
Chapter	7	
Inheritance	

Class	Inheritance:	
Introduction	
extends	usage	

protected	visibility	
abstract	classes/methods	

	
	
Hello!	
	
Be	sure	to	actually	work	through	the	examples	in	order;	the	"Your	Turn"	problems	build	upon	each	other	
extensively.	
	
Today	we	will	cover	another	key	OO	concept:	inheritance.		We're	comfortable	with	all	the	structure	and	
hierarchy	of	creating	separate	classes,	using	fields	to	get	some	aggregation	going,	but	our	class	definitions	
are	still	all	written	separately.		Inheritance	is	going	to	allow	us	to	write	classes	by	essentially	borrowing	
all	of	another	class's	definition,	and	selectively	adding	more	fields	and	methods	to	it,	with	some	nifty	
relationships	holding	between	the	original	and	newly-defined	classes.	
	
	
Motivation	
	
So	far,	the	only	way	we	could	cause	two	classes	to	interact	in	any	way	was	through	aggregation:	where	
the	object	of	one	class	"HAS-A"	object	of	another	class	as	part	of	its	own	data.		Let's	quickly	review	an	
example	of	aggregation,	because	we	need	to	be	sure	we	contrast	the	idea	of	aggregation	with	the	new	
concept	of	inheritance.	
	
Aggregation	Example:	A	Sphere	HAS-A	Coordinate:	
	
public class Coordinate {
 public double x,y,z;

 public Coordinate (int a, int b, int c) {
 x=a;
 y=b;
 z=c;
 }
}

public class Sphere {
 private Coordinate location;
 private in radius;

 public Sphere (int r, int x, int y, int z){
 radius = r;
 location = new Coordinate(x,y,z);
 }
}

A	particular	sphere	has	its	own	location.		Each	time	we	create	a	Sphere	object,	we	will	have	a	Coordinate	
object	as	well.		Although	we	see	that	an	instance	of	one	class	(a	Sphere)	has	a	reference	to	an	instance	of	
another	class	(a	Coordinate),	neither	class	definition	is	a	more	specific	version	of	the	other.		A	Sphere	
isn't	a	Coordinate,	even	though	a	Sphere	has-a	Coordinate;	a	Coordinate	isn't	a	Sphere.		Similarly,	
Sphere	isn't	a	double,	even	though	it	may	have	one	to	represent	the	radius.	
	
	
	

Inheritance	
	
The	classes	themselves	each	represent	a	type	that	is	entirely	separate	from	anything	else:	A	Sphere	object	
has-a	radius,	and	it	has-a	Coordinate	object,	but	nothing	relates	our	Sphere	class	to	a	Shape	class	or	a	
Cube	class.	
	
We	want	to	start	identifying	different	class	definitions	that	should	somehow	be	linked	together,	defined	
somehow	via	the	same	code.	
	
	
When	Would	I	Want	Inheritance?	
	
Consider	the	following	three	class	definitions.		We	are	creating	a	(very	simple)	program	to	use	on	
campus,	and	want	to	store	information	about	various	people	on	campus.		We	have	students,	employees,	
and	other	non-specific	persons.	
	
	
public class Person {
 private String name;
 private int age;

 //methods: (constructors), getName, setName, getAge, setAge.
}

public class Student {
 private String name, major;
 private int age, masonID, yearsOnCampus;

 /* methods:
 (constructors),
 getName, setName, getMajor, setMajor,
 getAge, setAge, getMasonID, setMasonID,
 getYearsOnCampus, setYearsOnCampus.
 */
}

public class Employee {
 private String name, jobTitle;
 private int age, masonID, yearsOnCampus;

 /* methods:
 (constructors),
 getName, setName, getJobTitle, setJobTitle,
 getAge, setAge, getMasonID, setMasonID,
 getYearsOnCampus, setYearsOnCampus.
 */
}

We	see	some	overlap	in	these	definitions:	all	of	these	classes	have	a	name	and	age.	Some	of	the	classes	
have	masonID	and	yearsOnCampus	variables.	And	a	few	other	variables	are	unique	to	different	classes	
(major,	jobTitle).		Now	imagine	that	we	added	constructors,		getters,	and	setters	for	each	of	these	
instance	variables.		We'd	see	more	and	more	duplicated	code,	both	in	data	and	behaviors	(methods).	
	
