

Interfaces

What Need Does an Interface Address?

•  Java disallows multiple inheritance
•  we always have one parent class

•  How do we relate unrelated things?

•  example: our grocery store program wants to sell
grapes, gum, batteries, and dog food.

→ How can we retrieve the price & barcode info for each?
→ We want an array of all these sellable items in the cart.
→ The Object class only sort of helps.

Interface: Introduction

interface: a set of abstract methods. (no fields are allowed)*

An Interface is a Type!

Any class can implement the interface:
→ claim they do, then implement all the abstract methods.

A single class can implement multiple interfaces by
implementing all the methods of all the targeted interfaces.

there's actually much more to interfaces; this is just our first view of them!

Interface Example

First, create an interface, declaring what methods must be implemented to
be able to behave like this new type of thing.

We see three abstract methods: method signatures with no body.
→ We briefly introduced abstract methods for abstract classes. These
are the same thing, and can similarly be overridden with new
implementations.

public interface Sellable {
 public abstract int getPrice(); //in pennies
 public abstract int getBarCode();//unique int
 public abstract String receiptLine(int quantity);
 }

Practice Problem

Create the Noisy interface, which has the beLoud method.

What classes might implement Noisy?

Implementing an Interface
A class declares that it implements the interface, and overrides the
acquired methods

public class Battery extends EnergySource implements Sellable {
 // fields of the Battery class
 public int voltage;
 public String sizeDescriptor;

 //constructor, other methods in the class.
 public Battery (int v, String sd) { ... }

 //implementations for all Sellable methods.
 public int getPrice() { return 150; }
 public int getBarCode(){ return 1596783; }
 public String receiptLine(int qty) {
 int total = getPrice()* qty;
 return qty + " batteries @ $"+getPrice()+"......$"+ total;
 }
}

Practice Problems

Implement the Sellable interface for DogFood.

Implement your Noisy interface for any class of your
choosing.

Using Interfaces
Use the interface type to refer to any object whose class implements it.

	public	static	void	main	(String[]	args)	{	
			Grape	gr	=	new	Grape(2,"red");	
			DogFood	df	=	new	DogFood(35,"Old	Yeller");	
		
			//like	superclasses,	we	can	assign	any	Sellable	thing	to	a	Sellable	variable.	
			Sellable	s	=	gr;	
		
			//in	the	following,	s,	gr,	df	could	be	used	in	each	others'	places	
			System.out.println("buying	grapes?	"+s.receiptLine(5));	
			priceCheck(df);	
			priceCheck(gr);	
	}	
		
	public	static	void	priceCheck(Sellable	sell)	{	
			System.out.println("checking	price	for	"sell+":");	
			System.out.println(sell.receiptLine(1));	
	}	

Example
// in a method somewhere…

A a = new A();

B b = new B();

I i; // we can have variables of type I.

i=a; // allowed: things of type A guarantee everything we need of type I.

i=b; // same reasoning.

b=i; // FAILS: type B may have extra def'ns not guaranteed by I.

b = (B) i; // downcast succeeds: actually points to B object

interface I { … }
class A implements I { … }
class B implements I { ... }

Examples of Interfaces

java.lang.Comparable. one method:

→ return value: negative:"less than" zero:"equal". positive:"greater than"
→ gives a consistent way to sort data.
Example: class String implements Comparable.
(compareTo is available on Strings)

java.lang.Iterator. Three methods:

public int compareTo(Object other);

public boolean hasNext();
public Object next ();
public void remove ();

More Interfaces
Serializable interface: no methods!

•  indicates that the object can be transformed into a byte sequence

•  (for file storage, network transfer, etc).

•  Serializable classes' objects can be stored in files!

Interface Inheritance

•  we can extend one interface to create another. Child interface inherits
all methods from parent interface

•  multiple inheritance of interfaces is allowed!

•  A good example of this is Java's Collections Library, provided as a
hierarchical series of interfaces, also using the extends keyword.

