
Chapter	8	
Interfaces	

	
	

	
	
	
	
Hello!	
	
The	next	few	topics	will	be	interfaces,	enumerations,	and	exceptions.	Interfaces	and	
enumerations	both	help	us	introduce	new	types	(similar	to	how	classes	did	for	us	previously).	
Exceptions	will	be	explored	in	more	depth	soon,	which	rely	heavily	upon	types	for	us	to	
differentiate	between	different	exception	types.		
	
	

Interfaces	
	
Java	does	not	allow	multiple	inheritance;	that	is	to	say,	each	class	has	exactly	one	parent	class.		If	we	
wanted	to	have	multiple	inheritance	–	say,	that	a	Cow	class	that	is	an	Animal,	is	Food,	is	Sellable	at	
auction	–	we	would	not	be	allowed	to	extend	all	three	of	those	classes.		In	reality,	it's	not	that	a	Cow	really	
is	multiple	things	at	once;	it's	that	a	Cow	is	one	thing	(an	Animal),	and	yet	we	can	interact	with	it	in	other	
specific	ways:	eat	it,	sell	it,	ride	it,	and	so	on.	
	
What	we	really	want,	instead	of	multiple	inheritance,	is	the	chance	to	interact	with	an	object	in	some	
extra	way.		We	expect	extra	behaviors	to	be	guaranteed	by	the	objects	of	this	class.		Behaviors	mean	
methods,	so	the	real	goal	here	is	to	be	guaranteed	that	certain	methods	are	available	for	all	things	that	
could	be	eaten,	or	all	things	that	could	be	sold,	or	all	things	that	could	be	ridden	(be	it	a	cow,	a	car,	a	wave,	
or	a	bike).	
	
An	interface	is	a	grouping	of	abstract	methods	that	any	class	may	implement.	
• A	class	implements	an	interface	by	overriding	(implementing)	every	single	method	of	the	interface.	
• The	methods	are	abstract,	because	we	expect	the	various	classes	to	provide	the	definitions.	
• We	can	think	of	an	interface	as	a	contract:	any	class	that	implements	all	the	methods	of	the	Fooable	

interface	can	behave	like	a	Fooable	thing.	
• An	interface	is	a	type.	
	
Creating	an	Interface	
	
We	create	an	interface	in	similar	fashion	to	creating	a	new	class	or	enumeration	(explored	in	the	next	
section):	we	create	a	separate	file	with	the	same	name	as	the	interface	and	place	the	definition	inside.	
	
 public interface Zippable {
 public abstract boolean isClosedZ();
 public abstract void openZ();
 public abstract void closeZ();

 }

• A	quick	note	on	naming	interfaces:	because	the	purpose	of	an	interface	is	to	be	able	to	interact	
with	it	in	some	fashion	(by	calling	certain	methods),	the	names	might	tend	to	be	Somethingable:	
Sellable,	Serializable,	Comparable,	and	so	on.		It's	just	a	convention,	but	it	does	help	emphasize	
that	we	can	interact	with	the	objects	of	this	class	in	another	way.

• Every	single	method	in	the	interface	must	be	abstract,	so	you	can	actually	safely	omit	the	
abstract keyword	here.		But	the	abstract	keyword	is	still	required	for	abstract	methods	in	
classes,	so	you	can	simplify	your	life	and	always	write	abstract	if	you'd	like.	
	
Your	Turn!

• Create	an	interface	named	Listenable.		Give	it	abstract	methods	for	listen()	and	ignore().		
Choose	what	parameters	or	return	types	you	feel	are	appropriate.

• What	various	classes	could	be	Listenable?	Try	to	come	up	with	at	least	two	examples.	

Implementing	an	Interface	
	
Now	that	we	have	an	existing	interface,	we	can	cause	any	class	to	implement	it	by	adding	implements
Zippable to	the	declaration,	and	then	by	overriding	(implementing)	every	single	method	that	was	listed	
in	the	interface.	
	
For	our	Zippable	example,	this	means	we	must	implement	isClosedZ,	openZ,	and	closeZ.	

public class Mouth implements Zippable {

 // the class has its own fields
 public boolean lipsOpen;

 // the class has its own constructors, other methods, etc.
 public Mouth (…) {…}
 public void eat(Food f) {…}

 // the class implements all methods of the Zippable interface:
 public boolean isOpenZ() { return lipsOpen; }
 public void openZ () { lipsOpen = true; }
 public void closeZ () { lipsOpen = false; }
}

public class Purse implements Zippable {

 //the usual parts of a class definition: fields, methods, etc.
 public Zipper z;
 …

 //now, we implement all methods from Zippable:
 public boolean isOpenZ() { return z.isOpen(); }
 public void openZ () { z.open(); }
 public void closeZ () { z.close(); }
}

	 Your	Turn!	
• implement	your	Listenable	interface	with	both	of	your	example	classes.		(Perhaps	

SignificantOther,	Record,	Ocean,	or	Phone?	Friend, Roman, Countryman?)	

Using	An	Interface	Implementation	
	
Now	that	classes	Mouth	and	Purse	have	implemented	Zippable,	we	can	now	use	the	Zippable	behavior	
whenever	we	have	a	Mouth	object	or	a	Purse	object.		Remember	that	we	stated	an	interface	is	a	type.		This	
means	we	can	use	the	interface	wherever	a	type	was	required,	such	as	at	declaration	time	for	a	variable	
or	parameter.	
	