We	can	create	multiple	objects	from	each	of	these	classes:	
	
Student s1 = new Student("Bob", "art", 19, 71922, 2);
Student s2 = new Student("Helen", "education", 18, 71923, 1);

Person[] people = { new Person("A",1)
 , new Person("B",2)
 , new Person("C",3)
 };

Employee e1 = new Employee ("Catherine", "cashier", 35, 71985, 7);
	
But	there's	a	problem:	we	can't	actually	use	these	definitions	together	very	well.	Suppose	we	wanted	to	
represent	the	people	in	line	at	the	cash	register	in	the	food	court:	
	
Person pers = new Person ("Sally", 25);
Student stud = new Student ("Buddy", "undeclared", 21, 71234,2);
Employee emp = new Employee ("Doug", "HR", 41, 72468, 10);

SomeType[] customers = {pers, stud, emp}; // BAD CODE
????????

	
What	type	should	we	put	for	SomeType?	We	can't	choose	any	of	Person,	Student,	Employee,	because	
there's	something	in	the	array	that	doesn't	match	the	type.	
	
The	problem	is	the	lack	of	a	relation	between	these	different	types:	there	is	no	way	for	us	to	treat	a	
Student	like	a	Person.		Even	though	a	Student	has	all	the	instance	variables	a	Person	has,	and	has	all	the	
methods	a	Person	has,	we	can't	treat	a	Student	like	a	Person.		Java	has	no	idea	that	it	is	safe	to	treat	a	
Student	like	a	Person.		How	impersonal!	Similarly,	we	can't	treat	an	Employee	like	a	Person	either.		Doug	
in	HR	is	going	to	hear	my	complaints	about	this	work	environment.	
	
We	want	to	give	Java	the	information	so	that	these	different	classes	are	linked	together:	we	want	to	be	
able	to	say	a	Student	IS-A	Person,	and	that	an	Employee	IS-A	Person.	

	
So:	we	want	to	relate	these	different	class	definitions	by	actually	defining	one	class	in	terms	of	another.		
We	want	to	reuse	the	Person	definition,	and	extend	it	to	tell	Java	how	a	Student	is	a	more-specific	
version	of	a	Person,	and	how	an	Employee	is	a	more-specific	version	of	a	Person.	

public class Person {
 private String name;
 private int age;
 //methods: (constructors), getName, setName, getAge, setAge.
}

public class Student extends Person {
 // we inherit name and age.
 private String major;
 private int masonID, yearsOnCampus;

 /* methods that we write:
 (constructors),
 getMajor, setMajor,
 getMasonID, setMasonID,
 getYearsOnCampus, setYearsOnCampus.
 */
}

public class Employee extends Person {
 // we inherit name and age.
 private String jobTitle;
 private int masonID, yearsOnCampus;

 /* methods:
 (constructors),
 getJobTitle, setJobTitle,
 getMasonID, setMasonID,
 getYearsOnCampus, setYearsOnCampus.
 */
}

Let's	stop	and	think	a	moment	about	our	two	uses	of	extends Person.		
	
Student extends Person.	By	adding	those	two	words	(extends Person),	we	are	telling	Java	that	a	
Student	is	a	Person.		That	means	that	all	the	data	a	Person has,	a	Student has	that	data,	too.		All	the	
behaviors	that	a	Person	can	exhibit,	a	Student	can	exhibit	too.		We	don't	explicitly	list	String name and	
int age in	the	Student	class,	but	each	Student	object	will	have	these	instance	variables,	because	a	
Student	is	a	Person	and	a	Person	has	a	name	and	age.		Similarly,	all	the	methods	that	were	defined	in	the	
Person	class	(e.g.,	getName,	setAge)	are	also	available	to	Student	objects,	because	a	Student	is	a	Person.	
	