Pytania Poll
•  Interfaces

Enumerations

Enumerations
Purpose: list out all of the values in a finite set.

• examples: days of week; planets; grades.
• more error-proof than just using ints or Strings:

less chances to abuse the value.

Implementation Detail:

• Java uses the class mechanism behind the scenes.
 → an enumeration is "syntactic sugar" for a special
 usage of classes.

Enumeration – Creation

	public	enum	Grade	{	A,	B,	C,	D,	F	}	

	

•  Place enumeration in its own file, like a class.
•  File name matches enum name. (e.g. Grade.java)

•  An enumeration creates a new type.
•  The values of the enumeration are … enumerated.

(Listed explicitly).
•  It looks like set notation in math!

Enumeration – Usage
•  Direct usage of the values: 	EnumName.EnumValue				Grade.A	

•  switch usage is allowed directly on enum value names:

	//directly	access	the	enum	fields	
	Grade	g	=	Grade.A;	
	System.out.println("The	grade	is	"	+	g);	
		
	//notice	that	we	DON'T	say	Grade.A,	just	A,	inside	a	switch:	
	switch	(g)	{	
			case	A:		
					System.out.println("Ace!!!!");	
					break;	
			case	B:	
					System.out.println("Buzz...");	

									break;	
			default:	
					System.out.println("Meh....");	
	}	

Iterators from Enums

•  each enum has a values() method, giving an
array of the values in order.

•  use it with for-each loops.

 		
		for	(Grade	g	:	Grade.values())	{	
							System.out.println("Grade:	"	+	g);	
		}	
	

Practice Problems

•  Create an enum for the sign of a number (positive, negative, zero)

•  Store a Sign to a variable. Use it in a switch to print out if the number
is "bigger than", "equal to" , or "less than" zero.

•  Create the Quadrant enumeration, representing the four quadrants.

Advanced Enumerators
adding fields and (non-public) constructors

public	enum	Day	{	
		//	we	add	special	constructor	calls	to	the	enumerated	values.	
		MON	("Monday",false),				TUES("Tuesday",false),		WED("Wednesday",false),	
		THURS("Thursday",false),	FRI("Friday",false),				SAT("Saturday",true),		
		SUN("Sunday",true)		;	
				
		//we	can	create	fields.	(private	just	for	encapsulation	reasons)	
		private	String	fullDesc;	
		private	boolean	isWeekend;	
	
		//(private/package-private	only)	constructor,	called	above.					
		private	Day	(String	fullDesc,	boolean	isWeekend){	
				this.fullDesc	=	fullDesc;	
				this.isWeekend	=	isWeekend;	
		}	
}	

Advanced Enumerators

•  Adding other methods (just like adding more methods to a class)

•  This is basically a class now.

//	being	implemented	as	a	class,	we	can	also	provide	toString().	
	public	String	toString(){	
			return	"<Day:	"+fullDesc+"/	is"+(isWeekend?"n't":"")+"	
weekday>";	
	}	
					
	//other	public	methods	are	also	allowed...	
	public	String	other(int	n)	{	

	return	"Other	"+fullDesc+"	description..."+n;		
	}	

Practice Problems

•  Update your Quadrant enumeration to have two private
fields for the x and y Signs. (Bonus complexity: use your
Sign enumeration for these!)

•  Add constructor calls to use these fields for your Quadrant
values.

•  write a toString method for your Quadrant enumeration.

•  write two methods: getXSign and getYSign. They work on
a Quadrant value (no parameters), returning the Sign
value for an xx/y value in this quadrant.

Exceptions

Exceptions: Specialized Control Flow

Exceptions: The Idea
Exceptions as a Class Hierarchy
Creating Exception values

Handling Exceptions

Exceptions: The Idea

Sometimes, exceptional events occur during execution of our program. For
example:

•  array index is out of bounds
•  we divided by zero
•  we tried to use null as a reference to an object
•  we tried to open a non-existing file

Normal control flow is aborted, in search of a way to handle the
exceptional event.

