

More Java Basics

Strings, Basic I/O
Control Flow
Arrays

Strings and I/O

Strings

•  String literals must be surrounded by double-quotes

•  There is no multi-line string.

•  Escape characters exist. e.g. \n		\t		\'		\"		\\	

•  Add Strings together with +, e.g. "Peanut	"+"butter"	

•  Note: + can also add anything to a String to get a String!
→ The + operator is also used for arithmetic addition
→ operand types dictate which meaning + has.
→ operands are evaluated left to right, but parentheses can
drive meaning:

 5+6+"a" vs 5+(6+"a")	

Printing

•  We can call the following methods to send characters to
the screen.

•  Print String and a newline character:
System.out.println(stringExpr)	

•  Print String, and no extra newline character:
System.out.print(stringExpr)	

•  plug substitutions into the format, print it out:
System.out.printf(formatExpr,	substs	…)	

2-
5

Reading Input

� We can get String inputs from the user

� The Scanner class is a good interface choice
� a Scanner object can be attached to various sources, like the

keyboard, a file, a String, or other places.

� The keyboard's input is represented by the
System.in object

Reading Input

The following line creates a Scanner object that reads from
the keyboard:

Scanner scan = new Scanner (System.in);

The new operator creates the Scanner object

Once created, the Scanner object can be used to invoke
various input methods, such as:

		// read to end of line
 answer = scan.nextLine();

2-
7

Reading Input

The Scanner class is part of the java.util class
library, and must be imported into a program to be
used. (add import java.util.Scanner; at top of file)

The nextLine method reads all of the input until the
end of the line is found

2-
8

The System class

Refers to the operating system, which handles
input/output for programs you write

• System.out
• System.in
• System.err

These are all buffers you have access to from the
System class

Input Tokens

Unless specified otherwise, whitespace separates
all other characters into "tokens", and we can
read one at a time.

The next method of the Scanner class reads the
next input token and returns it as a string

nextInt reads the next token and converts it to an int
(this could fail)

2-
10

Comparing Strings

String literals still become objects of the String class.

 The equals method can be called with Strings to determine if two
Strings contain exactly the same characters in the same order.

The equals methods returns a boolean.

Example:

 if (name1.equals(name2)) {
 System.out.println("jinx!");
 }

Escape Sequences

Some Java escape sequences:

2-
12

Escape Sequence

\b
\t
\n
\r
\"
\'
\\

Meaning

backspace
tab
newline
carriage return
double quote
single quote
backslash

Escape Sequence: Example

 System.out.println ("Roses are red,\n\tViolets are blue,\n" +
 "Sugar is sweet,\n\tBut I have \"commitment issues\",\n\t" +
 "So I'd rather just be friends\n\tAt this point in our " +
 "relationsha\bip.");

Roses are red,
 Violets are blue,

Sugar is sweet,
 But I have "commitment issues",
 So I'd rather just be friends
 At this point in our relationship.

output:

Pytania Poll

•  Strings and I/O

Constants

constant: a place to store a value, which may not
be changed. It's the "no reassignments allowed"
variable.

 The compiler will issue an error if you try to
change the value of a constant

In Java, we must use the final modifier to
declare a constant (and CAPS_WORDS names
are the common naming convention):

 final int MIN_HEIGHT = 60;

2-
15

Increment/Decrement

Shorthand allows us to increment or decrement a
number:

 x++ 	++x //increment (after/before stmt)
 x–– 	––x //decrement (after/before stmt)

Often these are one-liners or isolated: x++;		

 for	(int	i=0;	i<10;	i++)	{	

Increment/Decrement
These are expressions, too:

Suffix form (x++, x––): use the current value in the
enclosing statement, then inc./dec. this variable after.

int x=1; int x=1;
int y = (x++) * 5; → int y = x * 5;

 x = x + 1;

Prefix form(++x, ––x): perform inc./dec. before, using the
new value in the enclosing statement.

int x=1; int x=1;
int y = (++x) * 5; → x = x + 1;

 int y = x * 5;

Control Flow

Control Flow

•  Boolean expressions
•  if / if-else
•  switch
•  while, do-while
•  for (original and Iterator versions)
•  break, continue

→ Try each structure out in code as we explore them. If we're not coding,
we're not 'learning to program': we're only 'learning about programming'.

