
CS 211

File I/O (PrintWriter)
static
References
Scope, Encapsulation
Autoboxing/Wrappers

File Input/Output Basics

PrintWriter

Working with Files

• We can get input from files just as easily as from the keyboard,
using a Scanner.

• We can write to a file as easily as to the terminal, using a
PrintWriter.

• The file extension is arbitrary (.txt, .csv, .etc). The file just contains
a sequence of characters that we can use however we choose.

• The One Hitch: Java requires us to deal with FileNotFoundException.
→ see examples next slides.

Reading Files
• We can get input from files just as easily as from the
keyboard.

import java.util.Scanner; //outside the class
…
try {
 Scanner sc = new Scanner (new File("outs.txt"));
 String s = "";
 while (sc.hasNextLine()){
 s += sc.nextLine()+"\n";
 }
 System.out.print("contents: \n"+s);
 } catch (FileNotFoundException e){
 System.out.println("file not present... :(");
 }

Writing Files

We can write strings to files just as easily as the terminal.
•  Make a PrintWriter, call print/println/printf. close it.

import java.io.PrintWriter; // outside the class
…
try{
 PrintWriter pw = new PrintWriter(new File("outs.txt"));
 pw.print("writing a file from a program! :) \na\nb\nc");
 pw.close();
 } catch (FileNotFoundException e){
 System.out.println("file not found… >:|");
 }
 lots of method overloading! Look up the PrintWriter class.

Practice Problems
•  Use a PrintWriter to write the numbers 1-100 to a file.

•  Use a Scanner attached to that file to read in the
numbers into an array; find the sum of them.

•  Write a program that asks for a number, then calculates
all the primes less than that number, writing them to
primes_under_n.txt
(where n is the number they gave you)

static

static keyword

static variable: one copy, always. It's part of the class, not
part of objects.
 → no object is required/used to access it
 → sort of like a class-scoped global
 → called a class variable.

static method: callable without any object of its class.
Again, it's part of the class, not part of objects.
→ Accessible without an object
→ thus cannot use any non-static things in its class.
→ these feel like what we called functions in Python.
→ called a class method.

static example
public	class	Trumpet	{	
	
				private	static	int	nextSerialNum	=	1;	
				int	serialNum,	numValves;	
	
				public	Trumpet(int	numValves){	
								serialNum	=	nextSerialNum++;	
								this.numValves	=	numValves;	
				}	
	
				public	static	int	numBuilt(){	
								return	nextSerialNum;	
				}	
}	

using static things

•  via the class: use the class name to get to the correct
scope.

 classname	.	staticthing	
	

•  inside the class: just directly use the member's name
 staticthing	

	

•  unnecessary use of an object: an object of the same
class can be used to access it, though it's misleading.

 objectExpr	.	staticthing	
	

static example – Math class

// idealized portion of the Math class

public class Math {
 public static final double PI = 3.14159;

 public static double sqrt(double a) { …}

 …

}

Quick Distinction

•  final: definition can't change
•  static: can use without instance of the class

 → Math.PI is both of these! Know both terms.

Pytania Poll

•  static

References

Primitive vs Reference types
•  each variable is a location that can store one value of its type

•  assignment always just copies some value into that location

•  primitives: a copy of the primitive value
•  reference types: a copy of the arrow(reference). causes aliasing.

int a = 5;
int b = a;
Point p1 = new Point(3,4);
Point p2 = p1;

5

5

int a

int b

Point p1

Point p2

int x 3

int y 4

new keyword

•  The new keyword is the only thing that creates objects!
•  arrays: new	int[4]	
•  classes: new	Point(3,4)		

•  mentally visualize memory: variables, references, objects.

•  aliasing: multiple references to the same object
•  variables can't point to each other! only to objects
•  reference-variable expression: simplifies to (a copy of)

the reference

Scope

local variables

•  parameters & variables declared in method are local variables.

•  only exist while executing that method's code

•  method's locals are all discarded upon return	

•  calling method: feeds copies of each argument.	

•  parameters of reference types:

•  given reference is often an alias!
•  reassigning parameter to other (new?) object breaks aliasing.

Can't change external variable's reference!

scope example #1

public class Test {
 public static void main(String[] args) {
 int x=3;
 changeVal(x,5);
 System.out.println(x);

 }

 public static void changeVal(int p, int v) {
 p = v;
 }

}

What is printed?

scope example #2

What is printed?

public class Test {
 public static void main(String[] args) {

 Person p = new Person("Mason",21);
 changeName(p,"Thomas");
 System.out.println(p.name);

 }

 public static void changeName(Person p, String n) {
 p.name = n;
 }

}

scope example #3

public class Test {
 public static void main(String[] args) {

 Person p = new Person("Mason",21);
 changeName(p,"Thomas");
 System.out.println(p.name);

 }

 public static void changeName(Person p, String n) {
 p = new Person(n,30);
 }

}

What is printed?