Mouth m = new Mouth();
Purse p = new Purse();

m.closeZ();
p.openZ();

if (m.isOpenZ()) {
 System.out.println("my lips are not sealed! :-O");
 m.eat(new Food("potato chip")); // pretend the Food class exists...
}

// We can create a Zippable variable.
Zippable z = m;
z.openZ();

z = p;
z.closeZ();

We	can	also	use	the	interface	as	a	type	for	parameters	to	methods:	

public void closeIfNeeded(Zippable z) {
 if (z.isOpenZ()) {
 z.closeZ();
 }
}

	
• Although	there	is	no	Zippable	class,	and	thus	no	instances	(objects)	exactly	of	type	Zippable	and	

no	Zippable	constructor,	we	can	create	objects	of	classes	that	do	implement	Zippable,	and	use	
references	to	these	objects	as	the	Zippable	actual	parameters.	

• By	choosing	the	Zippable	type	for	the	parameter,	all	we	can	do	with	it	is	call	the	methods	of	the	
Zippable	interface	on	the	object.	We	have	no	idea	what	else	might	be	available	other	than	those	
methods	found	in	the	interface.	

Mouth m = new Mouth();
closeIfNeeded(m);

Purse p = new Purse();
closeIfNeeded(p);

	 	

	 Your	Turn!	
• Create	objects	of	the	classes	that	implemented	Listenable.	Store	them	in	variables	of	their	own	

class	types.	
• Call	the	Listenable	methods	on	these	objects.	
• Create	a	variable	of	type	Listenable;	store	your	various	objects	that	are	Listenable	into	it.	
• Call	the	Listenable	methods	on	your	Listenable	variable.	This	is	all	you	can	do	with	the	

Listenable	variable.	
• Create	a	method	named	performCustomerSupport	that	accepts	a	Listenable	thing,	and	always	

ignores	it.	
• Create	an	array	of	Listenable	objects.		Use	a	for-each	loop	to	listen	to	each	thing	in	your	array.	

	
	
Implementing	multiple	Interfaces	
	
A	class	can	implement	multiple	interfaces:	we	just	add	the	interface	names	in	a	comma-separated	list	
after	the	implements	keyword,	and	then	provide	all	the	methods	of	each	interface	that	is	being	
implemented.	
	

public class Foo implements A,B,C {
 //Foo stuff
 // A methods here
 // B methods here
 // C methods here
}

	
	
Example	Java	Interfaces	
	
Java	uses	interfaces	in	a	couple	of	interesting	ways.		Two	interfaces	we	will	consider	are	Comparable	and	
Iterator.	
	
Comparable is	used	to	order	values.		Think	of	it	as	a	way	of	answering	the	question	"which	one	is	
greater?"	by	encoding	the	answer	as	a	number.		Comparable	has	one	method:	

	
public interface Comparable {
 public int compareTo (Object other);
}

	
If	an	invocation	(such	as	a.compareTo(b))	returns	a	negative	number,	it	implies	a	"less	than"	
relationship	(a<b);	if	the	number	is	positive,	it	indicates	a	"greater	than"	relationship	(a>b).		And	if	the	
result	is	zero,	then	it	implies	"equal"	(a=b).	
	
It	is	up	to	the	class	designer	to	decide	what	constitutes	"greater	than",	and	then	implement	the	compareTo	
method	accordingly.		We	might	decide	that	our	Square	class	will	implement	Comparable	by	comparing	
the	sizes:	
	

public class Square implements Comparable {

 public int side;

 public Square (int side) {
 this.side = side;
 }

// implement all (1) Comparable methods.
public int compareTo(Object so) { // parameter needs to be Object.
 Square s = (Square) so; // we cast it to our desired type.
 if (side<s.side) { return -1; }
 if (side>s.side) { return 1; }
 else return 0;
}

	
Your	Turn!	
	

• Implement	Comparable	in	any	class.	Consider	the	different	ways	you	might	want	to	define	the	
relation:	for	Cars,	is	the	mpg	all	that	matters?	The	top	speed?	The	maximum	passengers?	It's	often	
obvious	what	the	relation	should	be,	but	in	practice	whatever	is	the	most	meaningful	for	the	
program	(and	any	future	programs	using	this	class)	is	what	should	dictate	the	decision.	

	
The	Iterator	interface	provides	three	methods:	
	
public boolean hasNext(); // does this collection of values have any more values?
public Object next(); // assuming there's another value, get the next one.
public void remove(); // remove the item that the previous next() call returned.
	
If	we	were	to	create	any	type	of	structure	where	we	wanted	to	allow	some	internal	values	to	be	regularly	
accessed,	we	could	just	implement	the	Iterator	interface,	and	then	the	for-each	loop	syntax	would	be	
readily	available!		We	will	learn	how	to	make	some	basic	data	structures	later	on,	and	so	we	might	have	a	
chance	to	implement	Iterator	before	the	course	ends	on	a	realistic	data	structure.	
	
	 Your	Turn!	

• Create	a	class	named	SizeTen	that	has	a	field	of	type	int[]	which	always	has	ten	values	in	it	
(enforce	this	in	your	constructor).			

• Make	this	class	implement	Iterator.		You	can	actually	ignore	the	remove()	method	when	removal	
doesn't	make	sense,	so	just	implement	hasNext()	and	next().	

• Test	out	your	SizeTen	class	by	writing	a	for-each	loop:	
	
 for (int i : mySizeTen) {
 …use i…

 }

	

	

