
Chapter 13
JavaDoc

Hello!

JavaDoc is a tool that helps us generate documentation for our code; specially formatted comments allow
the javadoc tool to automatically generate good API documentation directly from the source files.

JavaDoc: Automated API Documentation Generation
Have you noticed how detailed and organized the API documentation is for the standard Java libraries? If
you google any Java class, you see a nice web page with descriptions of the inheritance involved, all
known fields/constructors/methods, and nice detailed descriptions of what each method does, down to
the purpose of each parameter, links to other classes of interest, and maybe some good examples or
discussion text. It probably took quite a bit of time for someone to make all those webpages, huh?

Wait a minute, though – Java was implemented by programmers. Programmers love writing programs to
do menial tasks for them. Poke around a bit more, and you'll find that many other large-scale projects
written in Java have quite similar-looking documentation, other than perhaps a more visually pleasing
cosmetic touch. How did everybody get this cool documentation, and can we get in on it??

They used Javadoc, and we can most definitely get in on it! It turns out that we can write comments in a
very specific style, and then a tool (available on the command line as javadoc) can scrape all of our
source files and generate the entire batch of html files, with many different flags and options available to
direct what we actually want included in our API webpages.

Javadoc comments are still just regular Java multi-line comments, but they will tend to look like this:

/**

 * Some short summary description goes here.

 *

 * @someAttribute identifier more info about this one.

 * @someAttribute identifier more info about this next one…

 */

Where can we add these Javadoc comments? Pretty much anywhere. We mostly want to add them at:
- the package level
- the class level
- the member level (both fields and methods)

After we've written some marvelous package in Java, and perhaps also added wonderfully descriptive
javadoc comments all over the place, we can then invoke the javadoc tool to generate all our API
documentation. Perhaps it would look like this example:

 javadoc -d /Users/me/htmlDir -subpackages Foo

It requests all generated files to be placed at /Users/me/htmlDir, and is asking for all packages starting
with Foo (and all contained subpackages) to be included in the documentation. There are many more
options; this is a rather sparse usage to introduce the barest of basics.

Setup: Find and download javadocExample.zip.(here: http://muddsnyder.com/211/javadocExample.zip). Open

up all the .java files in it, and inspect them. Nice little package structure, doing a little math on the side.
It's a bit of a silly example, but it's got all the pieces we need to try making javadoc documentation with
it. You might want to draw out the package hierarchy as well as the classes hierarchy to get a feel for
what this example contains.

 Basic javadoc Generation

Javadoc will be generating documentation based on the structure of our code. We will first learn how to
invoke the javadoc command, and then we will also learn how to write javadoc-style comments, so that
the generated output has much more textual, descriptive information included in it.

Invoking javadoc: a few scenarios.
We will be asking the javadoc command to generate a significant number of files for us to implement all
the HTML documents for us, so let's make a folder for them (which the lab will assume is named
htmldir). You might just put it adjacent to the package folder for now.

Image description: File directory found in the javadoc example zip file.

Assuming you have that directory structure, open up the terminal and navigate into the example folder.
We will start off with almost the simplest invocation of javadoc:

 javadoc -d htmldir mynums

This (-d htmldir) instructs javadoc to place all generated files in the directory htmldir; and then
we requested that just the mynums package is documented. If we look inside the htmldir folder, we
now see many generated files!

http://muddsnyder.com/211/javadocExample.zip

 Word of warning: cut-pasting from
this document might use weird
characters, like a – instead of a -. Re-
typing them is a good idea. Always
double check that there are zero errors or
warnings after regenerating
the documentation whenever you invoke
javadoc!

Image description: Contents of the
htmldir directory.

Explore what we generated; variations
on a theme
Under that htmldir, open
index.html; this is the only file in there
that we are interested in opening (the rest get used by this). You should see the familiar API layout as the
regular Java class documentation, such as what you'd find as the top hits by googling "Java Scanner", "Java
InputMismatchException", and so on.