When	we	draw	the	memory	usage	for	objects	on	the	whiteboard	with	a	circle	encompassing	all	the	data	
and	methods,	we	would	now	draw	a	Student	object	by	drawing	a	Person	object,	and	then	adding	in	the	
major,	masonID,	and	yearsOnCampus	instance	variables	to	the	data	portion	(top	half),	and	adding	the	extra	

method	definitions	to	the	behaviors	section	(bottom	half).		Again,	note	that	all	we	do	with	subclasses	is	
add	definitions,	never	take	away.	This	crucial	only-adding-things	property	is	why	we're	able	to	say	that	
every	single	Student	object	can	always	be	used	as	a	Person	object.		It's	as	if	we	temporarily	ignore	the	
extra	variables	and	methods	that	Students	have,	and	just	rely	on	the	inherited	portions.	
	

	
	
In	the	diagram,	we	see	that	the	Student	object	has	all	the	Person	fields	(age,	name),	followed	by	the	extra	
fields	specific	to	Students	(major,	masonID,	yearsOnCampus).		Similarly,	it	has	all	the	Person	methods,	
followed	by	all	the	specific	Student	methods	(getters/setters	for	major,	masonID,	and	yearsOnCampus).		If	
we	ignored	parts	of	the	Student	object,	it	would	look	just	like	a	Person	object.		This	is	the	guarantee	that	
Java	is	given	when	we	extend	a	class	to	create	a	more	specific	version	of	it.	
	
	
Some	Terminology	
	
We	have	a	lot	of	descriptive	ways	to	describe	the	relationship	between	Student	and	Person.		

• We	can	say	that	the	Student	class	is	a	subclass	of	the	Person	class,	or	that	Person	is	a	superclass	of	
Student.	

• We	can	also	call	Student	a	child-class	of	Person,	and	Person	the	parent-class	of	Student.	
• We	can	also	say	that	Student	is	a	subtype	of	Person,	and	Person	is	a	supertype	of	Student.	

	
	

Using	the	is-a	Relationship.	
	
So	how	can	we	actually	use	this	"Student	is-a	Person"	relationship?	Consider	the	following	legal	code	
(once	we've	actually	written	the	constructors):	
	
Person p = new Person ("A",1);
Student s = new Student("B", "CS", 20, 71235, 3);

System.out.println("p name: " + p.getName());
System.out.println("s name: " + s.getName());

p = s;
System.out.println("p name: " + p.getName());
The	p	variable	can	only	hold	a	reference	to	a	Person	object.		But	a	Student	is-a	Person,	so	p	can	also	hold	a	
reference	to	a	Student,	because	that	means	it	also	happens	to	be	storing	a	reference	to	something	that	is-
a	Person.			
	
Now,	back	to	our	register	example.		We	now	know	that	a	Person	is-a	Person,	a	Student	is-a	Person,	and	
an	Employee	is-a	Person.	So	it's	safe	to	use	an	array	of	Person	references	to	store	our	various	values:	
	
Person[] customers = {pers, stud, emp};
	
Your	Turn!	

Create	files	for	all	three	of	the	above	classes.		For	now,	don't	write	constructors	yet;	rely	on	the	
annoying	default	constructors.		That	means	we	have	to	create	our	objects	this	way:	
	
Person p = new Person();
p.setName("Bob");
p.setAge("20");

Student s = new Student();
s.setName("Jane");
s.setAge(19);
s.setMajor("art");
…

• Caution:	if	you	accidentally	add	name	and	age	fields	to	Student	or	Employee,	Java	will	allow	it	(it	is	
called	shadowing,	and	is	generally	a	bad	idea	to	use	this	'feature').		Make	sure	that	you	don't	re-
define	anything	that	is	supposed	to	be	inherited.	

• Add	another	class	that	extends	Person.		Choose	some	other	type	of	person	that	would	be	on	
campus:	Policeman,	Athlete,	Professor,	or	whatever.		Even	if	it	seems	to	overlap	with	either	
Student	or	Employee,	it's	okay,	as	long	as	there's	extra	data	you	want	to	keep	track	of	for	this	new	
type	of	person.	

