

Testing

2

Goals of Testing

"The goal of testing is just to find errors" – WRONG!

The goal of testing is to gain assurance about the quality of your
programs

The testing you do for your class assignments is more likely to be
debugging oriented

→ How do you catch bugs?
→ How do you design a good test case?

Testing

Testing can mean many different things:
→ running a program on various inputs
→ any human or computer assessment of quality
→ evaluations before writing code

The earlier we find an problem, the easier and cheaper
it is to fix

When are we done testing?

Facts about testing

Maintenance activities consume 70-90% of the total cost
of software
→ spend most of our time testing and debugging code

Some software engineering approaches advocate writing
test cases BEFORE you even write any code

• What does this accomplish?

Software Testing

The earlier you find a defect, the cheaper it is to fix

It is up to you to figure out how much testing is enough and when

Software Testing

Modern day testing is preventive

The testing you do for your class assignments is more likely to
be debugging oriented

→ How do you catch bugs?
→ How do you design a good test case?

Reviews
A review is a meeting in which several people examine a design
document or section of code

It is a common and effective form of human-based testing

Presenting a design or code to others:

• makes us think more carefully about it
• provides an outside perspective

Reviews are sometimes called inspections or walkthroughs

Test Cases

A test case is a set of input and user actions, coupled with the
expected results

Often test cases are organized formally into test suites which are stored
and reused as needed (like JUnit)

For medium and large systems, testing must be a carefully managed
process

Many organizations have a separate Quality Assurance (QA)
department to lead testing efforts

Defect and Regression Testing

Defect testing is the execution of test cases to find errors
The act of fixing an error may introduce new errors

After fixing a set of errors we should perform
regression testing – running previous test suites to ensure new errors
haven't been introduced

not generally possible to test all possible inputs
→ design tests to maximize their ability to find problems

Creating test cases

Common behavior (expected inputs / usage)

Uncommon behavior (Border cases, very complex inputs)

How do you identify such properties?

→ Black box testing – not looking at the code, just intent
→ White box testing – looking at the code/implementation
→ Practice, looking at other projects

Black-Box Testing

In black-box testing, test cases are developed without considering
the internal logic

They are based on the input and expected output

Input can be organized into equivalence categories
Two input values in the same equivalence category would
produce similar results
Therefore a good test suite will cover all equivalence categories
and focus on the boundaries between categories

White-Box Testing

White-box testing focuses on the internal structure of the code

The goal is to ensure that every path through the code is tested

Paths through the code are governed by any conditional or
looping statements in a program

A good testing effort will include both black-box and white-box
tests

Limits of testing

Let's imagine you could, in theory, test your code on every possible
combination of input and output

Would your code be guaranteed to be correct?

No! Perhaps you wrote correct code but it doesn't do what the
customer asked

•  Probably because the customer wasn't clear, or they didn't know what
they wanted

•  This happens all the time

→ defining what correctness means is a tough problem!

JUnit

JUnit: Unit Testing for Java

Unit Testing: Providing individual test cases that target
specific units of code, usually a specific method or a specific
branch of code.

JUnit: package that helps you write unit tests and execute
them.

Offers a form of regression testing: make a few changes, re-
run all JUnit tests to check if we broke previously-tested code

JUnit: Unit Testing for Java

We write test methods that call methods such as:
 assertTrue(boolExpr)
 assertEquals(Object expected, Object actual)
 assertNotNull(Object o)

→ Integrates very well with IDEs (also works on
command-line)

JUnit Example

public class Triangle {

 public int side1, side2, side3;

 public Triangle(int side1, int side2, int side3) {

 this.side1 = side1;

 this.side2 = side2;

 this.side3 = side3;

 }

 //is this area formula correct? We should test it...

 public double calculateArea () {

 //Heron's Formula for area of a triangle

 double s = (side1 + side2 + side3)/2;

 return Math.sqrt(s*(side1-s)*(side2-s)*(side3-s));

 }

}

JUnit Example – in DrJava
•  Create test case → assert something → run the test

JUnit: Running Tests (in DrJava)
We can run our JUnit tests – just click the "Test" button with your
testing class.�
→ get results (green=good, red=bad), and see a trace of where the
failing test failed.

