
CS	211	
RECURSION	

Recursion	

What	is	Recursion?	

• 	Recursion	generally	means	that	something	is	
defined	in	terms	of	itself.	
	
→	functions/methods	can	be	recursive	

	→	if	it	calls	itself	
	
→	data	can	be	recursive	

	→	if	a	class	"has-a"	field	of	its	own	type	
	

Method	Recursion	
• We	can	call	a	method	inside	its	own	body.	
	
• The	recursive	call	should	logically	solve	a	
"smaller"	problem	
	
• We	must	have	some	way	to	stop,	called	a	
base	case.	(It	should	be	checked	before	
the	recursive	call!)	
→	otherwise,	it's	just	like	an	infinite	loop!	

Example:	Factorial	
•  In	mathematics,	the	factorial	n!	is	defined	as	n!=n*(n-1)*…*2*1.		It	

is	defined	for	all	non-negative	numbers,	and	0!	=	1.	Examples:	
	

	5!	=	5*4*3*2*1 	100!	=	100*99*98*…*3*2*1	
		
	3!	=	3*2*1 	1!	=	1 	 	0!	=	1	

	
•  The	Base	Case	is	when	n=0:	we	immediately	know	the	answer.		No	

recursion	is	necessary.	
•  The	Recursive	Case	is	when	n>0:	we	know	that	whatever	value	n	

has,	(n-1)	will	be	one	step	closer	to	the	base	case	of	n=0.	
→	assume	the	method	is	already	correct;	phrase	n!	=	n*(n-1)!	
→	call	our	method	on	(n-1),	and	multiply	it	by	n.	
→	let	the	recursive	call	do	the	rest!	

Example:	Factorial	
public	static	int	factorial	(int	n)	{	
	

	//base	case,	no	recursion																																																
	if	(n==0)	{				return	1;			}	

	
	//recursive	case:	n!	=	n*(n-1)!	
	else	{						
	 	int	nfact	=	n	*		factorial(n-1);	
	 	return	nfact;	

			}	
}	

Recursive	Calls:	Details	
• When	a	method	calls	itself,	each	call	is	distinct	(separate)	
→	each	separate	call	has	its	own	copy	of	local	data	
→	for	factorial,	each	call	has	its	own	value	for	parameter	n.	

3	n	

2	n	

1	n	

0	n	

factorial	(3)	

factorial	(2)	

factorial	(1)	

factorial	(0)	 0!	==	1	

1!	==	1*0!	==	1	

2!	==	2*1!	==	2	

3!	==	3*2!	==	6	

Base	Case	Reached!	Non-recursive	call	can	complete.	

Recursion	Recipe	
• To	use	recursion,	you	might	want	to	follow	this	pattern:	
	

1.  Identify	the	base	cases:	times	when	you	already	know	the	answer	
2.  Identify	the	recursive	cases:	times	when	you	can	define	one	step	

of	the	solution	in	terms	of	others	
•  Is	the	recursive	step	using	the	method	on	a	"smaller"	problem?	
(needs	to	be	yes!)	
	

3.  Write	code	for	the	base	case	first	
4.  Write	code	for	the	recursive	case	second	
	
→	handle	any	error	conditions	like	base	cases:	e.g.,	factorial	
shouldn't	be	called	on	negative	numbers,	so	choose	how	to	exit	
meaningfully.	

Recursion	Example:	Fibonacci	

• The	fibonacci	sequence	looks	like:	
	 	1,	1,	2,	3,	5,	8,	13,	…	

→	Its	first	two	elements	are	each	1.		
→	the	nth	element	is	the	sum	of	the	
previous	two	elements.	
	
• We	can	number	them	like	array	slots:	

	 	fib(0)==1,	fib(6)==13,	etc.	
	
	

Practice	Problems	
Implement	the	fibonacci	method,	which	accepts	the	
'index'	number	n,	and	then	returns	that	fibonacci	
number.	
	
Questions	(suggested	solution	path):	
• What	are	the	base	cases?	
• What	are	the	recursive	cases?	
• What	are	some	good	test	cases?	

Fibonacci	Code	
	public	static	int	fib	(int	n)	{	
	

	//	base	cases	
	if	(n==1	||	n==0)	{		return	1;		}	

	
	//recursive	case																																																									
	else	{	
	 	return		fib(n-1)	+	fib(n-2)	;	
	}	

}	

Visualizing	Fibonacci	Calls	
fib	4	

fib	3	 fib	2	

fib	0	fib	1	

(base	case)	 (base	case)	

fib	2	 fib	1	

(base	case)	

fib	0	fib	1	

(base	case)	 (base	case)	

