

Command-Line
Arguments

Command-Line Interface

Q: Other than typing in input, how can we feed values to our
compiled program from "the outside"?

Q: What is that String[]args for in main, anyways?

 A: Command-line arguments!

CLI – Example
public	class	TestCLI	{	

				public	static	void	main	(String[]	args)	{	

								System.out.println("String[]	args	contained:");	

								for	(int	i=0;	i<args.length;	i++)	{	

												System.out.println("#"+i+":"+args[i]);	

								}	
				}	
}	 demo$ java TestCLI a b c

String[] args contained:
#0:a
#1:b
#2:c
demo$ java TestCLI
String[] args contained:
demo$

demo$ java TestCLI a 'b c' "d e" f
String[] args contained:
#0:a
#1:b c
#2:d e
#3:f
demo$ java TestCLI
String[] args contained:
demo$

CLI - Details
Only String values are possible. (String[] args)

Spaces separate values.

•  use single or double quotes to provide a single string value that contains
spaces.	
	
demo$	java	Test	one	"two	words"	three	"4	4	4"		'f	i	v	e'	
	

Getting other types: call conversion methods.
•  Integer.java: public	static	int	parseInt(String	s)	{…}	
•  Double.java: public	static	double	parseDouble(String	s)	{…}	
•  (others, too)

Practice Problems

Write a program that accepts command line arguments. If there were
not exactly three arguments (which we will assume are double
values), then print "invalid usage" and quit. If there were three, print
"largest value of the three: ", and the actual largest value out of the
three doubles that were passed in.

Write a program that accepts an arbitrary number of integers on the
command line; print out the sum, average, and maximum of those
numbers.

If you want to run these programs with different inputs, do you have
to recompile between each run? Why or why not?

Three Versions of Input

We have three distinct ways we can get input for our program:

1.  System.in: usually keyboard (but we can use < to pipe input
from other places, like files)

2.  Command-line arguments.

3.  reading files directly (e.g., via Scanner)

You can also use any combination in a single program as desired.

JavaDoc

JavaDoc: Overview

Detailed description of code in a format that can
generate spiffy API documentation, likely as HTML (just
like what generated our API readings all semester
long!)

We can document individual classes and their
members (directly in source code) or entire packages
(through extra files).

JavaDoc Example: methods
/**

 * Short sentence summarizing: Returns a boolean

 * representing if the single input is prime.
 *

 * @param n the number to be tested if prime.

 * @return boolean for prime or not.

*/

public boolean isPrime (int n){

 //boring non-javadoc comment…

 for (int i=2; i<n;i++){
 if (n%i==0){ return false; }

 }

 return true;
}

JavaDoc Example: classes
/**

 * the Student class represents an individual

 * within the GMU community; each student has a

 * name, age, and studentID.
 *

 * @author George Mason
 * @version 0.10 April 1776
 */
public class Student {
 …

JavaDoc Example: packages

/**

 * the bar package provide various foo

 * interactions.

*/
package Foo.Bar;
//empty ever after

file: Foo/Bar/package-info.java

JavaDoc Notes

•  We can write actual HTML in these comments.

•  links can be created to other classes' documentation
via {@link ClassName}

•  There are various @tags that can be created:

@param @return @exception
@author @version @see
@since @serial @deprecated …

Generating Documentation: javadoc

Use the javadoc command with various options:

-subpackages packageName - please create documentation for this
package and recursively through all subpackages as well. (convenient!)

-d some/Location/ - please put the (many) generated html files at some/
Location that I've given you.

-classpath what:ever – regardless of where I am, please use this classpath.

-sourcepath some/Location – where can Javadoc look for files? Defaults to
the classpath (convenient!)

javadoc -d /Users/me/htmlDir -subpackages Foo

More options: javadoc
-public, -protected, -package, -private – please show
anything as visible as what I've mentioned (use
-private to show all; -protected is the default)

-exclude these:packages - please don't include these
packages or their subpackages, even though a
–subpackages option refers to them.

