

Simple Java Program

public	class	HelloWorld	{	
			public	static	void	main	(String[]	args)	{	
						//our	instructions	go	here	
						System.out.println("Hello,	World!");	
			}	
}	

Each word of this should make sense by the semester's end! For now it
is boilerplate code—just the template we'll use to write code.

filename: HelloWorld.java

Whitespace

•  whitespace includes all 'blank' characters:
•  space, tab, newline characters
•  whitespace is (almost) irrelevant in Java.
•  spaces used to separate identifiers

(int x vs intx)
•  we can't span lines within Strings. (no <enter> between

quotes)

•  Syntax is not based on indentations
•  but indentation is highly recommended! (required for class)

Bad Whitespace Example #1

public class
 Spacey { public
 static

void
 main(String[
] args
){ System .
 out.println("Weirdly-spaced code still runs!"

);}}

Valid, but horribly written, code.
(excessive, meaningless spacing)

Bad Whitespace Example #2

public	class	Spacey2{public	static	void	main(String[]args{System.	
out.println("space-devoid	code	also	runs...");}}	

	

Code like this might not receive any credit! Seriously, don't do this in
anything you ever turn in. Never make the grader unhappy.

Valid, but horribly written, code.
(one-liners aren't always best!)

(the above is all on one line of text in Spacey2.java)

Good Whitespace Example

public	class	GoodSpacing	{	
		public	static	void	main	(String[]	args)	{	
				int	x	=	5;	
				int	y	=	12;	
				System.out.println("x+y	=	"	+	(x+y));	
		}	
}	

indentation levels for each block: class,
method definitions, control structures…

1-7

Identifiers

•  Identifiers are the names we choose for variables,
methods, classes, interfaces, etc.

•  can use letters, digits, underscore(_), and dollar ($)

•  Identifiers cannot begin with a digit

•  you can't use Java's keywords as identifiers

•  Java is case sensitive:Total,total,TOTAL are distinct

convention: identifiers

•  programmers choose different styles for different
types of identifiers:

• lower case variables: count,	distToEmpty	

• title case classes: Person,	MasonStudent		

• upper case constants: MASON,	MAX_INT	

Identifier Examples

Legal Identifier Examples:

hello

camelCaseName

__$_09abizzare

user_input18

anyArbitrarilyLongName

Illegal Identifier Examples:

two words

Extra-Characters!

1st_char_a_digit

transient (it's a keyword)

Dots.And.Hooks?

Java Keywords
Keywords are part of the language definition.
Their only meaning is the original intent -
programmers can't use them as new identifiers.

abstract 	continue 	for	 	 	 	new	 	 	 	switch	
assert	 	default 	goto 	 	 	package 	 	synchronized	
boolean 	do	 	 	if	 	 	 	private 	 	this	
break 	 	double	 	implements 	protected	 	throw	
byte 	 	else 	 	import	 	 	public	 	 	throws	
case 	 	enum 	 	instanceof 	return	 	 	transient	
catch 	 	extends 	int	 	 	 	short 	 	 	try	
char 	 	final 	 	interface	 	static	 	 	void	
class 	 	finally 	long 	 	 	strictfp 	 	volatile	
const 	 	float 	 	native	 	 	super 	 	 	while	

greyed-out keywords are ones we won't learn in this course.

Pytania Poll

Java Basics.

Types!

Java is strongly typed

•  every expression has a specific type, known at compile
time

•  an expression's type never changes – whether it's a
variable, literal value, method call, or any other expression

Java has two kinds of types:

• primitive types (containing literal values)
• reference types (containing objects of some class)

Primitive Types
•  the basic values of the language:

numbers, characters, and booleans

boolean: truth values. Only possible values:
 true		false	

char: one character in single-quotes. examples:
 'a'				'H'				'\n'				'5'	

numbers: many versions of integers, two float types.
•  each has a finite range

Integer Types
Each integral type has its own finite range:

byte (8 bits) -128 → 127
short (16 bits) -32768 → 32767
int (32 bits) -2147483648 → 2147483647
long (64 bits) (-263) → (263-1)

char (16 bits) 0 → 65535 (all positive)
(can edit char as its Unicode #, but it still is printed as its current
character, not the code number)

•  The compiler can't use out-of-range numbers.
•  long constants need an 'L' suffix (or lowercase 'l'):

123412341234L		 	 	037L 	 	0x345L	 	–100000L 		

Integer Representation

•  decimal: no leading zeroes; plain base-ten.
 0 10 483 –9876501234 66045

•  hexadecimal (base 16): prefix 0x, followed by one or more
of 0123456789ABCDEF. (a-f are equivalent to A-F).

