
CS 211
Inheritance
CS 211
INHERITANCE

Inheritance

Example public class Person {
 public String name;
 public int age;

}

public class Student extends Person{
 public int studentID;

}

•  A Person object has 2 instance variables: name, age
•  A Student object has 3 instance variables: name, age, studentID
•  the Student class is a subclass of the Person class.

What is Inheritance?

• Inheritance lets once class get all definitions
from another for free

+ child-class may add or modify definitions�
– but we can't remove definitions

• Defines a parent-class / child-class relationship.
• Defines a subtype relationship.

Why do we want inheritance?
•  powerful code reuse mechanism
→ retype as little as possible, always!

• Gives us subtyping.
→ allows for specialization
→ one definition works on related types

Re-use benefits

• modifications are centralized
• re-use tested code (don't re-implement)
• contributes to elegance, maintainability

• lets compiler know types are related�
→ makes code flexible in a controlled way

Sub-Classes

•  class is a type → subclass is a subtype
•  subtypes are like subsets: �

Integers: {…,-2, -1, 0, 1, 2, …}�
Naturals: {0, 1, 2, …}

• every Natural value is also an Integer value: �
→ Natural is a subset of Integer. " Natural ⊆ Integer "

• We know some subtypes from math: �
 Natural ⊆ Integer ⊆ Rational ⊆ Real ⊆ Complex

Example Hierarchies

•  Freshmen ⊆ Undergrads ⊆ Students ⊆ People
•  SUVs ⊆ Trucks ⊆ Vehicles ⊆ Machines

• A type has a set of values, so a subtype contains a
subset of the superset's values.

Identifying Hierarchies

• Look for similarity in structure
• Look for more specific versions of things
(Mammal, Primate; Bird, Penguin)

• Some classes only exist as links between other useful classes.
• Mammal, Truck, Student, Container, etc.
•  some def's could be placed in these intermediate places

• Remember: Classes define what data/behavior is common
between separate classes.

•  you might still be creating many objects of type Parallelogram and of type
Rectangle, but their definitions could share side1 and side2 variables.

Clarification:	

extending a class ≠ instantiating object

• Extending a class:
→ making one 'blueprint' from another.
→ no objects created just yet

• Instantiating an object:
→ using class 'blueprint' to make an object
→ Class definitions used, but not made here.
→ objects created

Example public class Person {
 public String name;
 public int age;

}

public class Student extends Person{
 public int studentID;

}

•  A Person object has 2 instance variables: name, age
•  A Student object has 3 instance variables: name, age, studentID
•  the Student class is a subclass of the Person class.

Example - constructors
//	in	Person	class:	

public	Person	(String	name,	int	age){	
	this.name	=	name;	
	this.age	=	age;	

}	
	
//	in	Student	class:	
public	Student	(int	id,	String	name,	int	age){	

	super(name,age);	//	call	parent	constr.	
	this.studentID	=	id;	

}	

Constructor Notes

• Constructors are never inherited.

• child constructor MUST call a parent constructor as
first instruction
• feed it expected arguments, use the name super()
• Java inserts super() as implicit first instruction if you
don't first call super() yourself.

• requires parent class with no-param constructor.

Constructors

• constructor chaining ensures parent class still has
total control over all objects that may be treated as that
type

• child objects usable where parent type needed
• child objects can't create inconsistent states
• child objects can't violate parent class's permissions
(public/private/<default>/protected)

• every child object starts as a parent-class object
that gets specialized.

The super Reference

• super is used by child to name members
inherited from parent.

• calling parent constructor
• calling other methods from parent
• accessing (shadowed) fields from parent

3-
15

Pytania Poll

•  Inheritance

Inheritance and
Visibility

What can a child class see?

If a parent class declares a member as:
• public anyone can see these, so children can too.

• private: not even children get to see these members.
 (They are still inherited, though!)

• protected: children can also see, though nobody else
outside of the package can.

• <default>: if child is in the same package, yes.

Multiple Inheritance (forbidden)	

• Java only supports single inheritance, meaning a
derived class can have only one parent class

• Multiple inheritance allows a class to be derived
from two or more classes, inheriting the members of all
parents (other languages do this)

• name collisions (between both parents) have to be
resolved.

