

Topics

• Classes and Objects – concept
• Classes and Objects – usage
• Brief Method introduction
• Constructor Methods

Classes and Objects

Classes and Objects

What is a class? (What do we place in a class?)
What is an object? (where do we create them?)

How do we create a class?
How do we create an object?
How do we use an object?

A class is a Type

A Class defines a new type, from which we can
create values (objects). The class definition
specifies:

what state is in each value (aggregating values)

what behaviors the values can exhibit (methods)

Classes

•  many values are of type int
•  we can create many values of our class type.

A class is a "blueprint" for making multiple values
(objects) that have the same structure/methods.

•  class types are reference types → we get
references pointing to the objects stored in
memory

An object is a value
An object is called an instance of a class
(a specific value of that reference type).

From one class definition we can make many unique
objects, each with their own state (sub-values).

Objects are just like other values:
•  we can create variables to hold objects
•  create arrays to hold many same-type references

to objects
•  create objects just to use within an expression.

Class Components

The class's name is the newly defined type's
identifier.

State: declaring a variable directly in a class
represents an instance variable: each object will
have its own value for each instance variable.

Behaviors: a method defined directly in a class can
be called on any object of that class, using that
object's instance variables.

Class Example – IceTray class
public	class	IceTray	{	
		int	count;	
		int	capacity;	
		boolean	ready;	
					
		public	void	fill(){	
				if	(count!=capacity){	ready=false;	}	
				count	=	capacity;	
		}	
		public	void	freeze(){	
				ready	=	true;	
		}	
		public	int	take(int	n){	
				if	(!ready){return	0;}	
				int	ans	=	n<=count?	n	:	count;	
				count	-=	ans;	
				return	ans;	
		}	
		public	boolean	isReady()	{	return	ready;}	
}	

State (instance variables)
•  count,	capacity,	ready	
•  each IceTray has their own

instance variables

Behaviors: (methods)
•  fill,	freeze,	take,	

isReady	
•  every IceTray can use these

methods on their own state

Class syntax

A class definition is: any modifiers, the class keyword, followed by the
class's identifier, followed by curly braces. In the curly braces two different
sorts of definitions are allowed:

 modifiers class identifier {
 fieldDefinitions

 methodDefinitions

 }
field definitions: Declares fields (variables) associated only with this
class.

method definitions: Declares methods associated only with this class.

simplifications: we are ignoring unlearned syntax for now.

Class Syntax Notes

Modifiers: modifiers (like public, private, protected, final) can make
substantial changes to the meaning of the variables and methods of a
class. We will study these in more details throughout the semester.

 Quick Tour:

 → public, private, protected: controls who can access it
 → static: controls whether it's a single shared thing or tied to
 a specific object
 → final: disallows further changes
 → abstract: thing can be extended, but not directly used
 → synchronized, volatile: used in threading

Ordering: Java allows any order of fields/methods (all called
"members").
→ convention: fields first, methods second. (constructor methods first).

Object Creation
To create an object, we call the class's constructor method.

Syntax: the new keyword, the class type (the class's name), and an
argument list in parentheses for the constructor method.

Example: new IceTray()

The default constructor has no parameters, but we can create our own
constructors that do much more (discussed later).

Semantics: Java uses the constructor method and makes space in
memory for another object (space for all instance variables).

Initial values are set up according to the constructor method's code. A
reference to this spot in memory is the result of evaluating this
constructor call (hence the name "reference type").

Object Example
t is a reference to an object having

the type IceTray
(it is an IceTray value)

we access/update an instance
variable by:

objExpr.instVarName

 ex: t.ready

we ask an object to call its method on
itself by:
objExpr.methodName(args)
 ex: t.take(2)

// create an object (call constructor)
IceTray t = new IceTray();

// manipulate it
t.ready = false;
t.capacity = 12;
t.fill();

// interact with it: call methods, print
System.out.println("#:",t.count);
System.out.println("got:",t.take(3));
t.freeze();

Object Uniqueness

Multiple objects of one
type can be created
that are distinct.

Each occupies a
separate spot in
memory.

IceTray t1 = new IceTray();
IceTray t2 = new IceTray();
t1.capacity = 10;
t2.capacity = 36;
System.out.println(t1.capacity);
System.out.println(t2.capacity);

t1.fill();
t1.freeze();
System.out.println(t1.isReady());
System.out.println(t2.isReady());

Objects are values

•  Objects are just values of a particular type
"Every expression has a type": class-definitions are types too!

•  Object-yielding expressions result in a reference to an object

• constructor calls (actually, the new keyword)
• methods with a return type that is a class-name

Practice Problems

Create a class to represent a Coordinate
(an x and y value representing two dimensions)

• What instance variables should this class have?

Create a class to represent a Square

• What instance variables should this class have?

Pytania Poll
•  Classes and Objects

Quick Note on Using Classes
We put one class definition in each file, and give the file the class's name:
ClassName.java.

