
Appendix	2	
Number	Representations	

	

	
There	are	many	different	ways	to	represent	whole	numbers.	While	we	are	comfortable	counting	in	
decimal	(0,1,2,3,4,5,6,7,8,9,10,11,12,…),	that	is	only	one	set	of	names	for	those	values.		There	are	other	
numeral	systems	(ways	of	representing	numbers),	such	as	Roman	numerals:	I,	II,	III,	IV,	V,	VI,	VII,	VIII,	
IX,	X,	XI,	XII,….		We	also	can	count	in	base-one,	which	are	tally-marks:	|,		||,		|||,		||||,		||||,			||||	|,			||||	||,	…		
	
The	important	idea	right	now	is	that	we	have	different	ways	to	label	the	values,	but	it	doesn't	change	the	
quantity	itself.		If	there	are	12	beans	in	a	pile	on	the	table,	it	doesn't	matter	what	I	call	it:		12,	XII,	a	dozen,	
1012,	there	are	still	that	many	beans	sitting	there.	
	
We	will	discuss	some	other	systems	for	naming	whole	numbers.		Specifically,	we	will	look	at	base	2	
(binary)	and	base	16	(hexadecimal).	For	historical	reasons,	computer	scientists	are	also	occasionally	
interested	in	base	8	(octal).	
	
Counting	Up	
	
We	first	cover	a	chart	that	shows	how	to	count	upwards	
in	various	bases.	Whatever	the	base	is,	we	cycle	through	
the	symbols	for	that	base,	and	when	we	run	out	of	
symbols	we	clock	over	into	the	next	column	(like	from	9	
to	10,	or	from	599	to	600).		
	
Each	row	gives	the	various	names	from	various	bases	
for	the	same	quantity.		So	the	base	10	number	13	is	also	
represented	as	1101	in	base	2,	as	D	in	base	16	(and	15	
in	base	8).	
	
We	will	use	this	chart	throughout	our	discussion	of	
numeral	systems.	
	
Note:	in	order	to	differentiate	between	numbers	in	
various	bases,	we	write	the	base	as	a	subscript.		Thus	
we	can	tell	that	10110,	1012,	and	10116	are	all	different	
values	(10110,	510,	25710	respectively).	If	we	leave	off	a	
base,	it	is	either	base	10,	or	it	is	obvious	(such	as	
F8=F816).	
	
	
	
	
	
	

Base	10:	 Base	2:	 Base	16:	 Base	8:	
0     0 0 0 
1     1 1 1 
2    10 2 2 
3    11 3 3 
4   100 4 4 
5   101 5 5 
6   110 6 6 
7   111 7 7 
8  1000 8 10 
9  1001 9 11 
10  1010 A 12 
11  1011 B 13 
12  1100 C 14 
13  1101 D 15 
14  1110 E 16 
15  1111 F 17 
16 10000 10 20 
17 10001 11 21 
18 10010 12 22 
19 10011 13 23 
…   … … … 



Different	Bases	
	
Let's	think	a	bit	more	carefully	about	how	we	already	represent	numbers	in	decimal;	then	we	can	use	the	
same	description	with	a	different	base	than	10.	We	usually	assume	base	10	when	we	write	numbers,	but	
we	will	often	add	subscripts	to	indicate	the	base,	such	as	24510,	24516,	2A816,		1010,	102,	1016,	etc.	
Decimal	
The	base	for	our	numbers	is	10,	and	so	we	call	decimal	base	10.		This	base	number	indicates	both	how	
many	symbols	we	have,	as	well	as	the	values	of	each	column	in	our	numbers:	
	
base	10:	ten	symbols.		 0		1		2		3		4		5		6		7		8		9	
	
base	10:	column	values:	 …						103				 102		 101		 100	
	 	 	 								=			…						1000			 100		 10		 1	
	
	
We	define	an	ordering	to	the	symbols,	e.g.	so	that	0	<	1	<	2	<	…	<	8	<	9.	To	increment	our	number	means	
to	represent	a	number	that	is	one	larger	than	previous.	Our	symbols	are	used,	odometer-style,	so	that	
after	we	increment	upwards	and	exhaust	all	the	choices	of	symbol	in	one	column,	we	can	"roll	over",	or	
"overflow":	we	add	one	to	the	next	column,	and	restart	our	numbering	in	the	current	column.	
	