•  We keep escaping code blocks until one is found.
•  If we escape all the way out of main, the program crashes.

Exception Types: A Class Hierarchy

•  A small portion of the huge class hierarchy of Exceptions already defined in Java.
•  You've probably already seen a few of these.

•  java.lang.Throwable (implicitly inherits from Object).

•  Exception
•  RuntimeException for recoverable events.

•  NullPointerException using null like an object
•  ClassCastException cast to class-type that wasn't possible
•  IndexOutOfBoundsException

•  ArrayIndexOutOfBoundsException
•  StringIndexOutOfBoundsException

•  ArithmeticException bad arithmetic, like "divide by zero"
•  IOException

•  FileNotFoundException attempted to open non-existing file
•  EOFException end of file reached (no more content)

•  Error unrecoverable events: e.g., out of memory

Getting/Creating Exception Values

from methods: Some Exception values are created inside methods you call. For example:

•  FileNotFoundException thrown by FileInputStream constructor when the file is
not found.

basic Java expression usage: Some Exception values are created through incorrect value
usage. Examples:

•  dividing by zero will cause an ArithmeticException
•  using an out-of-bounds index will cause an
ArrayIndexOutOfBoundsException

creating your own: You can create your own:
•  call the constructor of an Exception class. You'll also need to 'throw' it:

 ArithmeticException ae = new ArithmeticException("evens only!");
 throw ae;

Practice Problems

What are some situations where you can imagine Java creating/throwing
exceptions?

When would you want to manually generate an exception type that Java
already has?

When would you want to create your own types of Exceptions and throw
them?

How many exceptions can escape one block of code?

Handling Exceptions

We have two options:

Catch It: wrap the offending code in a try-catch block that catches the
specific type of exception.

Propagate It: allow the exception to occur, crashing its way through your
program until it is caught elsewhere.

•  you might have to explicitly list what exceptions are propagated (any
exception that is not a RuntimeException or Error).

No matter what, the occurring exception immediately starts 'crashing' your
program by prematurely leaving each code block and method call, until it is
caught by a catch-block (or the entire program is crashed).

Catching Exceptions: try-catch Blocks
Wrap the suspicious code in a try-block.

Provide a way to handle the occurring exception with a catch-block.
This must include the type of Exception being caught.

→ if the exception occurs in the try-block, the catch block runs.

 try {
 int infinity = 5 / 0 ;
 System.out.println("I'm never printed. " + infinity);
 }
 catch (ArithmeticException e) {
 System.out.println("saw arith. error: " + e);
 }

Practice Problems

Write code using a try-catch block that successfully gets an
integer from the user, using a Scanner.

Write a method containing a try-catch block that accepts a String
argument and tries to parse an int out of it to return. Return -1 if the
parsing fails. (What Exception to catch?)

Write a method accepting a Square parameter that tries to print it to the
terminal. Using a try-catch block, if the Square value is null, just print "<no
Square>" instead.

Multiple catch-Blocks
We can add multiple catch-blocks. The first block that can handle the
exception that actually occurred is the only catch-block to run.

public String makeAString (int[] xs, int starterIndex) {
 String retval = "";
 try {
 int myIndex = 50 / starterIndex; //might divide by zero
 int rval = xs [myIndex] ; //index maybe out of bounds
 retval = "result: " + retval ;
 }
 catch (ArithmeticException e) {retval = "div. by zero."; }
 catch (ArrayIndexOutOfBoundsException e) {retval = "bad index."; }
 catch (Exception e) { retval = "other error..."; }
 return retval;

}

inputs: exception:
 {2,4,6}, 0 ArithmeticException (/ by zero)
 {2,4,6}, 5 ArrayIndexOutOfBoundsException
 null, 5 NullPointerException → this is also an Exception

finally Blocks
A finally-block always runs, whether the try-block is successful,
or an exception is caught, or an exception is propagated.

int ans = -1;
int[] xs = {3,5,0,6,4};
try {

 int temp = sc.nextInt();
 if (temp<5) {
 ans = 25 / xs[temp];
 }
 System.out.println("success!");
 return ans;

}
catch (ArithmeticException e){rval="div. by zero.";}
finally { // whether success, div by zero, or index error.

