
Chapter 11
Command-Line Arguments

Command Line Arguments
We now turn our attention to an alternate means of gaining input to our program. Whenever we run a
program:

 demo$ java MyProgram

We actually have the chance to pass as many String values in as we want:

 demo$ java MyProgram str1 str2 str3 …

We receive these strings through the String[] args parameter of the main method:

public class TestCLArgs {

 public static void main (String[] args) {

 System.out.println("Received command line args: ");

 for(String arg : args) {

 System.out.println(arg);

 }

 }

}

Copy the above code into a new file, and then try running it at the terminal:

 demo $ javac TestCLArgs.java

 demo $ java TestCLArgs hello world 1 2 3

The strings are separated by spaces. If you want a space character as part of a string, just surround the
entire string value in quotes (single or double will work here):

 demo $ java TestCLArgs "light blue" red 'hot pink' "1 2 3"

No matter what you type after java TestCLArgs, you will get them as String values. If you want to
read in numbers, you must convert from a String to the appropriate numeric type:

public class TestCLArgs {

 public static void main (String[] args) {

 // if there aren't exactly three args, print an error message and quit.

 if (args.length !=3) {

 System.err.println("usage: java TestCLArgs # # #");

 System.exit(1);

 }

 int a = Integer.parseInt(args[0]);

 short b = Short.parseShort(args[1]);

 double c =Double.parseDouble(args[2]);

 boolean result = (double)a/b == c;

 System.out.println("a="+a+"\nb="+b+"\nc="+d+"\nresult="+result);

 }

}

We see that we can convert from String to any other basic type through the wrapper classes' parseX
methods.

Digression #1
We see that we can print to the error-reporting stream (System.err) as easily as we print to standard
output (System.out). Although this output is usually just shown on the terminal window intermingled
with System.out's output, they are two separate streams of characters that can be dealt with
separately. Any message that relates to program malfunction ought to be sent to System.err, while
expected behaviors should result in output to System.out. Even "whoops, try again!" should be sent to
System.out: we expect users to see this message and then type better input next time; that is a normal
behavior of the program.

Digression #2
We also see how to immediately exit a program: System.exit(someIntValue). An exit value of zero

represents normal termination (success); any other int value indicates abnormal quitting, and the
chosen number should mean something to the programmer to indicate what sort of abnormal reason for
quitting occurred.

Your Turn!

 Write a program that accepts an arbitrary number of integers on the command line, and then
prints their sum and average.

 Write a program that accepts exactly 5 String arguments (or else it quits with an error

message), and then checks against a secret password String that is only written in the source
file. Either print "You said the password, among other things!", or "you didn't
say the password."

 Questions:
o What are some key differences between using command line arguments versus the

keyboard? Versus reading from a file?
o When is each a better choice?
o Does using the command-line redirection operator (<) still work with command-line

arguments, or not? What is an example where you would even want to use both? Construct
a sample call using both, or describe how you would work around not being able to use
both, based on what you find out. (recall that on the command line, we can direct the
contents of a file to be used as the "keyboard input" that System.in reads. This is done such
as java MyProg < readFromHere.txt).

 Larger Example: Create an enumeration with three values: sparse, normal, verbose. Allow a flag
to be passed in through a command-line argument that is either –s, -n, or –v to represent each
value. Write a program that now gives sparse, normal, or verbose messages each printing time.
You could even have a method that is always given three messages, and prints the correct one
based on the current verbosity.
→ with different ways to represent it, many programs allow for "verbose output." Though this is
perhaps not a common way to implement it, the same idea of varied levels of printed chatter
definitely shows up in many command-line-based programs.

	Chapter 11 Command-Line Arguments
	Command Line Arguments
	Digression #1
	Digression #2
	Your Turn!

