

Intro, Housekeeping

Syllabus 
https://cs.gmu.edu/media/syllabi/Spring2018/CS_211SnyderM.html

Schedule  
https://cs.gmu.edu/~marks/211/schedule.html

All documents 
https://cs.gmu.edu/~marks/211

CS211 Textbook (the old "Lab Manual") 
https://cs.gmu.edu/~marks/211/textbook/

Free Practice Problems
• http://practiceit.cs.washington.edu/
• http://www.codingbat.com

2

Sign up/login for things:
Blackboard – mymason.gmu.edu
•  submit work, view grades 

Piazza – piazza.com
•  announcements, public/private correspondence  

Pytania - pytania.cs.gmu.edu
•  class participation questions (free; join your section!)

Zyante - https://learn.zybooks.com/
•  Join code: GMUCS211SnyderSpring2018

Keys to Success

Most important: practice, practice, practice!
 don’t allow yourself to get behind the curve.

Read

 the reference material prior to lecture

Ask questions

 → Silence denotes implicit understanding.

Utilize available resources

 → Discussion forums, office hours, lab time, etc.

4

Discussion Forums on Piazza
Public posts
•  general questions, clarifications
•  NO PROJECT CODE!

Private posts
•  specific questions about your situation,

concrete questions about your code.
•  Only discuss our class on piazza. Be

respectful to fellow students and TAs.
•  These posts get no attention:

 "here's my code; plz tell me what's wrong."

5

Thoughts
•  Only administrative issues should go through email (GMU

accounts only)

•  Be responsive in class—nod for yes, speak up with
questions, and so on

•  There are many students here, but interact with me and I'll try
to learn your name J

•  Each credit-hour in class should match two or three hours

outside of class. (12 credits = 36 hour weeks, 15=>45, …)

•  Don’t distract others (loud food, web browsing, etc)

How to get an A
•  Read all assigned reading before class.

•  Attend all lectures and lab sections.

•  Try assignments very early, in time to ask

questions. Only turn in 100% working code.

•  Go to office hours regularly with your questions!
Also use the forums on piazza.

•  Study early, often, and well for tests.

How to get a B
•  Do pretty much all the reading.

•  Only miss one or two lectures/labs, and catch up

with someone on what you missed.

•  Start assignments earlier than the night before, and
get programs working.

•  Occasionally use office hours, forum as needed.

•  Study hard just before tests.

How to get a C
•  Only miss one or two labs and lectures. Goof off or get

distracted occasionally in them, though.
→ this includes doing project coding in class!

•  Do some of the reading, but not before class.

•  Try hard on the assignments, but usually with self-
imposed deadlines, just the night before or in one ‘power
session’. No time to ask for help or clarification.

•  “I don’t have time for office hours”.

How to get a D
•  Miss a lot of lecture/lab sessions.

•  Skip most of the reading to save time, except when the work

is too confusing.

•  Start assignments at the last moment.

•  Realize about 2/3 into the semester that you’re failing, and
genuinely try really hard to catch up.

•  Never come to office hours (except maybe when it’s already
too late!).

How to

•  Decide the first couple weeks
were easy, and stop coming
to lecture.

•  Miss many lab sections.
•  Skip all the reading because it’s not graded.

•  Start assignments the night before they’re due, and not be

able to ask questions.
•  Cram for tests the night before, if at all.

Course Assumptions

•  You have credit for CS 112: you know how to program procedurally.
•  You do not know Java yet, but want to learn it well.

•  You need a solid programming foundation for later courses, or for
your major, or for other personal reasons.

•  You are an adult who understands that great grades are earned
through hard, consistent work. You will earn whatever grade you
get, be it an F or an A.

•  You have interests beyond this course, classes besides this class,
a life outside of CS 211. Time management will decide whether you
spend your time well or not.

Course Overview
§  Java Introduction
§  Classes and Objects
§  Inheritance
§  Interfaces
§  Exceptions / Handling

13

§  Unit Testing

§  Searching, Sorting

§  Data Types

§  Recursion

§  Generics/
Collections

On to Java!

Java

A programming language that supports
object-oriented programming and other styles.

Source files are:
� written in Unicode (just a text file)
� compiled to bytecode (a machine-independent repr.)
� interpreted via the Java Virtual Machine (JVM)

Java was introduced in 1995 and its popularity has grown
quickly since.

Syntax and Semantics

•  The syntax rules of a language define how we can put
together symbols, reserved words, and identifiers to make a
valid program

•  The semantics of a language define what statements mean

•  A program that is syntactically correct is not necessarily
logically (semantically) correct

•  A program will always do what we tell it to do, not
necessarily what we meant to tell it to do

Java Program Structure

In the Java programming language:
• A program is made up of classes
• A class contains methods
• A method contains program statements

A Java program always has a main method

Java Program Structure

	
public	class	HelloWorld	{	
			public	static	void	main	(String[]	args)	{	
						//our	instructions	go	here	
							System.out.println("Hello,	World!");	
			}	
}	

Errors

A program can have three types of errors:

compile-time errors: The compiler finds syntax/type errors
•  If compile-time errors exist, an executable version of the

program can't be created (this isn't a valid Java program)

run-time errors: A problem occurs during program execution,
such as trying to divide by zero; program terminates
abnormally

logical errors: A program runs, but gives incorrect behavior
•  program's meaning doesn't match our intention

Basic Program Development

compile-errors

runtime-errors
Edit and

save program

Compile program

Execute program and
evaluate results

