean matches()

	 24	

• checks	 for	 a	 complete	 match	 between	 the	 Pattern	 used	 to	 create	 this	 Matcher,	 and	 the	
candidate	String	supplied	when	the	Matcher	was	created.	If	successful,	calls	to	group	with	
existing	group	#'s	will	succeed,	returning	the	last	match	of	that	capture	group.	

§ public boolean find()
• checks	 for	 the	 first	 match	 within	 the	 candidate	 String.	 If	 successful,	 calls	 to	 group	 with	

existing	group	#'s	will	succeed,	returning	the	last	match	of	that	capture	group.	
§ public String group(int g)

• if	a	successful	match	or	find	has	been	completed,	and	the	regular	expression	that	matched	
had	a	capture	group	of	the	given	number	input,	then	the	String	that	corresponded	to	this	
group	is	returned.	

	

Number	Systems	

• Different	bases	of	interest:	10,	2,	16	
• representations:	 just	 different	 symbols,	 with	 column	 values	 and	 symbol	 values	 combining	 to	

represent	the	full	value.	
o representation	choice	(which	base)	doesn't	change	the	value!	
o be	comfortable	counting	up	in	bases	2,	10,	16	(chart	from	slides/labbook)	

• conversions	between	bases:	
o towards	base	10:		 2	→	10,	16	→	10.	

§ Process:	 find	column	values;	 find	symbol	values	(their	values	 in	base	10,	e.g.	C	 is	worth	12);	
multiply	each	symbol	by	its	column	value,	add	these	results	together.	

o from	base	10:		 10	→	2,	10	→	16	
§ Process,	version	1:	find	enough	columns/their	values	until	you've	got	enough	space.	Working	

from	left	to	right,	put	as	much	as	you	can	into	each	column.	When	you	reach	the	right	(the	1's	
column),	you	should	have	zero	left	over.	

§ Process,	 version	 2:	 keep	 dividing	 by	 the	 target	 base	 to	 get	 a	 quotient	 and	 remainder.	 	 The	
remainder	of	each	division	 is	 the	next	column	symbol	 from	right-to-left,	 the	quotient	 is	what	
you	divide	by	the	base	again.	When	quotient=0,	you	are	done.	(Watch	out:	remainder	can	be	
zero	throughout,	but	you're	not	done	until	the	quotient	reaches	0.)		 	
	

	