→ Java's interfaces exhibit multiple inheritance!

Overriding Methods

• A child class can override the definition of an
inherited method in favor of its own

• The child's method must have the same signature
as the parent's method, but can have a different
body

• object type determines which version is invoked
→ child runs its version, parent runs its version
→ object type determines it, not variable type!

3-
20

Overriding Methods

• tailor the functionality of child class to the particular type. �

• Example
• Base class Animal has a method makeNoise()�

• Child class Dog implements (overrides) makeNoise()
to print "woof!"

• grandchild class ScottishTerrier then might print�
"woof at ye, scunner!"

• we must have the same signature for makeNoise()

Overriding Methods

• A method in the parent class can be invoked
explicitly using the super reference

• If a method is declared with the final modifier,
it cannot be overridden.

•  fields can also be overridden (redefined)
→ called shadowing variables. And it's usually a bug.

• avoid – we can lose access to ancestors' versions

Overloading vs. Overriding

• Overloading: methods with same name in same class
(perhaps inherited), but with different signatures
• Overriding: two methods, one in parent class and one in
child class, with same signature. Child replaced what it
inherited.

• Overloading: defines similar operation in different ways
• Overriding: defines same operation in different way for

 child class

3-
23

Class Hierarchies

• Two children of the same parent are siblings
• push common features as you reasonably can (more reuse)

• child inherits from all its ancestor classes transitively

• no single class hierarchy is appropriate for all situations

Animal

Cat Dog

LabCorgi

The Object Class

• A class, Object, is defined in java.lang�

• All classes derive from the Object class
→ If no parent class specified, Object is used. �

• Therefore, the Object is the ultimate root of all
class hierarchies.

3-
25

The Object Class

• Some methods inherited from Object:
String toString ()
→ commonly overridden
→ provides that Classname@address default string. �

boolean equals(Object other)�
→ Object's version uses == (memory location) �
→ overridden to specialize for our classes. �

specialize: boolean equals (Person other)

Abstract Classes

• An abstract class is a placeholder in a class hierarchy
that represents a generic concept
→ An abstract class cannot be instantiated
→ abstract classes can be extended.

• We use the modifier abstract on the class header to
declare a class as abstract:

public abstract class Product{ … }

Abstract Classes

•  push common def'ns up to abstract classes
• even ones w/o implementation (abstract methods)

•  gives common type to describe all the child classes

@Animal

@Cat @Dog

LabCorgiKittehPuma

Abstract Classes

• may contain zero or more abstract methods
→ use abstract modifier
→ have no body: replace {…} with ;
→ abstract methods only exist in abstract classes

• may contain non-abstract ("concrete:") methods

• abstract method cannot be defined as final or static
(useless – why?)

Abstract Classes' Children

• children inherit abstract methods, too!
 → but, still unimplemented

• child must either override inherited abstract
method, or also be declared abstract.

abstract: like a contract

• contract: all objects usable at this type have method impl.

• concrete child class fulfills contract by overriding all
abstract things → all methods are available; object usable
at the abstract class type

• sometimes a child class is also abstract; doesn't have to
fulfill the contract. (Leaves it to later generations)

Abstract class example

abstract class Item represents buyable items
• All items have a barcode (and showBarcode() method)
• But Items are otherwise very different:
→ have abstract method to generate HTML for the item
→ Some have images, some are linked to others
→ method implementations are specific to each item

Visibility, Revisited

• All members of a parent class, even private members,
are inherited by children

• but can't be referenced by name in the child class

• However, inherited private members exist and can be
used indirectly!

• through visible inherited methods

3-
33

Inheritance Design Issues

• Every derivation should be an is-a relationship
→ a Student is-a Person; a Penguin is-a Bird.

• Find common characteristics of classes and push them as
high in the class hierarchy as appropriate
• Override methods as needed to tailor functionality of a child
•  Add new variables to children, but never shadow inherited
 variables!

Inheritance Design Issues

• each class should manage its own data

• always override general methods such as
toString and equals

• use abstract classes to connect classes as needed

• use visibility to provide minimum access needed

Restricting Inheritance

• final class: prohibits extending it
→ a class can't be abstract and final – useless!

• final method: can't be overridden by children
→ children are stuck with this version.

• allows parent to guarantee how it's used