•  many more… perhaps you will learn on-the-job about them
J For now, we have enough to keep us occupied!

•  Our goal is to be aware of javadoc, not to memorize details.

Links Abound!

Much more info:
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

Options for the javadoc command:
http://www.java2s.com/Tutorial/Java/0020__Language/ThejavadocTool.htm

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html#runningjavadoc

Doclets can be written to generate other outputs (such as
pdfs, personalized/better(?) HTML, etc)

Number
Representations

Number Representations

Different bases of interest:
→ 10, 2, 16
Counting up in various bases
Conversions between bases

Representations of Numbers

There is only one set of integers, no matter what you call them.
5 = V = 1012 = ||||

Each base gives a different perspective on how to name these
numeric values.

Representations of Numbers

• Decimal
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,…

• Binary
0,1,10,11,100,101,110,111,1000,1001,1010,1011,1100,110
1,1110,1111,10000,…

• Hexadecimal
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11,12,13,14,15,16,17,…

• Roman
I,II,III,IV,V,VI,VII,VIII,IX,X,XI,XII,XIII,XIV,XV,XVI,XVII,XVIII,
XIX,XX,XXI,...

• Tallies: |, ||, |||, ||||, ||||, |||| |, |||| ||, |||| |||, |||| ||||, |||| ||||, …

Different Bases

A base defines how
many symbols we have
for numbers, and also
defines the value of
each column.

Those symbols are used
"odometer-style" to count upwards.

Different Bases

We count in decimal (base 10),
thanks to our ten fingers.

•  Base 10: ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Computers store everything in binary (base 2),
thanks to the simplicity of having just 2 states.

•  Base 2: two symbols: 0, 1.

Different Bases

We use hexadecimal (base 16) as a
convenient shorthand for longer binary
numbers (more on that convenience soon!).
→ Base 16: 16 symbols:

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Base N: use any N symbols. Example:
 0,1,…, (n-1).

Counting Up
We count up though the symbols of
our base, and when we run out, we
'clock over' to the next column,
starting over in the earlier columns.

It just happens a lot faster in binary…
Notice that binary clocks over into 4 new
columns exactly when hexadecimal clocks
over once. Not a coincidence!

 reason: 16 = 24.

•  Think of counting in each base as using

an odometer that has a different number
of symbols on its wheels.

Base	10:	 Base	2:	 Base	16:	 Base	8:	
0	 0	 0	 0	
1	 1	 1	 1	
2	 10	 2	 2	
3	 11	 3	 3	
4	 100	 4	 4	
5	 101	 5	 5	
6	 110	 6	 6	
7	 111	 7	 7	
8	 1000	 8	 10	
9	 1001	 9	 11	
10	 1010	 A	 12	
11	 1011	 B	 13	
12	 1100	 C	 14	
13	 1101	 D	 15	
14	 1110	 E	 16	
15	 1111	 F	 17	
16	 10000	 10	 20	
17	 10001	 11	 21	
18	 10010	 12	 22	
19	 10011	 13	 23	
…	 …	 …	 …	

Column Values

Each column of a number contains one of the digits in the base, and is worth
the base raised to the column's number:

Consider 1437, in decimal (written 143710):

 Digits: 1 4 3 7
 Values: 103 102 101 100

 total value (written in base ten):

 = (1*103) + (4*102) + (3*101) + (7*100)
 = 1000+400+30+7
 = 1437

Column Values
Consider 11010 in binary:

Digits (in base 2): 1 1 0 1 0
Values (in base 10): 24 23 22 21 20

Total value: (written in base 10):
 = (1*24)+(1*23)+(0*22)+(1*21)+(0*20)
 = 16 + 8 + 0 + 2 + 0
 = 26