We had a second package, though: mynums.other was also a (sub)package. Let's get that generated,
too:

 javadoc -d htmldir mynums mynums.other

This would get a bit tedious if we had many extra subpackages: we can also request all nested
subpackages be included via the -subpackages option:

 javadoc -d htmldir –subpackages mynums

Better! And if we have any extra java files we wanted to include (perhaps ones that are implicitly in the
default package), you can just list them at the end:

 javadoc -d htmldir –subpackages mynums Other.java

When you used the default package only, you might use this command (useful on some of our earlier
projects, most likely):

 javadoc -d htmldir *.java

Visibility-Level Inclusions
But now, take a closer look at the MyRational class's documentation. Where is our denominator? It
was the default package-level visibility, but we don't see it here. It turns out that we can set a threshold of
what level of visibility things to document:

Flag What levels of visibility are documented?
(everything up to the listed visibility)

-public public

-protected public, protected

-package public, protected, package

-private public, protected, package, private

-protected is the default option. Let's use -private to make everything visible (as backwards as that
sounds: "-private, so show everything!" Think of it as, "show everything as sensitive as [private]".):

 javadoc -d htmldir -private -subpackages mynums

Okay, now we re-visit the HTML document (just reload index.html), and see that MyRational now has
its (package private) int denominator documented. Similarly, we can see private int
imag in the MyComplex class. We actually have one of each level visibility in these packages (on
purpose just for this section of the lab):

 visibility: package.Class: member

 public: mynums.MyInt → public String garbage

 protected: mynums.MyInt → protected int val

 package: mynums.other.MyRational → int denominator

 private: mynums.MyComplex → private int imag

There are of course many more options we can use to change the generated documentation. But this is
enough to get you started with the javadoc tool. We next need to learn how to add comments in a style
that javadoc expects, so that it reads more like actual documentation (human-written, with sentences and
links and things) instead of just exposing the structure of the code. In short, we want it to say not just
what our code is, but also why it is doing things.

Adding Javadoc-style Comments

Even though javadoc can do a lot of useful work without any javadoc comments, the generated
documentation is far richer when we embed descriptions throughout our code. These javadoc comments
look like regular multi-line comments, and just so happen to have a double-star at the beginning:

/**

 * This is a javadoc comment. It basically always has a short

 * summary/description on the first few lines.

 */

The stars on the interior lines are not necessary any more. Just like your experience writing code so far,
even though comment-writing isn't exactly the most mentally stimulating part of the coding process, it

still takes a significant amount of time. Your main interaction with Javadoc will be writing javadoc-style
comments, and not the command-line documentation generation step that we just learned. But it helps to
know why we're writing all of these specially formatted comments.

There are a number of places we will put these comments:

 members of classes (both fields and methods)
 class definitions themselves
 packages (in a special file named package-info.java, just inside the package folder).

Method Comments
Place the following comment in the MyInt class, immediately preceding the addIn(MyInt other) method.

 /**

 * addIn accepts another MyInt object, whose value is

 * absorbed into this one.

 *

 * @param other the other number to get some value from.

 */

Note the empty line between the short description and the @param line; it needs to be there.

Regenerate the documentation, and inspect your Method Summary section for the MyInt class. The
description was directly pulled into the documentation. Click through to the detailed method description,
and you'll also see the Parameters section listing out our single parameter.

Let's inspect the @return tag next.

 /**

 * returns the value contained in this MyInt.

 *

 * @return the current value in the instance variable val.

 */

Regenerate the documentation, and view this method's output as well. There are plenty of other @tags
that we can use; we are only going to try out a few in this tutorial. You can get much more exhaustive
coverage from Oracle here:

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html#javadoctags

Annotation Identifier Text
@param identifierName very short description of its purpose
@return [none] short description of what is returned
@throws className short description of when/why it would

be thrown
@exception className actually just a synonym for the @throws

tag
@see relevantPlace many allowed formats: for classes,

members, strings, HTML, etc.
@author name
@version someText

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html#javadoctags

We can of course have multiple @param lines, multiple @see lines, and multiple @throws (or
@exception) lines. But there will be only zero or one line for any of @author, @version, @return (not
used with void). It's even possible to create your own tags, a feature we won't explore here.

Your Turn!

