
Appendix	1	
Regular	Expressions	

	
	
	
Regular	Expressions	
	
We	will	step	through	our	own	tutorial,	but	if	you'd	like	a	more	thorough	introduction,	you	can	follow	
through	this	link:	
	
	
	 http://docs.oracle.com/javase/tutorial/essential/regex/			
	
	
and	test	out	things	as	they	are	introduced	there	instead	of	this	portion	of	our	lab	dedicated	to	regular	
expressions.	
	
	
	
	
Regular	expressions	are	an	extremely	powerful	mechanism	for	more	nuanced	searching	through	strings	
than	a	simple	search	for	specific	substrings.		A	regular	expression	defines	a	pattern	that	we	can	search	for	
within	a	given	string.		We	might	ask	whether	a	particular	string	entirely	and	exactly	matches	a	pattern,	or	
we	might	instead	ask	whether	a	pattern	can	be	found	to	match	some	portion	(substring)	of	the	string.		We	
might	also	use	a	regular	expression	to	extract	substrings	from	a	string,	or	to	replace	portions	of	a	string	
with	some	replacement,	whenever	the	pattern	matches	in	that	string.		In	short,	whenever	we	find	
ourselves	wanting	to	perform	string	manipulations,	chances	are	that	regular	expressions	are	available	as	
a	way	to	express	what	we	want	to	occur.	
	
Regular	expressions	show	up	all	over	the	place	in	programming	and	computer	science	–	not	just	in	Java.	
One	common	use	of	regular	expressions	is	to	search	for	a	file	on	your	computer	(e.g.,	using	the	egrep	
UNIX	command).	
	
A	regular	expression	is	simply	a	way	to	represent	structure	within	a	string	of	symbols—for	instance,	
identifying	what	makes	a	valid	phone	number,	identifying	if	a	particular	word	is	included,	et	cetera.	
	
A	regular	expression	defines	a	set	of	strings.		That	set	of	strings	is	all	the	strings	that	comply	with	the	
regular	expression;	all	strings	which	do	not	comply	are	not	in	the	set.	
	
We	can	match	things	directly	by	simply	having	them	there.		The	regular	expression	Cat	defines	a	set	of	
strings	with	exactly	one	element,	the	string	"Cat"	(notice	the	sensitivity	to	case—it	does	not	match	"cat").		
If	we	want	to	match	other	characteristics,	we	start	developing	a	set	of	symbols	that	imply	things	like	"at	
least	this	many	of	those",	"any	one	of	these",	"anything	not	of	this	group",	and	so	on.		Let’s	define	some	of	
those	now.	
	
This	does	not	cover	all	of	regular	expressions	in	Java	–	it	is	just	an	introduction.	

	
pattern/symbol	 meaning	

any	non-special	char	 matches	itself	
.	 matches	any	single	char	(except	newline	in	some	circumstances)	
*	 repetition:	matches	zero	or	more	of	the	preceding	thing	
+	 repetition:	matches	one	or	more	of	the	preceding	thing	
?	 repetition:	matches	zero	or	one	of	the	preceding	thing	
{7}	 repetition:	matches	exactly	7	of	the	preceding	thing		
{3,6}	 repetition:	matches	from	3	to	6	(inclusive)	of	the	preceding	thing	
{7,}	 repetition:	matches	7	or	more	of	the	preceding	thing	

(pattern)	 parentheses	group	a	pattern.	
pattern1	|	pattern2	 selection:	matches	either	pattern1	or	pattern2	

[aeiou]	 character	class:	matches	any	single	character	listed	in	[]'s	
[a-z]	 matches	any	single	character	in	ASCII	range	a	to	z.	
[^stuff]	 matches	any	single	char	not	in	stuff	

[main[nested]]	 matches	any	single	char	in	the	main	or	nested	character	class	
[main&&[nested]]	 matches	any	single	char	that	is	in	both	main	and	nested	

^	 anchor:	'matches'	beginning	of	input	
$	 anchor:	'matches'	end	of	input	

\b			\B	 matches	a	word	boundary	(\B	matches	a	non-word	boundary)	
\d			\w			\s	 matches	a	single	char	of	a:	digit,	word,	whitespace.		
\D		\W			\S	 matches	a	single	char	that	is	NOT	a	digit,	word,	whitespace.	