Boolean Expressions

Control flow uses boolean expressions to navigate
blocks of code.

How do we get booleans?
•  directly, with true and false	
•  using relational operators: <		<=		>		>=		==		!=	
•  using boolean operators: &&		||		!	
•  calling	a	method	that	returns	a	boolean	

	e.g.				myScanner.hasNext()	
•  any	expression,	as	long	as	it	results	in	true orfalse	

Block Statement

•  Multiple statements can be grouped into a single
"compound statement" with curly braces { } . Example:

 {	
	 	stmt1;	
	 	stmt2;	
	 	...	
	}	

	

•  It's so common with control structures that it seems like
{}'s are part of their syntax, but it is a separate statement
structure all on its own.

If-statement

Syntax: if	(boolexpr)	
	 	 	stmt	

Semantics:
evaluate boolexpr. If it was true, evaluate stmt. If it was false, skip stmt.

Examples:

		if	(x>100)		
				System.out.println("x	is	big!");	
	
	
		if	(y<10)	{	
				System.out.println("y	is	too	small.");	
		}	

If-Else Statement
Syntax: if	(boolexpr)	

	 	 	stmt1	
	 	else	
	 	 	stmt2	

Semantics:
evaluate boolexpr. If it was true, only evaluate stmt1. If it was
false, only evaluate stmt2. (Note exactly one of stmt1 and
stmt2 always runs). Example:

if	(dist	>0.8*au		&&	dist<1.5*au)		
		System.out.println("planet	may	be	habitable!");	
else	
		System.out.println("probably	ice	cube/plasma.");	
	

'Else if' in Java
There is no 'elif' in Java: just chain "if else"
statements together:

 if (be1) s1
 else if (be2) s2
 else if (be3) s3
 else s4

•  exactly one of s1, s2, s3, and s4 runs each time (corresponding to which
boolexpr is found true first, visited in order)

•  if and else grab one statement to their right

•  precedence can always sort out which branch belongs where.

•  The final "else" branch is still optional: innermost if-else replaced with if-
statement. (In this described case, at most one of s1, s2, s3 runs).

=
 if (be1) {s1}
 else {
 if (be2) {s2}
 else {
 if (be3){s3}
 else s4
 }
 }

Switch Statement
Syntax: switch	(expr)	{	

	 	case	val1:	stmt1	
	 	case	val2:	stmt2	
	 	…	
	 	default:	stmtD		//	'default'	case	optional	

								}	
	
Semantics:
•  expr must be integral (whole number), char, String, or enum

•  All case values must be constants, and same type as expr.

•  evaluate expr, enter {}'s at matching case (or default)

•  execute all stmts after matching case!

•  break is common at the end of each case

Switch Statement Example
Scanner	sc	=	new	Scanner	
(System.in);	
int	x	=	sc.nextInt();	
int	v	=	0;	
switch	(x)	{	

	case	1:	
	 	v	=	1;	
	 	break;	
	case	2:		
	 	v	=	20;		//note:	no	break!	
	case	3:	
	 	v	=	v	+	3;	
	 	break;	
	case	4:	case	5:	case	6:	
	 	v	=	456;	
	 	break;	
	default:		
	 	v	=	999;	

}	

Input: v value:

0 999
1 1
2 23
3 3
4 456
5 456
6 456
7+ 999

(w/o default: 0, 7+:
v exhibits no change)

Practice Problems

•  Convert the previous slide's switch
statement to an if-else structure.

•  What would make a series of if-else
statements a good candidate for a switch
statement?

•  What are the limitations? Reasons to
choose?

Pytania Poll

•  Selection Statements

While Loop
Syntax: while	(boolexpr)	

								stmt	

Semantics:
•  evaluate boolexpr.
→ true? execute stmt and retry. → false? exit loop.

•  if boolexpr is false on first time, stmt is never run!

•  if stmt can't make boolexpr false, the loop is infinite.

Example:
 while	(x<100)	{	
	 				System.out.println(x); 		
	 				x	=	x+1;	
	 	}	

Do-While Loop
Syntax: do	stmt	

	 	while	(boolexpr);	

Semantics:
•  evaluate stmt (no matter what).