	 Roll-over	examples:	
	 	 9		 	 +1→		 	 10	
	 	 29		 	 +1→		 	 30	
	 	 419		 	 +1→		 	 420	
	 	 1999	 	 +1→		 	 2000	
	
We	know	of	other	situations	where	we	have	this	overflow/roll-over	situation.	(Consider	adding	one	more	
unit	in	each	case):	
	

• after	2:59pm,	we	reach	3:00pm.	
• after	February	29th,	11:59pm,	we	reach	March	1st,	12:00am.	

o The	whole	12-is-the-start-of-the-next-day	bit	also	emphasizes	that	we	can	choose	any	
ordering	for	our	symbols,	as	well.	

• after	1	quart	3	cups,	we	reach	2	quarts	zero	cups	(because	there	are	4	cups	in	a	quart).	
• after	3	weeks	and	6	days,	we	have	4	weeks	and	zero	days.	 	
• after	using	2	dimes	and	4	pennies	for	24	cents'	change,	we	would	use	1	quarter	to	make	25	cents'	

change.	Note	that	the	'column'	values	here	are	not	all	powers	of	the	same	base:	1,	5,	10,	25.	Thus	
some	of	the	useful	properties	we	rely	on	for	other	numeral	systems	are	not	available	in	counting	
out	the	best	change.		For	instance,	we	didn't	clock	over	to	get	2	dimes	and	1	nickel,	we	combined	
those	to	get	1	quarter.		Incidentally,	if	we	had	20-cent	pieces	instead	of	quarters,	this	situation	
wouldn't	arise:	20	is	a	multiple	of	all	the	previous	pieces,	unlike	25,	so	the	best	change	would	not	
have	this	same	issue.	

	
	
Example:	When	we	see	the	number	423	(meaning	42310),	we	know	that	it	equals	400+20+3.	We	even	say	
"four	hundred	twenty-three",	because	base	10	is	so	embedded	in	our	numeral	system.		We	are	seeing	that	
each	column	in	the	number	has	a	weighting	that	is	found	via	the	base.		Each	column	is	worth	10	raised	to	
a	successively	higher	power,	starting	with	zero	exponent	at	the	rightmost	column:	
	
	



Digits	of	42310:	 …(0)	 (0)	 4	 2	 3	
Column	Values:	 …	 103	=	1000	 102	=	100	 101	=	10	 100	=	1	

value	in	each	column:	 (0)	 0	 4*100	 2*10	 3*1	
→sum:	400+20+3	=	42310	

	
	
Hexadecimal	
	
Hexadecimal	is	base	16.		Since	we	need	16	symbols,	and	we	only	have	ten	common	numeric	symbols,	we	
just	borrow	the	first	6	letters	of	the	alphabet	to	complete	our	set.	
	
base	16:	sixteen	symbols.	 0		1		2		3		4		5		6		7		8		9		A		B		C		D		E		F	
	
base	16	column	values:	 …	 163	 162	 161	 160	
	 	 	 	 …	 4096	 256	 16	 1	
	
Roll-over	is	the	exact	same	idea	as	before:	when	we	run	out	of	symbols	in	a	column,	we	start	over	in	this	
column	with	zero,	while	adding	one	to	the	column	to	the	left.	
	
	 F		 →	10	
	 3F		 →	40	
	 FFF		 →	1000	
	 7FFF		 →	8000	
	 9		 →	A	 (not	roll-over,	just	the	next	symbol	of	16)	
	
Example:	1AD516.	We	first	construct	our	columns'	values,	and	then	think	of	the	number	in	each	column	
representing	that	many	times	the	column's	value.	Placing	column	values	beneath	our	number's	symbols:	
	

Hexadigits:	 	 1	 A	 D	 5	
Column	Values:	

(written	in	base	10)	 …	 163	=	4096	 162	=	256	 161	=	16	 160	=	1	

value	in	each	
column:	 …	 110*409610	 1010*25610	 1310*1610	 510*110	

→	sum:	(1*4096)	+	(10*256)	+	(13*16)	+	(5*1)	=	686910	
	
We	see	that	our	number	is	worth	(116*409610)	+	(A16*25610)	+	(D16*1610)	+	(516*110).		We	look	up	A	in	our	
chart	and	realize	it's	just	1010,	and	similarly	that	D	is	just	1310.	(116=110	and	516=510).		So	we	have,	all	in	
base	10,	(1*4096)	+	(10*256)	+	(13*16)	+	(5*1)	=	686910.		We	actually	prefer	to	just	write	the	second	
version,	where	everything	is	written	in	base	10.		We	are	most	comfortable	doing	calculations	in	decimal,	
and	mixing	bases	within	calculations	is	simply	an	invitation	for	calculations	errors.	
	