	
For	testing	cases,	repeatedly	modify	the	value	of	regex	in	the	following	code:	
	 	 	 	
public class TestLabRegex {
 // basic matching example
 public static void main1 (String[] args) {
 Scanner sc = new Scanner(System.in);
 String str = "";
 String regex = "k.t+y";
 System.out.println("\nPattern: "+regex+"\n");
 while (!str.equals("quit")) {
 System.out.println("next input please: ");
 str = sc.nextLine();

 System.out.println("\n\nstring: \""+str+"\"\nPattern: "
 +regex+"\nmatches: "+str.matches(regex)+"\n");
 }
 }
}
	
Your	Turn!	
• For	each	of	the	following	regular	expressions,	think	of	some	Strings	that	do	match	it,	and	Strings	that	

do	not	match	it.	Test	it	with	the	code	that	calls	the	matches	method	on	a	String.	
o (way-)+back	machine	
o x?y+z*	
o (a|b)*	
o (something|)	to	do	
o abc+	
o (abc)+	
o (do|re|mi|fa|sol|la|ti|do)+	

When	designing	your	own	regular	expression,	you	should	always	ask	yourself	two	questions:	(1)	Does	it	
accept	enough	Strings?	(2)	Does	it	accept	too	many	Strings?	
	
Your	Turn!	
• Create	regular	expressions	that	exactly	match	the	set	of	Strings	described	in	each	example.	

o any	number	of	letters,	followed	by	seventy	exclamation	points	
o one	of	the	Pac-Man	ghosts:	inky,	binky,	pinky,	and	clyde	(try	to	be	concise)	
o zero	to	twenty	a's,	followed	by	an	h.	
o write	a	regular	expression	that	matches	one	of	the	following	smileys:					:)					:(:?)				8-P	
o valid	Java	identifiers	
o a	valid	Java	int	representation	(just	allow	base	10	representations,	so	no	leading	0's)	
o any	valid	int[]	initializer,	such	as	{1,4,2,5}	or	{100,101,-4}	

	
	
Let's	review	some	of	 those	with	more	descriptive	examples.	 	We	will	underline	a	regular	expression	to	
help	mark	the	boundaries	without	resorting	to	the	specific	String	representations,	which	have	a	couple	of	
twists	related	to	escape	characters.	
	
• Character	Class:	To	say	that	we	want	any	of	a	batch	of	characters,	but	just	one	of	them,	we	surround	

all	 of	 them	with	 square	 brackets	 []	 ,	with	 no	 space	 in	 between.	 	 The	 regular	 expression	[aeiou]t	
matches	"at",	"et",	"it",	"ot",	and	"ut".		We	always	choose	exactly	one	of	the	options	in	the	brackets:	not	
zero,	not	many.	

• To	say	that	we	want	to	match	any	character	except	what’s	listed	in	a	character	class,	we	use	the	^	sign	
at	 the	 front	 of	 them	 all.	 	 The	 regular	 expression	 [^aeiou]t matches	 all	 consonant-followed-by-t	
strings:	"bt",	"ct",	"dt",	"ft";	but	it	also	matches	non-characters;	"5t",	"(t",	and	more	would	also	match.	