• Create	objects	of	each	of	your	class	types.	(Put	this	code	in	TestInheritance.java).	Explore	using	
the	getters/setters,	and	see	that	you	do	indeed	get	to	use	methods	declared	in	the	Person	class	
when	using	a	Student	object,	Employee	object,	and	so	on.	

• Create	a	toString	method	for	just	the	Person	class,	and	not	the	others.	Retest	the	"Using	the	Is-A	
Relationship"	code,	but	just	print	out	p	and	s	instead	of	p.getName()	and	so	on.		Notice	that	even	
methods	like	this	can	be	inherited.		We'll	see	how	we	can	do	better	to	represent	Student	objects	
than	being	stuck	with	the	Person version	of	the	toString implementation.	

Visibility	
	
We	finally	have	a	chance	to	experience	the	last	visibility:	protected.		Try	writing	a	toString	method	for	
the	Student	class.		Print	all	the	relevant	info.		For	example,	try	to	get	your	toString	method	in	the	
Student	class	to	output:	
	
Student{name="foo", major="art", age=19, masonID=1234, years=2}
	
What	goes	wrong?	We	get	a	complaint	from	the	Java	compiler	that	name	and	age	are	private.		(Assuming	
you	used	the	visibilities	shown	above!	If	the	knee-jerk	reaction	to	make	everything	public	kicked	in,	just	
go	back	to	Person,	make	those	instance	variables	private,	and	then	see	the	child	fail	to	access	it).	Even	
though	we're	inheriting	from	the	Person	class,	private	still	means	"only	accessible	in	code	actually	
written	in	this	class	definition".		Rather	than	make	name	and	age public	(which	violates	encapsulation	
principles),	we	are	offered	a	compromise:	the	protected	visibility.		This	will	cause	name and	age	to	still	
behave	as	if	it	were	private	in	places	such	as	your	testing	code	(in	some	other	class	like	
TestInheritance),	but	they	will	now	behave	as	if	they	were	public	when	accessed	from	a	child	class	like	
Student.		
	
	 Your	Turn!	
	

• Change	the	visibility	of	name	and	age	to	protected.	
o First,	verify	that	you	still	can't	access	them	from	TestInheritance.	This	is	because	it's	not	a	

child	class	of	Person.	
• Go	back	and	write	your	toString	method	in	the	Student class.	Now	that	they	are	protected,	it's	as	

if	they	were	declared	with	public	visibility	as	far	as	the	child	classes	are	concerned.	
o Revisit	the	"Using	the	Is-A	Relationship"	example	from	above	(and	still	just	print	p	and	s	

rather	than	p.getName()	and	so	on).		Now	it's	even	more	apparent	that	we	have	a	Student	
object	being	used	where	we	expect	a	Person.	

	
	
	
Overriding	Methods	
	
In	the	last	example,	we	witnessed	something	that	is	actually	kind	of	amazing:	the	Student	class	got	to	
override	the	definition	of	the	toString	method.		Person	already	provided	a	toString	method,	which	
used	to	be	what	our	Student	class	used.		But	we	decided	we	could	do	better,	and	got	rid	of	that	definition	
in	favor	of	a	more	specific	one.	
	
We	can	override	methods	inherited	from	the	parent	class,	with	a	few	requirements:	

• We	have	the	exact	same	method	signature,	and	then	we	get	to	supply	a	different	body	
(implementation)	for	the	method.	

• The	parent	class	has	to	give	us	permission	to	override	a	method	by	not	making	the	method	final.		
Yes,	methods	can	be	final,	too	–	it	means	that	the	method	body	cannot	be	modified.		So	if	we	don't	
want	re-implementations	of	a	method	in	child	classes,	we	just	say	something	like	
	 public final int importantMethod(The args)
and	now	overriding	is	not	allowed.	

	
Whenever	our	code	calls	this	overridden	method	on	objects	of	our	child	class,	it	will	always	use	this	
'better'	version	that	we	provided,	thus	overriding	the	original	definition.	