•  For files in the same directory, we can just use another class by name:
 TestIceTray.java (in same directory as IceTray.java)

•  we will look at packages later, as a way to organize all these class files.

 class TestIceTray{
 public static void main (String[]args){
 //We can just use the IceTray class directly.
 IceTray t1 = new IceTray();
 t1.capacity = 12;
 }
 }

Methods (Brief Review/Introduction)

method: named block of code that can be called. It is like a
function that is associated with a specific object or class.

Our first view of methods:
•  defined in a class.
•  Requires an object of that class type
•  "calling" a method: asking the object to run the code for us
•  object performs the call using its own instance variables.

 → this is almost the whole story, but not quite!

Methods (Brief Introduction)

Method Signature: all the modifiers, type information (return type
and parameters), and the name. Provides all details needed for
interacting with/identifying the method.

public String getItem(int i){...}

modifiers
(public,private,
static, etc)

return
type

method
name

parameter
list

Methods (Brief Introduction)

When we define a method we must:
• give the return type: what type of value will be returned?

If no value should be returned, return type is listed as
void.

• define the listing of parameters: types and names for
values that are supplied (as an 'argument list') at each
method call.

• write the method body (block of code) using parameters
to perform some task and return a value of the indicated
return type.

Method Example - take	

Modifier: public.
(visible outside an object)
Return type: int. the method
must return a value, and it must
be an int.
Name: take.
Parameter list: (int n).
variable declarations (without
instantiations) that are available
only in this method call
Method Body: uses/changes the
object's state and returns an int.

class IceTray{
 int count, capacity;
 boolean ready;
 …
 public int take(int n){
 if (!ready) { return 0;}
 int ans = (n<=count) ? n : count;
 count -= ans;
 return ans;
 }
 …
 }

Practice Problems

Coordinate Class:
Add a method that calculates the distance from the origin.

(Use Pythagoras' Theorem).
•  use Math.sqrt and Math.pow. (java.lang.Math is always available)

Square Class:

• Add methods to calculate the area and the perimeter.

Constructor Method

constructor method: special method that is used to create a new object-
value of the class. It implicitly returns a reference to this new object.

Return Type: not specified, because the constructor always returns a
reference to an object of the class type.

Method Name: always identical to the class name.

Parameters: Just like regular methods (can have zero or more). Often,
parameters are (nearly) one-to-one matches of instance variables.
Body: chance to set initial values for instance variables, perform
consistency checks, do any other involved setup work (including calling
other methods)

IceTray Example: Constructor
Parameter list: we chose one for each instance variable.
body: initialized all instance variables (based on params).

Point of No Return! A constructor doesn't need an explicit
return statement to return the object, because the new
keyword is what returns the new object, not the constructor.

 class IceTray { …
		public	IceTray	(int	count	,	int	capacity,	boolean	ready){	
				this.count	=	count;	
				this.capacity	=	capacity;	
				this.ready	=	ready;	

		}	
 }

What is this madness?

Code inside a class can refer to itself via the this keyword.

•  it only makes sense with non-static methods (we have an object)
•  this is the same as Python's use of self.

public class Triplet {
 public int x,y,z;
 public Triplet(int x, int y, int z){
 this.x = x;
 this.y = y;
 this.z = z;
 }
}

Practice Problems

Coordinate Class:
Add a constructor method. What parameters should it have?

Square Class:

• Add a constructor method. What parameters should it
have?

Method Overloading (Quick View)
We can have multiple methods with the same name in one class! They
are distinct methods with no actual relations other than the name – this is
just a mnemonic convenience!

To coexist, their method signatures must have unique sequences of
parameter types).

•  parameter names are ignored – arguments are nameless.
•  return type is ignored – not explicit via method call, so can't help select

correct method.

Constructors are methods too – we can write multiple constructors for
one class, as long as they have different signatures.

•  This is a valuable opportunity (something Python disallows).

Method Overloading - Examples
Example: these methods may all be in one class:

The following could not be added to the class:

1.  public int foo (int a, int b){…}
2.  public int foo (char a, int b){…}
3.  public int foo (int b, char a){…}
4.  public int bar (int a, int b){…}
5.  public String foo (int a, int b, int c){…}

public String foo (int a, int b) {…} // return type irrelevant
public int foo (int other, int names){…} // param names irrelevant
private int foo (int a, int b){…} // modifier irrelevant

Practice Problems

Method Overloading:

Add another constructor method to the Coordinate,

Square, and IceTray classes.

→ How will it be distinguished from the other
constructor method(s)?

Default Constructors

Default Constructor: Java provides a default constructor definition
when none is present in a class: there are no parameters, and all
instance variables get default values: primitive types get 0, 0.0,
false; reference types (class types) get the null value.

null is a special value: it represents a value of any reference type
but has no actual reference value (no instance variables, no
methods). Attempting to use null like an actual object is a very
common run-time error. (a NullPointerException)

Pytania Poll
•  Methods