• Since	 typing	 things	 like	[456][456][456]	 can	get	 tedious,	we	can	specify	how	many	of	a	particular	
pattern	we	want,	 by	 following	 the	brackets	with	 curly	braces	 indicating	how	many.	 	 That	 could	be	
reduced	to	[456]{3},	indicating	we	want	exactly	three	digits	(all	either	a	4,	5,	or	6).		If	we	want	at	least	
n	repetitions	but	no	more	than	m	repetitions,	we	represent	this	as	in	[456]{n,m}.		A	specific	example	
would	be	[456]{1,3},	which	matches	either	a	one,	two,	or	three	digit	number	(each	digit	being	a	4,	5,	
or	6).		Thus,	the	regular	expression	[45]{1,2}	matches	"4",	"5",	"44",	"45",	"54",	and	"55".		If	we	have	a	
minimum	bound	but	no	upper	bound,	we	can	leave	that	part	out—[45]{1,}	matches	numbers	with	at	
least	one	digit,	of	only	4’s	and	5’s.		If	we	wanted	up	to	some	number	of	matches,	we	use	a	zero	for	the	
lower	bound:	e.g.,	[456]{0,4}.	

• We	can	match	ranges	of	values	by	a	dash;	[0-9]	matches	any	single	digit;	[a-z] matches	any	single	
lowercase	 letter;	[A-Za-z]	matches	any	letter	regardless	of	case,	and	so	on.	 	Notice	this	only	works	
inside	 brackets:	 0-9	 matches	 the	 string	 "0-9".	 Also,	 [1-10]	 matches	 "1"	 or	 "0",	 it	 does	 not	 match	
"1","2","3",…,"8","9","10".	

• If	we	want	to	allow	a	pattern	to	repeat	any	amount	of	times,	we	place	an	asterisk	after	it:		a*t	matches	
"t",	"at",	"aat",	"aaat",	etc.		This	represents	zero	or	more	a’s	followed	by	exactly	one	t.		A	close	cousin	to	
the	star	is	the	plus	symbol	+,	used	to	represent	one	or	more	repetitions	of	the	pattern.		a+t	matches	
"at",	"aat",	etc.,	but	does	not	match	"t".	

• To	choose	between	one	sub-pattern	and	another,	we	use	the	vertical	bar	|	to	represent	union	of	the	
sets	created	by	each	of	them.		So	(a|parthe)non	matches	"anon"	and	"parthenon".	

• If	 we	 want	 a	 range	 of	 values	 minus	 a	 few	 particular	 values,	 we	 can	 use	 &&	 to	 intersect	 the	 two	
expressions:		[a-z&&[^abc]]	is	all	lowercase	letters	except	a,	b,	c.	Be	sure	that	you	use	the	inner	[]'s!	
If	^	doesn't	appear	as	the	very	first	character	of	a	character	class,	it	is	not	a	special	character	and	just	
matches	itself.	

• When	we	want	to	group	parts	of	a	pattern	together,	we	can	use	parentheses	to	separate	them.	 	For	
instance,	 if	 we	 want	 to	 match	 as	 many	 repetitions	 of	 the	 prefix	 "sub"	 at	 the	 front	 of	 the	 word	

"saharan",	we	could	use	parentheses	as	follows:	 	 	 	(sub)*saharan	matches	"saharan",	"subsaharan",	
subsubsaharan",	etc.	

• We	can	match	any	 character	at	all	with	a	period	(.),	except	a	newline	character	(\n).	 	So	 .t	matches	
"at",	"bt",	…,	"At",	…,	"1t",	…,	"$t",	"_t",	…	.		Oftentimes	we	mean	a	more	restricted	set	like	[a-zA-Z].		

• Spaces	 are	 matched	 by	 leaving	 in	 the	 space	 directly;	 spaces	 matter	 in	 a	 pattern.	
a lot	does	not	match	"alot";	it	only	matches	"a	lot".	

	
	
Your	Turn!	
• write	a	character	class	that	matches	a	single	one	of	the	following	letters:	ceiknop	(pick	one)…	
• write	a	character	class	that	matches	a	single	upper-case	non-vowel	in	the	second	half	of	the	alphabet.	
• write	a	character	class	that	matches	any	single	digit	character(this	is	just	\d	being	defined	manually).	
• write	a	regular	expression	using	a	character	class	to	represent	a	phone	number	in	the	format	of	555-

555-5555.		
o bonus:	disallow	any	String	that	starts	with	911.	