Java	will	have	multiple	calls	at	
the	same	value!	Looks	like	
wasted	effort…	

Iterative	Version	of	Fibonacci	
	
					public	static	int	fibIter	(int	n)	{	

	//base	cases	
	if	(n==1	||	n==0)	{	return	1;	}	

	
	//iterative	cases																																																												
	int	lower	=	1;	
	int	higher	=	1;	
	for	(int	i	=	2;	i	<=n;	i++)	{	
							int	temp	=	lower+higher;	
							lower	=	higher;	
							higher	=	temp;	
	}	
	return	higher;	

					}	

Considering	Recursion	
Recursion:	Pros	
• Sometimes	much	easier	to	reason	about	
• distinct	method	calls	help	separate	concerns	(separate	our	
local	data	per	call).	
• Easy	to	maintain	separate	state	(values)	each	recursive	call	
	

Recursion:	Cons	
• Sometimes,	lots	of	work	is	duplicated	(leading	to	quite	long	
running	time)	
• Overhead	of	a	method	call	is	more	than	overhead	of	another	
loop	iteration	

Considering	Iteration	

Iteration:	Pros	
• quick,	barebones.	
• Simpler	control	flow	(we	perhaps	see	how	iterations	will	
follow	each	other	easier	than	with	recursion)	
• no	stack	overflow	errors	
	

Iteration:	Cons	
• some	tasks	do	not	lend	well	to	iterative	definitions	
(especially	ones	with	lots	of	bookkeeping/state)	
• We	tend	to	be	given	mathematical,	"recursive"	
definitions	to	problems,	and	then	have	to	translate	to	an	
iterative		version.	

	

Recursion	versus	Iteration	
	
So,	which	one	is	better?		
	
→	it	depends	on	the	situation.	
	
• When	might	we	prefer	recursion?	
	
• When	might	we	prefer	iteration?	
	

Practice	Problems	

What	are	some	cases	that	might	merit	recursion?	
	
Thinking	experiment:	How	can	you	use	recursion	to…	
→	check	if	a	number	is	even?	
→	find	the	log	of	a	number?	(return	an	int)	
→	solve	a	maze?	
→	solve	a	sudoku?	
	

Practice	Problems	

• How,	in	general,	might	we	try	to	convert	a	loop	to	a	recursive	
method	call?	
	
• Is	there	any	problem	that	recursion	or	iteration	can	solve	that	
we	couldn't	solve	with	the	other?	

Data	Recursion	
Data	can	also	be	recursive:	when	a	class	definition	contains	a	field	whose	
type	is	the	same	as	the	class	being	defined:	
	
public	class	Tree	{	

	public	int	value;	
	public	Tree	leftChild;	
	public	Tree	rightChild;	
	…	

}	

recursive	fields	 Recursion	is	Madness	is	Recursion	is	Madness	is	Recursion	
is	 Madness	 is	 Recursion	 is	 Madness	 is	 Recursion	 is	
Madness	is	Recursion	is	Madness	is	Recursion	is	Madness	
is	Recursion	is	Madness	is	Recursion	is	Madness	is	

	 	 	 	 	……	How	is	this	ever	useful?!	
	

Base	Cases	in	Data	Recursion	
• We	will	again	end	the	recursion	with	a	base	case:	the	null	value.	

5	

3	

1	 6	

null	null	null	

2	 4	

null	 null	 null	 null	

Linked	Lists	

It	looks	a	lot	like	the	array				int[] xs = {7,8,3,2};
	→	could	we	implement	the	usual	operations	over	our	
IntList	that	are	usually	available	on	arrays?

		public	class	IntList	{	
	public	int	val;	
	public	IntList	next;	
	…	

		}	

7	 8	 3	 2	 null	

What	if	our	Tree	only	had	one	branch?	And	we	named	it	IntList?	

Making	a	Linked	List	Useful	
• We	might	want	to	add	these	sorts	of	operations	over	our	IntList:	
	

1.  size	(how	many	elements	are	in	here?)	
2.  add	a	value	(sorted?	always	at	the	end?)	
3.  remove	a	value	(just	tell	us	which	value	to	remove)	
4.  check	if	a	value	is	present	(return	a	boolean)	
5.  makeArrayVersion	(create	an	old-fashioned	array	out	of	it)	

• We	can	approach	these	tasks	thinking	of	the	diagrams	of	"before"	
the	operation,	"after"	the	operation,	and	then	write	code	that	
implements	these	changes.		Now	we're	*really*	programming	with	
our	own	data	structures!	

More	Data	Structures	
There	are	many	common	data	structures.		CS	310	is	a	
course	entirely	devoted	to	them!	It.	Is.	Awesome.	
	
Some	others:	
• Linear	stuff 	→	Lists,	Stacks,	Queues,	…	
• Trees 	 	→	binary,	balanced,	…	
• Graphs 	 	→	networks,	DiGraphs,	…	
• Hashes 	 	→	hashes	

Java	Libraries	for	Data	Structures	
• We	should	take	a	look	at	the	ArrayList	class	in	
Java:	
	
go	to:	(google	"Java	ArrayList")	
	
	
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/ArrayList.html	