	
Binary	
	
Binary	is	base	2.	Thus	there	are	only	two	symbols,	and	columns	are	worth	powers	of	two.		But	all	of	our	
ideas	carry	over:	
	
	 base	2:	two	symbols.		 0		1	
	 	
	 base	2	column	values:					…	 26	 25	 24	 23	 22	 21	 20	



	 	 	 	 				=	...	 64	 32	 16	 8	 4	 2	 1	
Roll-over	examples:	(affected	bits	are	highlighted)	
	 1		 →	10	
	 111		 →	1000	
	 1101		 →	1110	
	 	
With	only	two	symbols,	we	roll	over	quite	frequently.		Every	other	increment	involves	roll-over!	
	
	
Conversions	Between	Bases	
	
After	looking	at	the	initial	chart	and	reading	through	our	descriptions	of	each	base,	we	can	now	discuss	
how	to	convert	between	one	representation	and	another.	
	
Other	bases	to	decimal	
To	convert	from	non-decimal	bases	to	decimal,	we	follow	the	process	described	above	to	figure	out	what	
the	value	being	represented	would	look	like	in	base	ten.		Here	is	an	algorithmic	description:	
	

1. Using	the	number's	original	base	and	exponents	from	zero	and	up,	figure	out	the	value	of	each	
column	that	your	number	utilizes.	

2. For	each	column,	multiply	the	column's	value	by	the	quantity	represented	at	that	column.	(Write	
all	of	this	in	base	10	for	simplicity's	sake	–	instead	of	B16,	we	prefer	to	write	1110,	or	even	just	11).	

3. Add	these	results	from	each	column	to	reach	the	base	10	result.	
	
Examples	

• What	is	E316,	in	base	10?	
	 (14*161)	+	(3*160)	=	14*16	+	3*1	=	224	+	3	=	22710.	
	

• What	is	10316,	in	base	10?	
	 (1*162)	+	(0*161)	+	(3*160)	=	1*256	+	0*16	+	3*1	=	256+0+3	=	25910.	
	

• What	is	11012,	in	base	10?	
	 (1*23)	+	(1*22)	+	(0*21)	+	(1*20)	=	1*8	+	1*4	+	0*2	+	1*1	=	1310.	
	

• What	is	1000102,	in	base	10?	
	 (1*25)	+	0	+	0	+	0	+	(1*21)	+	0	=	32	+	2	=3410.	

o note	that	we	might	as	well	only	focus	on	the	non-zero	columns	to	speed	up	the	calculation.	
	

• What	is	478,	in	base	10?	
	 (4*81)	+	(7*80)	=	32	+	7	=	3910.	

	
	
	 Your	Turn!	

• Convert	the	following	to	decimal:		
o 101102.	11112.	10102.	
o 3616.	1A16.	B216.	E4716	
o 318.	102103.	3H20	(just	use	more	letters	in	order	for	the	symbols)	

	
	



Decimal	to	Other	Bases	
	
We	use	a	different	approach	to	convert	from	decimal	to	other	bases.		The	reason	we	don't	just	use	the	
previous	version	(it	could	work	just	fine)	is	that	we	are	not	trained	in	performing	addition	and	
multiplication	in	other	bases,	so	we	prefer	an	approach	that	allows	us	to	do	our	calculations	in	decimal.	
	
	
	
Version	1:	Subtracting	column-values	until	we	have	nothing	left.	
	
	
Think	of	a	number	that	you	want	to	represent	in	some	base;	as	an	analogy,	think	of	your	number	as	a	pile	
of	beans.		
	

o Let's	assume	we	have	253	beans.	
	
	
You	want	to	put	all	the	beans	into	smaller	groups,	which	happen	to	be	of	sizes	1000,	100,	10,		and	1.		
Starting	with	the	largest	groupings	possible,	we	first	take	out	as	many	of	that	large	group-size	as	possible.			
	

o we	take	out	two	100-bean	groups,	leaving	us	with	53	beans	left.	
	
	
Next,	we	look	at	the	next-largest	grouping,	and	see	how	many	piles	of	beans	of	that	size	we	are	able	to	
take	from	our	pile	of	53	beans.		
	

o we	take	out	five	10-bean	groups,	leaving	us	with	3	left.	
	