• write	a	regular	expression	for	 length-3	Strings	that	don't	match	your	initials	 in	any	position.	(if	you	
have	more	or	fewer	initials,	adapt	it	to	yourself	of	course!)	

	
	
Escaping	Special	Characters	
What	 if	we	wanted	 to	match	a	 square	bracket,	or	a	parenthesis,	or	a	period?	 	All	 characters	which	get	
‘used	up’	by	controlling	how	we	match	characters	can	still	be	included,	by	placing	a	back-slash	in	front	of	
them	to	indicate	that	we	want	the	actual	character,	and	not	the	function	it	usually	provides	in	a	regular	
expression.		So	\[[0-9]\]	matches	[0],	[1],	[2],	…	[9].		This	also	works	for	others:	*\+\.\,	matches	the	
string	"*+.,".		This	can	be	done	with	all	the	special	characters.	
	
	
	
Representing	Regular	Expressions	in	Java	
	
One	 last	 thing	 to	note,	which	 can	 really	 throw	a	wrench	 in	 the	gears:	 	 Java	 itself	 needs	backslashes	 to	
represent	a	quote	sign;	so	Strings	are	already	using	the	backslash	and	the	quote	sign	".		In	order	to	keep	
the	two	separate,	it	gets	a	little	messy:		to	represent	the	regular	expression	"[\d]"	as	a	String	(notice	the	
pattern	is	matching	some	quote	characters),	it	is	written:	
	
	 String str = "\"[\\d]\"";

	
What	 happened?!	We	 had	 to	 place	 a	 backslash	 in	 front	 of	 the	 first	 quote	 of	 the	 regular	 expression	 to	
indicate	 to	 Java	 that	 it	 was	 part	 of	 the	 String	 and	 not	 the	 end	 of	 the	 String;	 we	 had	 to	 put	 an	 extra	
backslash	in	front	of	the	backslash	(which	was	itself	in	front	of	d)	to	indicate	that	it	was	not	for	Java	to	
figure	out	what	control	character	was	being	used,	but	rather	that	it	should	leave	the	slash	in	as	part	of	the	
regular	 expression;	 the	 second	 quote	 of	 the	 regular	 expression	 is	 like	 the	 first.	 	 The	 short	 version	 of	
handling	this	is	that	all	backslashes	and	quotes	get	a	backslash	added	in	front	of	them	when	we	go	from	a	
regular	expression	on	paper	to	a	regular	expression	stored	as	a	String	 in-between	the	quotes	when	we	
construct	it.	
	
How	to	deal	with	this	issue:	first,	just	write	out	your	regular	expression,	not	worrying	about	Java.	Perhaps	
in	a	comment	 if	you	want	 to	record	 it	 in	your	code.	Then,	character-for-character,	 represent	 them	 in	a	
Java	String.	Given	the	bizarre	regex	abc"**\bshe\B\\++".	we	can	represent	it	character	for	character:	
	

• a	is	just	"a";	same	for	b	and	c.	
• Then,	the	very	next	character	to	consider	is	\.	Don't	worry	that	it	is	logically	part	of	*,	because	we	

just	attack	one	character	at	a	time.	\	becomes	"\\"	when	we	put	it	in	a	String.	
• Next,	**	is	just	"**"	
• \	is	"\\"	
• bshe	is	"bshe"	
• \	is	"\\"	
• B	is	"B"	
• \	is	"\\",	again	the	second	\	is	"\\"	
• ++	becomes	"++"	
• "	becomes	"\""	
• and	lastly	.	is	just	"."	

	
Let's	put	it	all	together:	
	
	 	 abc"**\bshe\B\\++".			 →		 "abc\"**\\bshe\\B\\\\++\"."	
	