	
	 Your	Turn!	

• Add	the	wakeUpTime	method	to	the	Person	class,	and	override	it	in	the	Student	class.		(Just	return	
a	String	for	whether	this	person	wakes	up	early	or	late;	I'm	assuming	that	students	like	to	sleep	
in,	and	employees	don't	get	to).	

• Test	it	out	(call	it	on	a	Person,	and	on	a	Student).	
• Now	make	the	Person	version	of	the	method	final,	and	look	for	the	compiler	error.	

	
We	can	actually	tell	Java	that	we	intend	to	override	a	method:	just	put	@Override	right	before	a	method	
that	is	supposed	to	be	on	overriding	definition.		If	anything	goes	wrong,	such	as	not	being	allowed	to	
override	the	method,	or	it	turns	out	that	your	method	doesn't	actually	override	any	method,	the	compiler	
can	now	alert	you.	
	

→	when	would	we	not	be	overriding	a	method	when	we	thought	we	were?	Consider	a	method	
with	signature	@Override public String tostring() .	It's	trying	to	override	toString,	but	
neglected	to	capitalize	the	S.	

	
	
	 Your	Turn!	
	

• add	a	method	that	isn't	inherited	to	your	Student	class.		Add	the	@Override	tag	and	see	that	the	
Java	compiler	catches	the	issue.	

	
	
	
	
	
Inheritance	and	Constructors	
	
Let's	finally	discuss	how	to	make	constructors	for	child	classes.		As	a	first	step,	add	a	nice	constructor	to	
the	Person	class:	
	
public Person (String name, int age) {
 this.name = name;
 this.age = age;
}
	
You	will	also	need	to	change	your	Person	instantiations	to	look	like	new Person ("Bob", 20).	Try	to	re-
compile.		Specifically,	try	to	recompile	just	the	Student	class:	
	
 javac Student.java
	
What	happens?	Java	can	create	Person	objects	using	the	constructor	you	added,	but	now	there's	no	
default	constructor,	and	so	we	can't	even	compile	the	Student	class	anymore,	which	was	actually	relying	
on	it.	Our	Person	class	declared	that	it	was	no	longer	acceptable	to	use	the	default	constructor,	and	it	
exposed	the	fact	that	our	Student	constructor	actually	used	the	Person	constructor	to	complete	the	task	
of	constructing	a	Student	object.		Let's	create	a	constructor	for	the	Student	class.
	

First	(Bad)	Attempt.		Let's	try	to	just	write	a	Student	constructor	that	doesn't	rely	on	the	Person	
constructor	at	all.	
	
 //BAD attempt at a child class constructor

 public Student (String name, String major, int age, int masonID, int years){
 this.name = name;
 this.major = major;
 this.age = age;
 this.masonID = masonID;
 this.yearsOnCampus = years;
 }
	
	
This	fails;	somehow,	the	Java	compiler	still	wants	to	find	the	constructor	Person().	It	turns	out	we	have	
to	learn	another	keyword:	super.	super	is	similar	in	nature	to	this.	The	keyword	this refers	to	the	
current	object,	giving	us	access	to	values	and	methods	of	the	object.		super	refers	to	the	parent	class,	
giving	us	access	to	the	members	of	the	parent	class	which	we	otherwise	maybe	couldn't	see	in	the	child	
class.		If	we	want	to	access	anything	in	the	parent	class,	such	as	a	specific	constructor	method,	we	have	to	
use	super	to	access	it.	
	
 // GOOD attempt at a child constructor
 public Student (String name, String major, int age, int masonID, int years){
 //call the parent constructor
 super(name,age);
 //finish instantiating things declared in this class.
 this.major = major;
 this.masonID = masonID;
 this.yearsOnCampus = yearsOnCampus;
 }
	
The	call	super(name,age)	is	actually	calling	the	constructor	of	the	Person	class	that	accepts	a	String	and	
an	int.		The	call	to	super	needs	to	be	first	in	our	constructor	body	so	that	Java	knows	what's	going	on.	
	