Base	10:	 Base	2:	 Base	16:	 Base	8:	
0	 0	 0	 0	
1	 1	 1	 1	
2	 10	 2	 2	
3	 11	 3	 3	
4	 100	 4	 4	
5	 101	 5	 5	
6	 110	 6	 6	
7	 111	 7	 7	
8	 1000	 8	 10	
9	 1001	 9	 11	
10	 1010	 A	 12	
11	 1011	 B	 13	
12	 1100	 C	 14	
13	 1101	 D	 15	
14	 1110	 E	 16	
15	 1111	 F	 17	
16	 10000	 10	 20	
17	 10001	 11	 21	
18	 10010	 12	 22	
19	 10011	 13	 23	
…	 …	 …	 …	

Column Values

Consider 2AC in hexadecimal:

Digits (in base 16): 2 A C
Values (in base 10): 162 161 160

Total value: (written in base 10):
 = (2*162) + (10*161) + (12*160)
 = 2*256 + 10*16 + 12*1
 = 512 + 160 + 12
 = 684

Base	10:	 Base	2:	 Base	16:	 Base	8:	
0	 0	 0	 0	
1	 1	 1	 1	
2	 10	 2	 2	
3	 11	 3	 3	
4	 100	 4	 4	
5	 101	 5	 5	
6	 110	 6	 6	
7	 111	 7	 7	
8	 1000	 8	 10	
9	 1001	 9	 11	
10	 1010	 A	 12	
11	 1011	 B	 13	
12	 1100	 C	 14	
13	 1101	 D	 15	
14	 1110	 E	 16	
15	 1111	 F	 17	
16	 10000	 10	 20	
17	 10001	 11	 21	
18	 10010	 12	 22	
19	 10011	 13	 23	
…	 …	 …	 …	

Conversions: 2 → 10, 16 → 10
The previous explanations of column values actually instructed
you how to convert from a different base to base 10:

•  for each column, multiply the column's value (in base 10)
by the column's contents (in base 10, based on that chart).

• add up these products from each column to get the answer
(all work in base 10 now).

→ This actually works for any base to any base! But
performing the multiplication and addition in non-base-10
bases can be tricky, so we use a different approach converting
out of base 10.

Practice Problems
Convert the following numbers from
binary to decimal:

 1102
 101012
 11102
 1000112

Convert the following numbers from
hexadecimal to decimal:

 F16
 C516
 3B216
 10016

Base	10:	 Base	2:	 Base	16:	 Base	8:	
0	 0	 0	 0	
1	 1	 1	 1	
2	 10	 2	 2	
3	 11	 3	 3	
4	 100	 4	 4	
5	 101	 5	 5	
6	 110	 6	 6	
7	 111	 7	 7	
8	 1000	 8	 10	
9	 1001	 9	 11	
10	 1010	 A	 12	
11	 1011	 B	 13	
12	 1100	 C	 14	
13	 1101	 D	 15	
14	 1110	 E	 16	
15	 1111	 F	 17	
16	 10000	 10	 20	
17	 10001	 11	 21	
18	 10010	 12	 22	
19	 10011	 13	 23	
…	 …	 …	 …	

Conversions: 10 → 2

A binary number either has, (1), or does not have, (0), the value of each
column. Our goal is to figure out which columns should have 1's in
them.

1.  Start in the largest column that isn't larger than your number.

2.  Add a 1 to the column if it's ≤ your number; subtract the column's
value from the number to track how much value is left.

3.  Consider the next column to the right. Again, if it's ≤ the remaining
value, add a 1 in the column and subtract the column's value.

4.  Keep repeating until you have considered the rightmost column.

 → if you have any value left over, your calculations are wrong.

Example: Convert 2610 to binary
Which column do we start with? 32 > 26 > 16.
→ all columns 32 and bigger have implicit 0's in them.

16 ≤26. Put a 1 in the 16 column, subtract 16 (26-16 = 10 left).

8≤10. (Remaining: 10-8 = 2 left).

4 isn't ≤2; column is 0.
(Remaining: 2-0=2 left).