Your	Turn!	
• With	the	testing	code	above,	explore	uses	of	all	the	rest	of	the	patterns	and	symbols	shown	above.	If	

you	work	with	a	Scanner,	reading	input	from	the	user,	though,	the	notion	of	"end	of	input"	won't	be	
the	same	as	"end	of	line",	and	$	won't	behave	quite	the	way	we'd	like	for	simple	explorations.	(This	
would	require	"embedded	flags",	but	that	is	advanced	enough	that	we	won't	cover	them	in	this	
introductory	lab).	

	
We	next	want	to	get	practice	with	the	basic	pattern	matching	capabilities	that	were	added	to	the	String	
class.		We	now	have	two	new	methods,	with	the	following	signatures:	

 public boolean matches(String regex) {…}	
 public String replaceAll(String regex, String replacement){…}	
	
	
matches
We	will	learn	how	to	use	the	first	method,	matches.		First,	we	need	to	create	a	String	to	use	with	this	
method.		In	practice,	this	is	often	part	of	a	document	or	user-entered	information	–	something	to	be	
checked	for	resemblance	to	some	known	pattern.	
	
String str = "kitty";	
	
Next,	we	can	check	if	it	matches	some	regular	expression,	calling	the	matches	method	on	it	with	a	single	
parameter,	the	regular	expression:	
	
String regex = "ki[t]{2}y";
boolean b = str.matches(regex);

b	should	be	true	after	this	runs.		What	if	we	want	to	find	out	if	a	String	simply	contains	some	pattern	in	it,	
and	we	don’t	care	where	in	the	String	that	might	be?		Consider	this:

String str = "cat on a hot tin roof";
boolean b = str.matches(".*hot.*");

This	will	return	true	as	long	as	there	are	zero	or	more	characters	before	h,	o,	t,	and	then	zero	or	more	
characters.		Test	this	with	different	values	than	what	is	in	str	above.		Try	it	at	the	start	of	a	word,	at	the	
end	of	a	word,	and	with	things	in	between	the	h,	o,	and	t.	

Consider	trying	to	match	phone	numbers	with	this	pattern:

[0-9]{3}-[0-9]{3}-[0-9]{4}

Test	a	few	phone	numbers.		Suppose,	though,	that	you	were	asking	someone	to	enter	in	their	phone	
number	and	you	didn’t	want	to	be	too	strict	on	the	input	format;	let’s	assume	we	also	want	to	allow	
phone	numbers	like	(555)-334-2190,	(555)334-2190,	(555)	334	2190,	or	any	other	patterns	you	can	
think	of.		How	can	we	handle	this?		
	
We	have	the	parentheses	to	group	patterns,	and	the	vertical	bar	|	to	say	"choose	exactly	one	side	of	
what’s	on	either	side	of	me".		So	we	can	make	the	patterns,	‘or’	them	all	together,	and	get	a	very	flexible	
regular	expression	for	phone	numbers.	
	
Your	Turn!	
• Try	testing	your	program	with	two	different	kinds	of	phone	number	patterns	first,	and	then	adding	

others.	
	

replaceAll
Remember	the	signature	from	above,	which	takes	a	regular	expression	String,	a	replacement	string,	and	
returns	the	String	created	by	replacing	all	matches:	
	
 public String replaceAll(String regex, String replacement){…}

	
Suppose	we	want	to	not	just	find	out	if	something	matches,	but	we	want	to	replace	the	occurrence	with	
something	else;	perhaps	you	wrote	a	form	letter,	and	need	to	replace	all	instances	of	"John"	with	"Jack".		
Consider	the	following:	
	
String str = "Please excuse John from school yesterday. John was ill,"
 +"and so I, John’s father, made John stay home.\n\t\tJohn, Sr.";

	
We	can	get	this	letter	for	Jack	by	just	getting	the	String	returned	by	replacing	all	"John"s	with	"Jack"s:	
	
	 String jacksLetter = str.replaceAll("\\bJohn\\b", "Jack");