 System.out.println("I always run. Always.");
}

Thoughts

On the previous slide, what is printed when the scanner
input's next int is each of these:

 -2 0 2 4 6

Is it possible for a finally block to not execute?

can we have return statements in a:

→ try block?
→ catch block?
→ finally block?

Reminder: Exceptions are Abrupt!

When an exception is thrown, we immediately cease executing
the current block of code. The following 'exits' occur repeatedly
(in this order), until the exception is handled:

• We don't finish any expression simplifications of the current
statement

• We skip to the end of the try-block (if we're in one)
• We skip any non-matching catch blocks (if there are any)
• We exit the method call with our exception value
• We managed to escape the main method, and crash the

entire program. (traceback printed to System.err)

Exceptions and Side-Effects

What effects happen when an exception occurs?

All side effects prior to thrown exception still occurred
(e.g., assignments & printing).

Statements directly after the offending line are not run: the
exception is propagating instead of the intended control flow.

If the exception is from an expression within a statement, the
statement isn't even completed!
→ y=5/0; does not actually assign a value to y.

Practice Problems
What is printed by the following?

int x = 1, y=500;

try {

 x=6;
 y = 50 / 0;
 x++;

}
catch (Exception e) {

 y++;
}
finally {

 y += 30;
}
System.out.print("x="+x+", y="+y);

int x = 0;
int xs[] = {3,5,7};
try {

 x = 50 / 0;
 xs[50] = 3;

}
catch (ArithmeticException e) {

 x += 20;
}
catch(ArrayIndexOutOfBoundsException e) {

 x += 300;
}
catch (Exception e) {

 x += 4000;
}
finally { x+= 50000;}
System.out.print("x="+x);

x=6, y=531 x=50020

Propagating Exceptions

We can choose not to handle an exception, propagating it.

If an exception is unhandled (propagated), then when it occurs, our
method might abnormally return with a crashing exception instead
of its intended return value, and instead of completing the intended
control flow and calculations.

There are two kinds of Exceptions:
Checked Exceptions and Unchecked Exceptions.

Kinds of Exceptions

Checked Exceptions: we must annotate the method signature admitting
that our code could cause an exception. You can list many unhandled
exceptions this way for a single method.

Unchecked Exceptions can also be unhandled, but don't require the
throws annotation: no try-catch block used around the suspicious code, and
no further annotations. Only Error, RuntimeException and their child
classes are unchecked. (You may still list them in the throws clause, as we
did above for NullPointerException).

•  Error examples: failing disk, not enough memory; program can't solve these.
•  Runtime Exceptions: good indication of program bugs, not behaviors we expect

in a 'correct' program; their causes should be fixed.

public int lazyBum (…)throws FileNotFoundException{..}

public int foo () throws EOFException, IOException, NullPointerException{..}

Creating Your Own Exception Classes
•  Exception definitions are classes. Extend these classes to make

your own specialized exceptions.

•  use fields, write constructors to pass info around.

 public class MyException extends Exception {
 public int num;
 public String msg;
 public MyException (int num, String msg) {
 this.num = num;
 this.msg = msg;
 }
 }

Using Your Own Exceptions

create values by calling the constructor.

 MyException myExc = new MyException(5,"yo");

begin exception propagation with a throw statement:

				throw myExc;

or create and throw, all at once:

 throw new MyException(6,"hiya!");

Practice Problems

Create your own Exception classes, named
OutOfFoodException and OutOfCheeseException.

•  What should they extend?

Add fields and constructors to each.

Create and throw values of each; write catch blocks that successfully
catch each one.	

•  can you write catch blocks that catch them without explicitly writing
"catch (OutOfFoodException e)" or "catch (OutOfCheeseException
e)" ?