You've been making a lot of modifications all along anyways, but now let's try some of these (and then
regenerate the documentation each time to check our work):
 add a javadoc comment to the addedTo method of MyInt.

 add a javadoc comment to the constructor for any of our three classes (MyInt, MyComplex,

MyRational).

 add a method public double slope() to the MyRational class; write a javadoc

comment, and try out the @throws tag. This method returns val/denominator, so can you
guess what exception might be thrown?

Field Comments
Class fields can also have javadoc comments. There aren't as many tags that we tend to use; in fact, we
might not use any, opting just for a short description. (See the above link and scroll down a bit to see all
the ones that are allowed for fields at all).

Change the plain old comment near the garbage field in MyInt to a javadoc comment:

 /** this is just here so we have something public...

 * Basically a wall for people to write graffiti.

 */

We tend to just give a description for these. We might choose to include a few @see tags too.

Your Turn!

 add javadoc tags to the various fields in our three classes; regenerate the documentation and
view them.

Class Comments
We can provide javadoc comments for an entire class. Try adding this to the MyInt class, directly above
the public class MyInt line.

 /**

 * the MyInt class is just a thin wrapper around an int,

 * plus some unnecessary extra functionality. It's really

 * just here for our javadoc tutorial.

 *

 * @since about two minutes ago, mynums v0.1

 * @author Yours Truly

 */

Regenerate the documentation, and find where this shows up. So far so good, except that our author tag
wasn't used! We can request it by adding –author to our javadoc invocation:

 javadoc -d htmldir -private -author -subpackages mynums

We might just have the description here, similar to fields. If anything, the @since and @author tags are
likely to be used here. (Note: we can't split up –d and its directory, or –subpackages and its package; go
ahead and put –author just after javadoc, or some other place where it doesn't disrupt these "pairs" of
command-line arguments).

Your Turn!

 Document the other classes.
 Document the interface. It works just like the classes.

Package Comments
There is one last place we are interested in adding javadoc comments: comments for an entire package.
But we have one hurdle to overcome: there's no specific file that represents the entire package! Each
class or enumeration or interface has its own file, but our packages are just a manifestation of the folder
that contains various things that include package statements matching the name of the package in mind.

To solve this issue, we will add an almost-empty file, directly in the package folder. It must always be
named package-info.java, and it needs to have a single package statement in it (identical to the
package statements found in all other classes and whatnot that are also in this package).

Your Turn!
Add the following text to the file package-info.java, directly in the mynums folder.

 /**

 * The mynums pacakage is just a silly package example

 * that we are using to learn about javadoc documentation.

 */

 package mynums;

 //nothing else needs to be in this file.

Regenerate the documentation, and you'll immediately see the documented mynums package.

Your Turn!

 Document the mynums.other package in the same fashion.
 Try using javadoc on your most recent project, and also on any packages examples from class.

Going Further
There is plenty more that can be done with javadoc. At this point, it's probably best to just learn about
features as you need them in your own uses of javadoc, perhaps on the job some day in the near future!

Description of the various @tags
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html#javadoctags

Much more info:
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html#javadoctags
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

Options for the javadoc command:
http://www.java2s.com/Tutorial/Java/0020__Language/ThejavadocTool.htm
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html#runningjavadoc

Doclets can be written to generate other outputs such as pdfs, personalized/better(?) HTML, etc.
http://docs.oracle.com/javase/1.4.2/docs/tooldocs/javadoc/overview.html

http://www.java2s.com/Tutorial/Java/0020__Language/ThejavadocTool.htm
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html#runningjavadoc
http://docs.oracle.com/javase/1.4.2/docs/tooldocs/javadoc/overview.html

	Chapter 13 JavaDoc
	Hello!
	JavaDoc: Automated API Documentation Generation
	Basic javadoc Generation
	Invoking javadoc: a few scenarios.
	Explore what we generated; variations on a theme
	Visibility-Level Inclusions

	Adding Javadoc-style Comments
	Method Comments Place the following comment in the MyInt class, immediately preceding the addIn(MyInt other) method.
	Your Turn!

	Field Comments
	Your Turn!

	Class Comments
	Your Turn!

	Package Comments
	Your Turn!
	Your Turn!

	Going Further