	
A	few	things	to	notice:	str’s	value	was	not	changed;	jacksLetter	operates	on	a	copy	of	str.		Also,	"John"	
is	a	pretty	tame	pattern	to	match—that’s	where	we	could	match	things	like	our	telephone	number	
example	from	above,	replacing	all	of	them	with	just	the	local	area	phone	numbers,	for	instance.		Why	do	
we	have	the	\b	word	boundaries	at	the	edge?		What	would	happen	if	we	left	them	out,	and	tried	to	
replace	every	occurrence	of	"a"	with	"an"?	Try	this:	
	
 String str = "Once upon a time there was a funny guy who ate"
 +" an apple with an aardvark.";
 String aanstr = str.replaceAll("a", "an");
 System.out.println(aanstr);

	
And	that’s	why	we	have	the	word	boundary	delimiter:	we	care	about	the	surrounding	environment	of	the	
"a"	matches	that	should	be	replaced;	only	the	ones	surrounded	by	word	boundaries	should	be	replaced.	
	

Your	Turn!	
• replace	every	occurrence	of	the	word	"he"	with	"she",	and	also	"him"	with	"her"	from	some	given	

input.	Be	sure	to	not	accidentally	match	portions	of	other	words	such	as	there	becoming	tshere.	
• replace	every	digit	with	an	X.	(Pretend	you're	making	a	safe	version	of	a	bank	receipt	where	you	don't	

want	to	print	the	account	number).	
	
	
Capture	Groups	
As	we	write	our	regular	expressions,	we	can	use	parentheses	to	group	things.	If	we	have	a	match,	
wouldn't	it	be	nice	to	extract	the	portions	of	our	String	that	matched	each	specific	parenthesized	group?	
We	can	do	this,	but	we	first	need	to	understand	how	to	use	the	Pattern	class	(for	"compiling"	a	String	that	
we	want	to	use	as	a	regular	expression	into	some	actual	internal	representation	of	a	regular	expression),	
and	how	to	use	the	Matcher	class	(for	using	a	Pattern	on	specific	Strings	and	seeing	if	matches	are	
possible).	
	
	
More	Efficient	Pattern	Matching	
	
Although	we	are	capable	of	writing	virtually	all	the	pattern	matching	we’ll	ever	want	with	this,	it	can	get	a	
bit	tedious,	creating	Strings,	calling	matches	on	the	regular	expression	and	the	string	again	and	again;	
also,	though	it	is	definitely	not	a	focus	in	this	class,	it	takes	significant	time	to	figure	out	what	a	regular	
expression	means	before	it	can	be	applied,	and	so	if	we	were	to	apply	the	same	pattern	numerous	times	
(say,	in	a	loop),	it	would	be	wasteful	to	re-figure	out	what	that	regular	expression	is	every	single	usage.		
So	we	can	create	something	to	handle	a	particular	regular	expression	and	keep	it	around,	just	asking	it	if	
a	String	matches	its	pattern.	
	
Enter	the	classes	Pattern	and	Matcher.		We	can	make	an	object	of	the	class	Pattern	to	store	the	
understanding	of	a	regular	expression:	
	
 // need to import java.util.regex.*;
 Pattern p = Pattern.compile(regex) ;

	
(Notice	that	we	didn't	call	the	constructor,	we	called	a	static	method	of	the	Pattern	class).	Then,	we	can	
make	an	object	of	the	class	Matcher,	which	has	an	associated	String	with	it:	
	
 Matcher m = p.matcher (str) ;

	
Then,	when	we	want	to	know	if	str	matches	regex,	we	call	the	matches	method	on	m	(notice	there’s	no	
parameter	now):	
	
 boolean b = m.matches();

	
In	the	grand	scheme	of	things	(such	as	in	a	loop),	this	would	be	prudent	as	follows:		instead	of	using	the	
matches	method	with	a	String,	
	 	
 while (…) {
 String str =…;
 boolean b = str.matches ("bar");
 …
 }

We	can	instead	pull	the	compilation	of	the	regular	expression	out	of	the	loop:
	