	
	
Required	super	calls	
	
Java	requires	us	to	use	the	parent	class's	constructor	when	writing	our	own	constructor.		This	ensures	
that	our	claim	that	"Every	Student	is	a	Person"	won't	be	violated	by	some	naïve	implementation	of	a	
constructor.	It	turns	out	that	an	implicit	super()	call	is	added	to	constructor	method	of	child	classes	
unless	we	add	our	own	super-call.		That's	why	our	first	attempt	at	a	Student	constructor	failed:	there	
was	no	public Person()	constructor	definition	any	more.	
	
By	creating	a	new	constructor	for	Person,	and	then	explicitly	calling	that	new	constructor	with	a	call	to	
super(some,args),	we	are	fulfilling	the	"always	use	your	parent	class's	constructor"	requirement	while	
also	completing	the	instantiation	efforts	that	are	local	to	our	own	class's	instance	variables.	
	

	 Your	Turn!	
	

• Create	constructors	for	all	classes.		Be	sure	to	use	the	non-default	constructor	from	the	Person	
class	by	using	the	correct	super	call	to	the	Person	constructor	from	your	child	classes'	
constructors.	

• 	When	creating	constructors	for	Student	and	Employee,	remember	that	you	have	five	instance	
variables	to	instantiate	(two	came	from	the	Person	class,	three	are	defined	here	in	the	class).	

• Create	all	the	getters	and	setters	for	the	instance	variables	introduced	in	each	class.		(Remember,	
the	ones	defined	in	the	Person	class	are	inherited	in	the	child	classes:	you	won't	write	getName	in	
the	Student	class,	but	Students	will	inherit	the	getName getter	that	you	define	in	the	Person	
class).	Will	anything	need	to	be	made	protected instead	of	private?	

	
Abstract	Classes	
	
One	last	topic	for	inheritance	is	the	notion	of	an	abstract	class.	Abstract	classes	participate	in	the	class	
hierarchy	of	parent	and	child	classes,	but	by	making	a	class	abstract,	we	are	stating	that	no	objects	of	this	
specific	class	may	ever	be	created.		(Objects	of	child	classes	would	be	permitted;	otherwise,	there	would	
be	no	point!).	
	
Let's	consider	an	example	of	an	abstract	class.	If	we	look	to	our	original	three	classes,	we	saw	a	slight	
chance	for	more	overlap:	the	Student	and	Employee	classes	shared	instance	variables	masonID	and	
yearsOnCampus.	Let's	create	a	class	to	help	us	indicate	that	relationship	by	leaving	the	Person	class	alone,	
but	introducing	a	new	class	between	the	Person	class	and	the	two	child	classes	Student	and	Employee:	
	
public class MasonPerson extends Person {
 protected int masonID;
 protected int yearsOnCampus;

 public MasonPerson(String name,int age,int masonID,int years) {
 super(name, age);
 this.masonID = masonID;
 this.yearsOnCampus = years;
 }
}

public class Student extends MasonPerson {
 protected String major;

 public Student(String name, String major, int age, int masonID, int years){
 //calls MasonPerson constructor
 super(name,age,masonID,years);
 this.major = major;
 }
 //no more variables, only methods below…
}

public class Employee extends MasonPerson {
 protected String jobTitle;
 public Employee (String name, String job, int age, int masonID, int years){
 //calls MasonPerson constructor
 super(name, age, masonID, years);
 this.jobTitle = job;
 }
 //no more variables, only methods below…
}

One	nice	thing	is	the	transitivity	of	inheritance:	because	a	Student	is-a	MasonPerson	and	a	MasonPerson	
is-a	Person,	we	can	transitively	claim	that	a	Student	is-a	Person.		All	the	data/behavior	that	MasonPerson	
inherits	from	Person	will	be	passed	on	to	Student.	
	