Here, our assertion of equality being true failed. Time to go double
check Heron's Formula as we've implemented it!

JUnit: @Before many @Tests (in DrJava)

JUnit runs the @Before
method before running
all of our @Test methods

→ great for setting up
our data values: Could
use value in multiple
@Test methods in the
class

@After runs after all
tests. Good for clearing
memory, closing buffers,
etc.

3 4 5 4 5 3
triangleNums.txt

JUnit Example – In Eclipse

2-
22

•  Create test case
•  assert something
•  run the test

JUnit: Running Tests (in Eclipse)

2-
23

We can run our JUnit tests,
get results (green=good,
red=bad), and even look at a
trace of where the failing test
failed.�
�
Here, our assertion of
equality being true failed.
Time to go double check
Heron's Formula as we've
implemented it!

JUnit: @Before many @Tests (in Eclipse)

2-
24

JUnit runs the @Before method before running all of our @Test methods �
→ great for setting up our data values: Could have multiple @Test methods in the class �
�
@After runs after all tests. Good for clearing memory, closing buffers, etc.

Debuggers

What is a Debugger?

Debugger: an interactive tool that allows us to slowly trace through a
running program, inspecting values, modifying values, and generally
observing the execution of the program.
→ doesn't modify the source code

→ directly shows what memory is in variables.

It is a valuable alternative to inserting print statements, re-running the
code, and seeing what printed out.

→ we can't insert extra print statements once it begins running

→ the print statements change the meaning of the code (bad)

Usage: Stepping
Breakpoint: a location in source code where the debugger must pause
when reached.
→ (Then stepping is allowed).
Step: evaluate the next statement; pause.

Step into: take a step. if a method is called, continue stepping through its
code

Step over: take a step. if a method is called, completely call/return from it
as a single action.

Step out: run code until a return statement, and pause at that returned-to
site.

→ if other breakpoints reached, pause no matter what

DrJava and Debugging
Debugging is built in.
To set a breakpoint:
→ put cursor on line, press Ctrl-B (⌘-B)
→ debugger pauses before running the statement.

To run in debugging mode:
• enable Debugger → Debug Mode (⌘-Shift-D)
• run as normal; breakpoints will trigger.  

• choose to step in various ways, or resume.

Watches / Watchlist

A variable of interest (one we want to watch) may be
added to a watch list.

→ each time the debugger pauses, each watched
 value is re-inspected and displayed.
→ use for locals, fields, etc.

An interactive interpreter may allow typing in other
expressions to see their values/effect.

DrJava and WatchLists
With Debug Mode enabled, the Debugging Panel is
visible.
→ Watches area (very useful!)
→ Stacks/Threads (we won't be looking here)

type in variables that you'll want to track.
•  click in upper-leftmost cell under "Name" to type new

entry.
•  might only be in scope during part of execution;

that's ok.

Modifying Values Mid-execution

Debuggers often allow you to directly modify values.
→ explore "what-if" scenarios
→ quickly test different parts of code

Can't modify source code while it runs (at least, won't see

those changes until the next run/debugging).

effort of modifying values isn't remembered in later runs/
debugging.

DrJava and Mid-execution
Modifications

While debugging, and paused:

•  type assignment statements into the
Interactions Panel.

• watch-list might not show change until
next step is taken.

Other IDEs
Most heavy-weight IDEs will have debuggers of various design.

→ Eclipse, jGrasp, IntelliJ IDEA, JSwat, etc.

Many languages have debuggers available.

→ you'll experience the gdb (GNU debugger) for C at some point.

Not all debuggers are built into an IDE

→ we have command-line debuggers, too!

No matter what, the same principles apply: set breakpoints, watch
values, inspect/change values as it runs, step into/over/out, etc.