•  evaluate boolexpr; → true? repeat. → false? exit loop.

•  semicolon after (boolexpr) is required! ;
•  Note: stmt runs at least once

Example: int	x	=	0;			//consider	also	x	=	500;	

	 	do	
	 			System.out.println(x++);	
	 	while	(x<100);	

for loop
for	(initializer	;	guard	;	update)	
				bodyStmt	

	

	

	

	

	

	

	

	

	

•  initializer may declare variable (scoped to loop) or use existing variable.

•  can omit any of initializer/guard/update! Valid: for(;;)	bodyStmt	

initializer

bodyStmt
(exit)

update

guard?

Understanding the For Loop
The following two pieces of code would run identically: (other than if
init declares a variable that only exists inside the loop):

 for (init; guard; update) {
 stmt;
 }

 init;
 while (guard) {

 stmt;

 update;
 }

Common Pattern vs Python

index-loops from Java and Python:

//Java	
for	(int	i=0;	i<xs.length;	i+=1){	
				System.out.println(xs[i]);	
}	
	
	
#Python	

for	i	in	range(0,	len(xs),	1):	
				print(xs[i])	

Practice Problems

•  Use a for loop to print the numbers 1-1000 on
the screen.

•  Use a for loop to calculate the sum of the first
100 numbers, and then print it once to the
screen.

•  Without using an if-statement, use a for loop to
print the numbers 100, 95, 90, 85, …,60 to the
screen.

for-each Loop

Any "iterator" (including arrays) may be used to access one
value at a time:
Syntax: for	(Type	identifier	:	iteratorExpr)	

	 	 	stmt	
Semantics:

•  for each item in iteratorExpr, in order:

•  assign the value to identifier; run stmt.

•  Example:

int[]	vals	=	{2,4,6,8};	 	//	an	array		
for	(int	v	:	vals)	
				System.out.println("seeing	"+v);	

Comparing to Python

for-each loops in Java and Python:

//	Java	
for	(int	x	:	xs){	
				System.out.println(x);	
}	
	
#	Python	
for	x	in	xs:	
				print(x)	

Other Control Flow Options

Some other control flow statements:
• break (immediately leave nearest loop)
• continue (immediately skip to next iteration of loop)
• return (immediately exit a method)

Arrays

Array Types
•  The array type is indicated with []'s.
•  Monomorphism: Just as variables can only hold one

type of value, Java arrays can only hold one specified
type of value, in every slot.

•  Example array types:
int[] 	double[] 	boolean[][] 	Person[]	
	

•  The type doesn't record the dimension lengths, but an
array value will specify the (unchanging) lengths.

//a	3x4	structure	of	ints.	
int[][]	xs	=	new	int[3][4];	

Declaring an Array
We declare an array as a variable with an array-type :
•  int[]	nums;			 	 	//	an	array	of	int	values	

•  double[]	scores; 	//an	array	of	double	values	
	

Multiple dimensions can be 'stacked' together
•  short[][]	twoDims; 	//a	2D	array	of	short	values.	

•  float[][][]	space; 	//a	3D	array	of	float	values.	
	

Java arrays must entirely have the same number of
dimensions.

•  each 'row' of a dimension will be same type, e.g. int[]

•  same-array values don't actually need to be the same length.

Creating Array Values
•  at declaration: explicit listing of values

int[]						xs	=	{2,5,3,6,4}	;	
double[][]	ys	=	{{1.0,2.2},	{0.3,4},	{7.7,8.9}};		//3x2	dim.	
	

•  using the new keyword and specifying dimensions:
short[]				xs	=	new	short[10];						//holds	10	shorts.	
double[][]	ys	=	new	double[10][15];	//holds	10x15	doubles.	
	