On	to	abstract	classes.		Suppose,	for	whatever	reason,	that	creating	a	MasonPerson	doesn't	make	sense:	
we	only	want	there	to	be	objects	of	specific	kinds	of	people:	Student	objects	and	Employee	objects	are	
okay,	but	the	vague	idea	of	a	MasonPerson	only	helps	us	organize	our	thoughts;	any	MasonPerson	must	
actually	be	some	more	specific	type.	We	then	choose	to	make	the	MasonPerson	class	abstract,	indicating	
that	it	is	illegal	to	instantiate	the	class:	
	
public abstract class MasonPerson extends Person { … }
	
	
	 Your	Turn!	
	

• Add	the	MasonPerson	class,	which	extends	the	Person	class.	
o Add	instance	variables	masonID	and	yearsOnCampus.	
o Give	it	a	constructor,	using	the	Person	constructor.	

• Change	Student	and	Employee	to	be	child	classes	of	MasonPerson.		Update	their	constructors	to	use	
the	MasonPerson	constructor.	

• In	your	TestInheritance	class,	create	a	MasonPerson	object	and	test	it	a	bit.	
• Make	MasonPerson	an	abstract	class;	re-compile	TestInheritance	and	see	the	error	message.	
→	you've	successfully	created	an	abstract	class	that	contributes	to	the	class	hierarchy,	yet	is	safely	
not	instantiable	(we	can't	create	objects	of	it).	

	
	
	
	
	
	
(keep	going!	Big	chart	+	description	all	on	the	next	page	→)

Another	Abstract	Classes	Example	
	
An	alternate	example	could	be	a	program	representing	a	zoo,	where	we	use	the	Kingdom-Phylum-Class-
Order-Family-Species	hierarchy	to	organize	our	classes	of	animals.		We	want	to	have	classes	for	Monkey,	
Orangutan,	Panda,	Dolphin,	Penguin,	Dove,	Frog,	Alligator	and	more	animals.		It	makes	sense	to	add	
classes	to	generate	the	following	hierarchy:	

	

	
	

It	makes	sense	to	have	Monkey,	Panda,	and	Dolphin	objects,	but	it	doesn't	make	sense	to	have	a	Mammal	
object	or	a	Chordata	object.		Those	classes	just	helped	us	organize	things,	and	maybe	provide	definitions	
like	numVertebra,	numChromosomes,	eggSize,	and	so	on.		If	we	make	all	the	blue	classes	abstract,	they	still	
participate	in	the	hierarchy	of	types	(and	can	contribute	fields	and	methods	for	inheriting),	but	are	
guaranteed	to	not	be	instantiated	themselves.	
	
More	Abstract	Things	
We	can	use	the	abstract	keyword	for	methods,	too.		What	is	an	abstract	method?		It	is	a	method	signature	
with	no	body:	
	
public abstract int reportNumberOfLegs();
public abstract void moveAround();
	
Any	time	we	want	to	indicate	that	every	child	class	of	our	abstract	class	must	have	its	own	version	of	a	
method,	yet	there's	not	good	starting	implementation	right	now	in	the	abstract	class,	we	can	create	an	

abstract	method	to	require	that	all	child	classes	provide	implementations	(by	overwriting	them).		If	they	
don't,	they	become	abstract	as	well,	guaranteeing	that	this	method	will	be	implemented	for	any	actual	
instance	of	a	class	that	is	a	child	of	the	abstract	class	that	introduced	this	abstract	method.	
	

• Any	class	containing	an	abstract	method	must	be	abstract	as	well.	
• Any	class	that	inherits	an	abstract	method	can	implement	it	by	overwriting	that	definition.	
• Any	class	that	doesn't	implement	an	inherited	abstract	method	therefore	still	contains	an	abstract	

method,	and	is	thus	also	abstract.	
	
	
	 Your	Turn!	
	

• Now	that	MasonPerson	is	an	abstract	class,	add	an	abstract	method	to	it,	such	as:	
	
 public abstract String favoriteFoodSite();

	
• Try	instantiating	a	Student	and	see	that	it's	now	becoming	abstract	(well,	we	see	compilation	

erros	complaining	to	that	effect).	
• Override	the	abstract	method	that	was	inherited,	and	now	we	again	are	able	to	instantiate	our	

Student	class.	
	

