
Chapter 6
Classes and Objects

Hello!
Today we will focus on creating classes and objects. Now that our practice problems will tend to generate
multiple files, I strongly suggest you create a folder for each one, and then just add files to that folder.

Classes and Objects: The Big Idea
A type can be thought of as representing a set of values.

 byte is the set of values {-128,-127,…,-1,0,1,…,127}.
 int is the set of values { -2147483648..,-2,-1,0,1,2,… 2147483647}.

 boolean is the set of values {true, false}.

We say that the false value is an "element of the boolean type", "false is of type boolean", "false
has type boolean", or more simply, "false is a boolean." Similarly, "13 is an int." If we require a
value whose type is an int, we may say that we "need an int." It is always important to differentiate
between the values (like 5, "hi", true) and the types (like int, String, boolean).

A programming language comes with some specific built-in types. Java has the eight primitive types
(boolean, byte, char, short, int, long, float, double), as well as array types. Any

other types (like Strings) that seem to be provided in Java are actually present in the java.lang
package, which is implicitly imported. (Much like the 'built-in' definitions of Python).

But the world around us has a lot more structure than just numbers, booleans, and arrays or Strings.
There are cars, people, traffic lights, trees, instruments, all kinds of things that are the objects involved in
the system that is our real world. If we want to solve real world problems, we'd like to mimic the
structure of the real world with values that exhibit the same structure.

So if we don't want to be limited to just values of those types, and we want to get any more abstraction in
our data representations, how can we create new types of values? How can we group values together in a
meaningful fashion, and then define how to use them?

A class definition defines a new type of values in Java. It gives us two main capabilities.

 First, it allows us to meaningfully group different types of values together to represent some more

complex structure, such as a String and an int used to represent a person (for their name and
age), or two doubles representing a rectangle (for the length and width). We may call these sub-
values by many names: instance variables (because each object is an instance of the class);
attributes (because these are the salient parts of any object of the class); field members (a bit
more of a traditional name for Java documentation).

 Second, we get to define the acceptable behaviors of these values by defining methods
('behaviors'). It gives us the chance to not just represent the world through values, but animate
that world-representation through interactions (method calls).

An object represents a specific value of a class. The object has its own value for each attribute listed in
the class, and is stored in its own unique place in memory.

 When we create a variable to hold an object, we actually store a reference to the object: a 'pointer'

into memory that is only allowed to refer to values of a particular type.

 We can create multiple objects from one class. Each object resides in its own location in memory.

When we ask a particular object to run a method from its class, the object uses only its own
instance variables when running the code.

Defining a Class
When we create a class, we can create various members of the class. We can declare variables, to indicate
that each value of this newly defined type should have its own value for each of these variables. We can
declare methods, each defining the way in which these values can behave.

Think of the methods as actions that outsiders can request the object to perform. These actions can be
simple, like reporting some quantity or value; they can be complex, like simulating some process,
generating new structures, or other tasks like searching/sorting through the instance variables. The
statements in a method can be any procedural-style statement – calling other methods, defining
variables, using control structures, and performing exception handling.

Once we've got a class definition, we can then use it as a recipe to create individual values of this new
type, which we call objects. Each object is guaranteed (required) to have its own copy of all the declared
variables, and thus we can call all the methods on that object.

 (This is a simplification – once we add the static modifier to methods or variables, and once we
discuss what the private modifier does to methods or variables, we will also see how that
qualifies the description above).

Class Example
Here is a very simple example class definition, with no methods:

 public class Person {

 public int age;

 public String name;

 public String email;

 }

Your Turn!

 Copy that class definition into a file named Person.java .

Creating Objects
We could then create Person objects like this:

 Person p1 = new Person();

 p1.age = 18

 p1.name = "Billy";

 p1.email = "billy99@billinc.com";

 Person p2 = new Person();

 p2.age = 19;

 p2.name = "Sally";

 p2.email = "sally.sue@masonalive.gmu.edu";

 System.out.println("p1: age: "+p1.age+", name: "+p1.name+", email:"+p1.email);

 System.out.println("p2: age: "+p2.age+", name: "+p2.name+", email:"+p2.email);

First of all, where should this code go? A class definition is just a definition, not a specific request for Java
to perform any action. A method does nothing, but a method call runs the statements in the method. We
learned that running a Java program is synonymous with running the main method of a class, so we want
to put this code in a class's main method (or somewhere that will be reached by a class's main method).

We can just add a main method to this class, or we can create an entirely separate class, and add the code
to that class's main method. We don't want to get in the habit of thinking the code using a class is
required to be in just that class's main method, so let's create a separate class (in the file TestLab2.java):

 public class TestLab2 {

 public static void main(String[] args) {

 Person p1 = new Person() ;

 …

 }

 }

Now, when we want to run our program, we can just compile TestLab2.java, and run TestLab2, and it will
automatically deal with compiling Person.java, and integrating the compiled Person.class file with the
TestLab2.class code.

 javac TestLab2.java

 java TestLab2

Even though we don't explicitly execute javac Person.java, notice that the Person.class file has
been generated. Incidentally, even if the Person class had its own main method, by executing java
TestLab2, we are not using Person's main method – we are only executing TestLab2's main method. It
is far more common to have many classes involved with only one main method, so that is the usage
pattern we are trying to establish.

Your Turn!

 create a class named Player that has these instance variables in it: name, age, height, weight,
position. What types will you choose for each instance variable?

 create three of your Player objects, and give them values for each instance variable.
 Print things out so that you are comfortable seeing them
 Arrays. Remember, arrays can hold anything. Make an array to hold Person values, and make it

length three. Can you figure out how to put those three Person objects you just made into the
array? Can you use the array to perform the printing? Especially useful may be the for-each loop.