 Pattern p = Pattern.compile (regex);
 while (…) {
 String str = …;
 Matcher m = p.matcher(str);
 boolean b = m.matches();
 }

	
	
Even	though	it	looks	like	more	code,	it	turns	out	that	when	we	call		matches	on	a	String,	it’s	just	going	to	
create	a	Pattern,	create	a	Matcher,	and	call	the	matches	method	of	the	Matcher	object	and	then	throw	the	
two	objects	away	and	just	yield	the	result;	even	though	we	see	more	code,	there’s	still	less	work	going	on.	
	
Finally,	we	can	discuss	our	capture	groups!	If	we	have	a	Matcher	object	and	we	call	matches,	and	we	
successfully	find	a	match,	then	we	can	next	call	the	group	method	and	retrieve	any	specific	capture	group	
by	number,	starting	with	1	for	the	leftmost	open	parenthesis,	and	numbering	upwards	for	each	found	
open	parenthesis:	
	
 public String group (int groupNum) 	
	
	
Here	is	an	example:	
	

// group numbers: 1 2 3
Pattern p = Pattern.compile("(c(a|u)r)tai(n|l)");
Matcher m = p.matcher("curtail"); if (m.matches()){
 String first = m.group(1);
 String second = m.group(2);
 String third = m.group(3);
 System.out.println("saw "+second+" inside of " + first
 +", all in front of "+third+".");
}
else {
 System.out.println("no match. If called, group(#) would throw "
 +"an IllegalStateException.");
}

	
If	you	call	group(0),	you	get	the	entire	match.	You	can	also	call	group(),	an	overloaded	version	that	is	
equivalent	to	group(0).	
	
Your	Turn!	

• Match	a	phone	number	in	some	format,	but	do	so	using	the	Pattern	and	Matcher	class.	Now,	
remove	the	first	three	numbers	(the	area	code),	and	print	back	just	the	rest.	

• If	the	nth	capture	group	was	part	of	some	repetition,	only	the	last	of	the	matches	is	remembered	
(and	returned	from	the	corresponding	call	to	group(n)).	Write	a	regular	expression	that	matches	
any	number	of	"yes"	or	"no"	strings,	followed	by	"final	answer."	Print	back	what	the	final	answer	
was	(the	last	yes	or	no).	

	
	

Adventures	in	One-Liner	Land	
	
Though	we	like	to	keep	lines	of	code	"short"	for	ease	of	reading,	sometimes	fewer	lines	is	also	considered	
easy	to	read.		Whenever	we	put	in	a	String	literal,	like	"puppy",	what	actually	happens	is	that	Java	makes	
a	new	String	object	with	that	contents	and	then	uses	it	right	there.		So	we	could	match	a	literal	String	to	
a	regular	expression	in	a	really-hardwired	way,	declaring	no	variables	to	hold	the	String	or	Pattern:	
	
 boolean b = ("puppy").matches("p[aeiou][p]{2}y");

Similarly,	and	perhaps	more	likely,	if	we	were	getting	str	from	some	computation	or	method	call,	we	
could	put	that	in	the	first	set	of	parentheses:
	
 boolean b = (sc.nextLine()).matches("p[aeiou][p]{2,5}y");

	
	
	
Beyond	the	Chapter	
	
Now	you’re	a	pattern-matching	pro.	Sort	of.		But	there	is	so	much	more	than	we've	done	here!	This	was	
just	the	simplest	of	introductions.		There	are	more	complex	patterns,	strategies	for	how	greedy	or	
hesitant	a	pattern	is	to	consume	as	much	or	as	little	as	possible	when	finding	a	match,	and	many,	many	
more	pre-defined	character	classes.		See	here	
(http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html)	for	more	character	classes,	
and	see	here	(http://docs.oracle.com/javase/tutorial/essential/regex/)	for	a	much	more	in-depth	
tutorial	on	regular	expressions.	