 0x0 0xfade 0x1B2C 0x9 –0x10

•  octal (base 8): prefix 0, followed by one or more of 0-7.
 00 071 –045306 01777 010

Note on Different Representations

All three inputs are alternatives you can use to describe the same
values.

You also know:

Roman Numerals (e.g., XLVI)
 tally-marks |||| (base 1 counting)

à All of these represent integers! Don't confuse representation with
meaning.

|

Floating Point Numbers
Approximating the real #s: called floating point numbers.

We just write things in normal base 10 as always.
 internal binary representation: like scientific notation.

 S: sign bit. E: bias-adjusted exponent.

 M: adjusted fractional value.
 value = (-1)S * 2E * M

Also representable: infinity (+/−), NaN ("not a number")

float: 32-bit representation. (1 sign, 8 exp, 23 frac)
double: 64-bit representation. (1 sign, 11 exp, 52 frac)

sign exponent fraction

Representing Floating Point Numbers

Floating Point numbers may be:
•  a decimal point followed by digits 2.32			1.21			450000	

•  written in scientific notation: 2.32e5			6.0221409e23		

•  may be very large: 2E35F			2e250			-2e250	

float: use f suffix (or F) to indicate float.

 0f 3.14159f -2E3F 59023f
double: floating point numbers are doubles by default.

 0.3 3.141592653589 -3.15E30

Creating Variables

Variables must be declared and initialized before use.
Declaration: creates the variable. It includes a type and a name. The
variable can only hold values of that type.

 int x; char c; boolean ok; Person p;

Initialization: assign an expr. of the variable's type to it.

 x=7+8; c='M'; ok = true; p = new Person();

Both: we can declare and instantiate all at once:

 int x = 5; char c = 'S'; Person p = new Person();

Casting
changing between numerical types is possible,
but has implications.

•  a cast operation is a conversion from one type to another.

•  place the desired type in parentheses in front of the value:
 (int) 3.14

One use: forcing floating-point division.
 int x=3, y=4;
 double z = ((double)x)/y;
 System.out.println(z); //prints 0.75

Pytania Poll

Primitive Types.

Java Comments

There are two main styles of comments in Java:

•  Single-Line: from // to the end of the line.

•  Multi-Line: all content between /* and */, whether it
spans multiple lines or is within one line.

•  JavaDoc: a convention of commenting style to auto-
generate documentation/API. More on this later.
(done by special uses of /* */ comments)

Expressions, Statements

Expression: a representation of a calculation that can be evaluated
to result in a single value. There is no indication what to do with the
value.

Statement: a command, or instruction, for the computer to perform
some action. Statements often contain expressions.

Basic Expressions

•  literals (all our numbers, booleans, characters)

•  operation exprs:
 < <= > >= == != (relational ops)
 + - * / % (math ops)
 && || ! (boolean ops)

 e ? e : e (ternary conditional expr)

•  variables

•  parenthesized expressions (expr)

Conditional Expression

Ternary Operator ?: boolexpr ? expr : expr
•  a conditional expression: it evaluates the boolean expression,

and then results in the middle expression when true, and the
last expression when false.

•  We must have all three parts

•  the 2nd and 3rd expressions' types must agree with (fit in) the
resulting type of the entire expression.

Expression Examples
Legal:

4+5 (3>x) && (! true)
x%2==1 (x<y)&&(y<z)
numPeople drawCard()
(2+3)*4 y!=z

Illegal (these aren't expressions):

x>y>z 4 && false 7(x+y)

Basic Statements

•  Declaration: announce that a variable exists.

•  Assignment: store an expression's result into a variable.

•  method invocations (may be stand-alone)

•  blocks: multiple statements in { }'s

•  control-flow: if-else, for, while, … (next lecture)

Statement Examples
int	x; 	 	 	//	declare	x	
x	=	15; 	 	 	//	assignment	to	x	
int	y	=	7;	 	 	//	decl./assign.	of	y	
x	=	y+((3*x)−5);	 	//	assign.	with	operators	
x++; 	 	 	 	//	increment	stmt	(x	=	x+1)	
System.out.println(x);//	method	invocation	
	

if	(x>50)	{ 	 	//	if-else	statement	
	x	=	x	–	50;	

}	
else	{	

	y	=	y+1;	
}	