•  anywhere, with full type in front of it:
new	int[]{1,2,3}	
	

•  The length of each value in a multi-dimensional array
may vary:
int[][]	zs	=	{{0},{1,2,3,4,5},{6,7}};	
int[][][]	ws	=	{{{0},{1}},{{2,3,4,5,6}}};	

Accessing/Modifying Arrays

•  indexing via brackets []:
a	=	xs[4]; 	//accesses	5th	elt.	of	xs.	
xs[0]	=	7; 	//replaces	1st	elt.	of	xs	with	7	

•  Any expression of type int may be used as an index,
regardless of the type in the array:
xs[a+4] 	xs	[sc.nextInt()]	
xs[i]		 	ys	[i][j]	
	

•  The length of an array is available as an attribute:
xs.length 	ys[i].length	

Arrays And Loops
BFF's Forever

Traditional index-style loop:
	
for	(int	i=0;	i<xs.length;	i++){	
				…	xs[i]	…	
}	

	

Newer for-each-style loop:

	
for	(int	x	:	xs)	{	
				…	x	…	
}	

Practice Problems

•  Use an array and a loop to find the maximum
value in the array. (Give the array starting
values).

•  Use an array/loop to find the index of the
maximum value in the array. (Give the array
starting values).

•  Sum every third value in the array, starting with
the value at position 0.

Arrays vs lists

An array is not the same as a list (e.g., Python lists)

•  Array: length permanently determined at creation.
Fast access to all locations.

•  List: length may vary over time. Slower access.
•  Lists are often implemented via intelligent use of

arrays to regain some of the speed of access
without losing the ease of usage.

Pytania Poll

•  Arrays

Exceptions

Exceptions: The Idea
exceptional events may occur during program
execution.

• array index is out of bounds
• we divided by zero
• we tried to open a non-existing file
• many others…

Normal sequential control flow is aborted, in search
of a way to handle the exceptional event.

• keep escaping code blocks until one is found.
• escaping out of main crashes whole program

Exception Types: A Class Hierarchy

•  A small portion of the huge class hierarchy of Exceptions already defined in Java.
•  You've perhaps already seen a few of these.

•  java.lang.Throwable (implicitly inherits from Object).

•  Exception
•  RuntimeException for recoverable events.

•  NullPointerException tried using null like an object
•  ClassCastException cast to class-type that wasn't possible
•  IndexOutOfBoundsException

•  ArrayIndexOutOfBoundsException
•  StringIndexOutOfBoundsException

•  ArithmeticException bad arithmetic, like "divide by zero"
•  IOException

•  FileNotFoundException attempted to open non-existing file
•  EOFException end of file reached (no more content)

•  Error unrecoverable events: e.g., out of memory

Getting/Creating Exception Values

basic Java expression usage: Some Exception values are created
through incorrect value usage. Examples:

•  dividing by zero will cause an ArithmeticException	
•  using an out-of-bounds index will cause an
ArrayIndexOutOfBoundsException	

• FileNotFoundException thrown by FileInputStream constructor
when the file is not found. (Any method might cause an exception)

creating your own: You can create your own:

•  call the constructor of an Exception class. You'll also need to 'throw' it:

ArithmeticException ae = new ArithmeticException("evens only!");
throw ae;

Catching Exceptions:
try-catch Blocks

Wrap the suspicious code in a try-block.

Provide a way to handle the occurring exception with a catch-block.
This must include the type of Exception being caught.

→ if the exception occurs in the try-block, the catch block runs.

 try {
 int infinity = 5 / 0 ;
 System.out.println("I'm never printed. " + infinity);
 }
 catch (ArithmeticException e) {
 System.out.println("saw arith. error: " + e);
 }

Handling Exceptions

Catch It: wrap the offending code in a try-catch block that
catches the specific type of exception.

Defer It: allow the exception to occur, propagating ('crashing')
its way through your program until it is caught elsewhere.

• might have to explicitly list what exceptions are deferred
(any that aren't a RuntimeException or Error).

No matter what, the occurring exception immediately starts 'crashing' your
program by prematurely leaving each code block and method call, until it is
caught by a catch-block (or the entire program is crashed).

Practice Problems

•  Write code using a try-catch block that
successfully gets an integer from the user, using a
Scanner.

•  use a try-catch block that converts a user's
String input to an int using the parseInt method
•  can be called as Integer.parseInt(someStringExpr)
•  Return -1 if the parsing fails. (What Exception to catch?)

Pytania Poll

•  Exceptions