 Create another class, Bottle. Each bottle should have state to represent how many ounces it stores,
how many ounces of fluid are currently in it, whether it is insulated or not, and whether it has a lid
or not.

Constructor Methods
We find that the first thing we want to do with a brand new object is to give values to all the instance
variables; this is so common, that we can write a special method called a constructor to serve this exact
purpose.

A constructor is a method for taking a brand new object and setting up all the instance variables, and then
returning (a reference to) that object. Because a constructor must return that object, the return type is
not specified. It is actually a compilation error to attempt to give a return type to a constructor. The
name of a constructor method is identical to the class name, so that Java knows the method is a
constructor. Just like any other method in Java, we can then require zero or more parameters.

Add the following example constructor method to the Person class:

 public Person(int a, String nm, String e) {

 age = a;

 name = nm;

 email = e;

 }

Before we add our own constructors, we need to point out a more common pattern of naming
conventions in constructors:

 public Person(int age, String name, String email) {

 this.age = age;

 this.name = name;

 this.email = email;

 }

The this keyword functions as a reference to the current object running this method. Since we are
creating a new object of this class type, this refers to the object being initialized. Why doesn't Java get
confused between the instance variable age, and the parameter age? Usually Java chooses to disallow
situations like this where there is any chance for confusion. But having to choose new parameter names
for each of the instance variables is another way to introduce confusion or errors. We will discuss
parameters and scope in better detail soon, so just look at the above code and know that this.age
refers to the current object's age attribute, and age refers to the parameter (because the parameter is the

'closest' definition of age).

Your Turn!

 Add a constructor to your Player class. What parameters will you have? Will you use the this-
notation or not? Do you need a return statement?

 Add a constructor to your Bottle class. Ask yourself the same questions as for the previous
constructor.

What Types are Allowed?
Now that we are starting to create more structures, we might wonder if there are any limitations on what
types we can use for instance variables. It turns out there are no restrictions: primitive types, arrays,
other class types, we can even use the type of the class we are defining!

Your Turn!

 Add a Bottle attribute to the Player class. Hydration is important for our sport-generic athletes!

 In your Player constructor, you will now need to create the bottle. You are allowed to write things
like bottle = new Bottle(…); inside a constructor.

 Bonus (more difficult): Matryoshka dolls are those "nesting dolls" that are popular in Russian
folk art. Create a Matryoshka class, with these attributes: canOpen, innerDoll, and any
others you might want to add. The issue of how to stop making inner dolls is tricky, and requires
an understanding of recursion. The issue is solved by using the "not-a-value" value for the
innermost doll: the null value can be stored into a reference of any class type, and means that
there is no current value. Thus the purpose of the canOpen attribute is to serve as a safety check
for whether we can access the inner doll. We could also just check if (innerDoll==null).

Creating Objects (again)
We glossed over creating objects a bit. Now that we have constructors and a better understanding of
classes, we can discuss a bit more the process of creating objects. Let's assume that our Bottle class has
the following constructor:

 public Bottle (int ounceMax, int ounces, boolean isInsulated, boolean hasLid) { …}

With this constructor, we can now create Bottle objects. The big distinction we need to make is between
objects (the values in memory) and references (the variables/expressions that refer to a particular object
value).

Objects versus References
When we create a new object, we are reserving a new space in memory. The new keyword is what
actually creates the space, while the constructor method merely tells us how to set up that already-
reserved chunk of memory.

 new Bottle(32, 21, false, true)

We have seen the new keyword before, when we created space in memory for an array:

 new int[10]

new serves the same purpose, reserving exactly enough space for this complex data structure.

So what is a reference? A reference is simply a "typed address" for a particular object value. It is
roughly equivalent to variables for class types, though we can obtain a reference from a method call as
well.
 Bottle hydroHolder = new Bottle(32, 21, false, true)

 Bottle coffeeCup = new Bottle(12, 5, true, false)

hydroHolder is a reference for the first created object (call it 32oz), while coffeeCup is a reference to
the second created object (call it 12oz). But there is no restriction on a one-to-one reference-to-object
relation:

 Bottle bensBottle = hydroHolder;

 Bottle jensCoffee = coffeeCup;

After these two extra references have been created, we still only have two objects, 32oz and 12oz. But
hydroHolder and bensBottle both point to the 32oz object, and coffeeCup and jensCoffee both

point to the 12oz object. When we have multiple references to the same object, we call them aliases. Just

as you have already learned about mutability and multiple names for the same spot of memory from CS
112, we will see that references in Java allow us to modify complex values 'from afar' by passing a
reference.

Your Turn!

 Create the two objects and four references as above.
 Learn what happens when you try to print the reference itself (e.g.,

System.out.println(jensCoffee)). This is much like printing out objects in Python, where
you get both a type and some sort of obfuscated memory address that uniquely identifies the
location of the object (or array).

 Printing references, can you see that they are the exact same two objects despite there being four
references?

 Print out all the information you can for the objects from all four references (yes, two of them will
be repeats). Modify hydroHolder and jensCoffee in some way (such as
hydroHolder.ouncesMax = 42;), and then re-print all of that information and note where your
changes took place. You are seeing aliases in action!

Take away experience: Objects are the actual values in memory. References are our handles that help
us find those objects. Just as many people can have your mailing address written down but there is only
one house at that location, there can be many references to a single object. Keep this in mind, especially
when surprising things are happening in your code.

	Chapter 6 Classes and Objects
	Hello!
	Classes and Objects: The Big Idea
	Defining a Class
	Class Example
	Your Turn!

	Creating Objects
	Your Turn!

	Constructor Methods
	Your Turn!
	What Types are Allowed?
	Your Turn!

	Creating Objects (again)
	Objects versus References
	Your Turn!