	(0)	 		 (0)		 		 	?	 		 	?	 		 	?	 		 	?	 		 	?	
64	 		 32	 		 16	 		 8	 4	 		 2	 		 1	

	0	 		 0		 		 1	 		 		 		 		 		 		 		 		
64	 		 32	 		 16	 		 8	 4	 		 2	 		 1	

	0	 		 0		 		 1	 		 	1	 		 		 		 		 		 		
64	 		 32	 		 16	 		 8	 4	 		 2	 		 1	

	0	 		 0		 		 1	 		 1	 		 0		 		 		 		 		
64	 		 32	 		 16	 		 8	 4	 		 2	 		 1	

•  2≤2. (Remaining: 2-2 = 0).

•  1 isn't ≤0. (Remaining: 0-0=0).

•  No more columns, remaining value=0:
we probably did this correctly.

→ Result: 110102

	0	 		 0		 		 1	 		 1	 		 0		 		 1		 		 		
64	 		 32	 		 16	 		 8	 4	 		 2	 		 1	

	0	 		 0		 		 1	 		 1	 		 0		 		 1		 		 0		
64	 		 32	 		 16	 		 8	 4	 		 2	 		 1	

...

Example: Convert
 42110 to hexadecimal

Which column do we start with? 4096 > 421 ≥ 256.
→ all columns 4096 and bigger have implicit 0's in them.

256 ≤421. How many 256's fit in 421? Just one. Put a 1 in the 256 column, subtract
(Remaining: 421 - 256*1 = 165).

16≤165. How many 16's fit into 165? Ten. Put an A in the 16 column.(Remaining:
165-10*16 = 165 – 160 = 5).

1≤5. How many 1's fit? Five. Put a 5 in the 1 column. (Remaining: 5-5*1=0).

 → Result: 1A516

	(0)	 		 (0)		 		 		 		 		 		 		
…	 		 4096	 		 256	 		 16	 		 1	

0	 		 0	 		 1		 		 		 		 		
…	 		 4096	 		 256	 		 16	 		 1	

0	 		 0	 		 1		 		 A		 		 		
…	 		 4096	 		 256	 		 16	 		 1	

0	 		 0	 		 1		 		 A		 		 5	
…	 		 4096	 		 256	 		 16	 		 1	

Columns:
… 163=4096

 162=256
 161=16
 160=1

Practice Problems
Convert the following numbers from
decimal to binary:

 5
 24
 127
 1000

Convert the following numbers from
decimal to hexadecimal:

 20
 170
 4100
 5

Base	10:	 Base	2:	 Base	16:	 Base	8:	
0	 0	 0	 0	
1	 1	 1	 1	
2	 10	 2	 2	
3	 11	 3	 3	
4	 100	 4	 4	
5	 101	 5	 5	
6	 110	 6	 6	
7	 111	 7	 7	
8	 1000	 8	 10	
9	 1001	 9	 11	
10	 1010	 A	 12	
11	 1011	 B	 13	
12	 1100	 C	 14	
13	 1101	 D	 15	
14	 1110	 E	 16	
15	 1111	 F	 17	
16	 10000	 10	 20	
17	 10001	 11	 21	
18	 10010	 12	 22	
19	 10011	 13	 23	
…	 …	 …	 …	

Conversions: 2 → 16 → 2
We could convert from 2→10→16, but there

is a faster way.
Group every 4 bits of the binary number

(starting at the right)
Look up each 4-bit pattern in our original

chart of counting up.
Works in reverse, too.

Example: 10 1100 0000 1010 0101:

 2 C 0 A 5

Example: 23ACE in binary:
 0010 0011 1010 1100 1110

 Base2: Base16:
 0000 0
 0001 1
 0010 2
 0011 3
 0100 4
 0101 5
 0110 6
 0111 7
 1000 8
 1001 9
 1010 A
 1011 B
 1100 C
 1101 D
 1110 E
 1111 F

extra 0's shown for padding:
each pattern must be 4 bits