Terminology

Field : a variable declared directly inside a class.

•  static: one copy for all
•  non-static (instance variable): one copy per object(instance)

Method: a method declared inside a class.

•  static: callable without object; only accesses other static members
•  non-static (instance methods): object required to call

(because it may use instance variables).

Member: any field or method. Similar issues of visibility make it
convenient to group them together under one term.

visibility

•  fully accessible fields/methods in a class: easy to abuse/mess up!

 bankAccount.balance	=	10000000;	
	

•  visibility modifiers: restrict access to fields based on usage site.

•  public: always accessible from anywhere
•  private: only accessible by code inside this object's class
•  <package default>: accessible in the package, not outside.
•  protected: accessible in the package and in child classes

Visibility Modifiers in Java

Modifier Class Package Subclass World
public yes yes yes yes
protected yes yes yes no
<package> yes yes no no
private yes no no no

Class Scope versus Local Scope

• members have class scope. They may be
used anywhere in the class, or outside
(visibility permitting)

• variables declared inside a method
(including parameters!) have local scope.
They only exist during the method call, and
thus have no choices in visibility.

private visibility example

public	class	Trumpet	{	
				private	static	int	nextSerialNum	=	1;	
				private	int	serialNum,	numValves;	
				public	Trumpet(int	numValves){	
								serialNum	=	nextSerialNum++;	
								this.numValves	=	numValves;	
				}	
				public	static	int	numBuilt(){	//	restore	reading	privileges	
								return	nextSerialNum;	
				}	
				public	int	getNumValves(){				//	restore	reading	privileges	
								return	numValves;	
				}	
}	

using private

•  private fields: for internal use only
•  public fields: read/write available everywhere

•  public methods: can use private things in class!

→ outsiders' only ways of using private things is
 by provided public methods.

encapsulation/abstraction

• We can take one of two views of an object:
• internal - members know details of each other
• external - visible members are the only way

 outsiders may use this object.

• outsiders see an encapsulated entity that only exposes
 what interface it wants the outside world to see

empowered objects!

• an object should be self-governing

• outsiders ("clients") request actions/modifications by calling
methods. Implementation details are hidden inside the
methods' code.

• We should make it difficult, if not impossible, for a client to
access an object's variables directly

• Java enforces this with visibility modifiers

4-29

Visibility Modifiers

• public variables violate encapsulation
→ others can change values without object's permission
→ instance variables shouldn't be public

• It is acceptable to give a CONSTANT	public visibility, which
 allows it to be used outside of the class

→ Public constants okay: client can access it, can't change it.
 (more convenient than 'getter' method).
4-30

Method Visibilities

• public methods are intended for clients.
• helper methods should be private.

• Methods to restore reading or writing privileges to
restricted fields are called getters and setters, or more
formally, accessors and mutators.

• restricts the client's ability to modify object's state: only
way to change a variable's value is to run code the object
already chose to make accessible

4-31

Pytania Poll

•  scope and visibility

Packages

packages

•  group related java files together
→ use package statements in each file, too
→ packages can also be placed in other packages.

•  provide visibility boundary (dis/allow access from outside)

•  must import any code that's defined in other packages
→ or, give fully-qualified name every single time…

•  file name matches class name to help Java find definitions

Example Packages

package purpose examples
java Java's top-level package <many sub-packages>
java.util useful data structures and classes Scanner, ArrayList, …
java.io file/resource interactions File, IOException, …
java.util.stream recent additions like Stream, Collector, …
java.lang core functionality String, Math, …

java.lang.* is always implicitly imported!

The import Declaration

•  use something's fully qualified name, always:
java.util.Scanner	myScanner	=	new	
java.util.Scanner(System.in);	

• import the class, and use just the class name
 import	java.util.Scanner;	 	 							//outside	of	class	
	...	
	Scanner	myScanner	=	new	Scanner(System.in);	//	inside	the	class	

• To import all classes in a particular package:
import	java.util.*;	

Importing classes

Example:
• you have Assert.class in the jar-file, junit-cs211.jar
•  further, it's inside the org/ folder, and in the junit/ folder
• The Assert class is in the package org.junit
• You set your path to include the jar file, e.g.
	

	-cp	.:junit-4.12.jar	
		
• You can then import the Assert class

 import org.junit.Assert;

Packages Example

→ Look at the packages code example.

Pytania Poll

•  packages

Wrapper classes
autoboxing

Wrapper Classes

Each primitive type has a corresponding class. Examples:
•  int vs Integer
•  double vs Double
•  char vs Character

provides (immutable) object version. related definitions go here. Examples:
•  Integer.MAX_VALUE
•  Integer.parseInt(String input)

•  Java freely converts between them (almost) whenever you need.
•  (later): sometimes we need reference types; these help us out.

wrapper classes example

int count = 5;

Integer quantity = count; // conversion performed

count = quantity; // conversion performed

quantity = null;

count = quantity; // the only thing that can go wrong

