
CS 211
GENERICS

Generics

Generics

What problem does using generics solve?
What do they look like?
What do they mean?

Problem: "lost" types
java.util.ArrayList provides a nice suite of methods

•  like our old friend List from Python: add(), insert(), etc.

•  If we use ArrayList without generics (a "raw type"),
we only know that Objects were stored in it:

	ArrayList	alist	=	new	ArrayList();	
	Person	bob	=	new	Person("bob",89);	
	alist.add(bob);	

	
	//	can't	do	this:	Objects	stored,	need	a	Person.	
	Person	p	=	alist.get(0);	

 //	must	cast,	every	time:
	Person	p	=	(Person)	alist.get(0);	

→ compile-time: found Object, needed Person.

Problem: "lost" types
This issue would happen all over:

ArrayList personList = new ArrayList();
// add many Person objects

for (Person p : personList) {
 p.whatever();
}

for (Object p : personList){
 ((Person) p).whatever();
}

// NOT ALLOWED:

// allowed, but annoying/error-prone

Generics: Establish & Remember Types

Generics allow us to define type parameters – we can
parameterize blocks of code with types!

Where can we add type parameters?
→ at class declarations (available for entire class definition)
→ at method signatures (available through just this method)

Instead of just having the values parameter list,
we can also give a type parameters list
•  type params may be types of value parameters

Declaring Generic Types: Classwide
We can add a generic type to a class definition:

 public class Box <T> {

 // T can be anywhere: like field types.
 public T value;

 public Box(T t) {// T used as parameter type
 this.value = t;
 }

 // T used as return type and param type
 public List<T> copies(T v, int n) { … }

}

Generic Types: Some Notes

All values have a type. It's the set of values we can store.
→ we declare our value-holding variables

 with a name and a type.

All types have a kind. It's the set of types we can use.

→ all Java reference types are the same kind, so it's assumed
→ we declare our type parameters

 with just a name.

Generics Example: Pairs (2-tuples)

public	class	Pair	<A,B>	{	
		public	A	t1;	
		public	B	t2;	

		public	Pair(A	t1,	B	t2){	
				this.t1	=	t1;	
				this.t2	=	t2;	
		}	

		public	String	toString(){	
				return	("("+t1+","+t2+")");		
		}	

}	 Pair<Integer,String>	ns	=	new	Pair<Integer,String>(5,"a");	
ns.t1	=	10;	
System.out.println(ns);	

Declaring Generic Types: Method-level
We also declare generic types for just one method, like <U>:

public	class	Foo	{	
	…	
	public	<U>	U	choose	(U	u1,	U	u2,	boolean	b)	{	
	 	return	(b	?	u1	:	u2);	
	}	

}	

•  declaration is before return type.
•  It may be the return type, param type, and in method body
•  All we know about u1 or u2 is that it is a value of the U type.
 → that's not much info! Enough for useful/reusable code

•  Let's look back at ArrayList	

Generics Example: Methods
Given a generic method (which happens to be static):
public static <U> U choose (U u1, U u2, boolean b) {
 return (b ? u1 : u2);
}

 String s = Foo.<String>choose("yes","no",true);
 String t = Foo.choose("yes","no",true);

We instantiate the parameters and can call it like this:

 Foo f = new Foo();
 String s = f.<Integer>choose(5, 3, true);
 String t = f.choose(5, 3, true);

If it were non-static, we'd need an object to call it:

(We only require the type when it's not clear from the params)

Generics Example: ArrayList
public	class	ArrayList<E>	{	
		private	int	size;	
		private	E[]	items;	
		public	ArrayList(){	
		items	=	new	E[10];		
		size	=	0;	
}	
public	E	get(int	i)									{	return	items[i];	}	
public	void	set(int	i,	E	e)	{	items[i]	=	e;				}	
	
public	void	add	(E	e)	{	
		if	(size>=items.length)	{	
				E[]	longer	=	new	E[items.length*2];	
				for	(int	i=0;	i<items.length;	i++){	
						longer[i]	=	items[i];	
				}	
				items	=	longer;	
		}	
		items[size++]	=	e;	
		}	
}	

almost!

Example: Using ArrayList Generically
Let's look at how we actually get to use generics with ArrayList:
→ we need to instantiate the class's type parameter:

		//instantiate	the	type	parameter	with	<>'s:																																																					
		ArrayList<String>	slist	=	new	ArrayList<String>();	
	
		//now	use	all	methods	without	having	to	specify	again.	
		slist.add("hello");	
		slist.add("goodbye");	
		String	elt	=	slist.get(0);	
	
		System.out.println("first:		"	+	elt);	
		System.out.println("entire:	"	+	slist);	
	

We instantiate it both in the variable's type
declaration as well as in the constructor call.

Advanced Generics (going further)
•  We can place a Bound on a generic parameter:

 	<T	extends	SomeType>

•  here, extends can actually mean:

•  T is a sub-class of SomeType
•  T implements the SomeType	interface. (confusing, yes.)

 → useful to restrict the types at which we can use T

•  instead of any types, it must provide some view T.

•  add multiple views: <T	extends	A	&	B	&	C>

we can make multiple unrelated view-claims at once this way

Generics and Java Collections
•  Many collections use Java Generics.
→ e.g., a list of what? A set of what? Maps from what to
what?

•  Instantiate the given type parameter(s) to what you want
contained by that collection.

ex: ArrayList<Integer> xs = new ArrayList<Integer>();

•  use those methods, and Java knows this ArrayList holds
only Integers.
→ no casting down from Object.

Java Collections: Many Interfaces,
Many More Implementations

Some interfaces of the Java Collections†:

List Interface: Some Implementations
Visit the API for these classes that implement the
List<E> interface:

ArrayList
→ uses arrays to provide the list operations
→ some operations are faster/slower as a result.

LinkedList
→ individual nodes each pointing to neighbors
→ different operations are faster/slower as a result.

Comparing ArrayList and LinkedList

Run building/navigating operations and time
each implementation to see where each style
performs better/worse.