	
We	continue	through	each	smaller-sized	column,	until	we	run	out	of	beans	or	reach	the	right-most	
column	(at	which	point	we'd	better	have	run	out	of	beans	too,	or	else	we	made	a	mistake	somewhere	in	
our	actions).	
	

o we	take	out	three	1-bean	groups,	leaving	us	with	no	beans	left	over.	
	
	
This	same	process	works,	no	matter	what	base	you	started	in	(how	you	initially	label	your	pile	of	beans),	
or	what	base	you're	going	to	(the	various	group-sizes/column	values	that	are	allowed).	
	
Your	Turn!	
Again	consider	25310	beans.	But	now	we	want	to	take	out	piles	of	sizes	512,	64,	8,	and	1.	
→	how	many	512-sized	piles	do	you	get?	(how	many	are	left	over?)	
→	how	many	64-sized	piles	do	you	get?	(how	many	are	left	over?)	
→	how	many	8-sized	piles	do	you	get?	(how	many	are	left	over?)	
→	how	many	1-sized	piles	do	you	get?	(how	many	are	left	over?)	
	
→	What	base	is	this	representing,	and	now	what	would	25310	beans	look	like	in	that	base?	
	



Algorithm:	
• Find	the	target	base's	column	values,	up	to	the	last	column	that	isn't	bigger	than	your	quantity	

(your	starting	number).	A	column	exactly	equal	to	your	number	should	be	included.	
• Start	with	that	leftmost/largest	column.	For	the	current	column,	as	many	times	as	you	can,	

subtract	the	column's	value	without	getting	a	negative	result.		Each	time	you	do	so,	add	one	to	this	
column	as	part	of	your	result.	(Like	trading	25	pennies	for	1	quarter).	

• Now	that	you	can't	subtract	that	column	any	more,	you	have	less	than	the	column's	value;	move	
one	column	to	the	right,	and	repeat.	

• As	soon	as	you	run	out	of	quantity	to	redistribute	(no	more	beans),	place	a	zero	in	any	remaining	
columns;	your	entire	result	is	complete.	
	

Example:	Convert	53	to	binary.	
1. find	out	the	column	values.		Any	columns	bigger	than	our	number	are	filled	with	zeroes	(and	thus	

we	don't	show	them	in	the	final	result).	Value	remaining:	53.	
	0 	 	 	 	 	 	 	 	 	 	 	 	 
64 	 32 	 16 	 8  4 	 2 	 1 

	 	
2. Looking	at	the	32	column	(=25),	we	see	that	32≤53,	so	we	put	a	1	in	the	32	column	and	subtract	32	

from	our	number.	(32	was	the	largest	column	value	that	was	≤53,	so	that	is	where	we	begin).	
	0 	 1	 	  	 	 	 	 	 	 	 	 
64 	 32 	 16 	 8  4 	 2 	 1 

	 Remaining	value:	53-32	=	21.	
	

3. proceed	to	the	next	column,	again	seeing	if	we	should	transfer	part	of	our	remaining	value	into	
this	column.	Repeat	through	all	remaining	columns.	

	
	 16≤21.	→	1	in	the	16's	column.		Remaining	value:	21-16	=	5.	

	0 	 1	 	 1	 	 	 	 	 	 	 	 	 
64 	 32 	 16 	 8  4 	 2 	 1 

	 	
	 8>5.	→	0	in	the	8's	column.	Remaining	value:	5-0	=	5.	

	0 	 1	 	 1	 	 0 	 	 	 	 	 	 
64 	 32 	 16 	 8  4 	 2 	 1 

	 	
	 4≤5.	→	1	in	the	4's	column.	Remaining	value:	5-4=1.	

	0 	 1	 	 1 	 0 	 1 	 	 	 	 
64 	 32 	 16 	 8  4 	 2 	 1 

	 	
	 2>1.	→	0	in	the	2's	column.	Remaining	value:	1-0=1.	

	0 	 1	 	 1 	 0 	 1 	 0 	 	 
64 	 32 	 16 	 8  4 	 2 	 1 

	 	
	 1≤1.	→	1	in	1's	column.	Remaining	value:	1-1=0.	

	0 	 1	 	 1 	 0 	 1 	 0 	 1	 
64 	 32 	 16 	 8  4 	 2 	 1 

	 	



	 Final	Result:	1101012.	
	
	
Example:	Convert	746	to	hexadecimal.	
	

Again,	we	start	with	listing	out	column	values	in	the	target	base	until	we've	gotten	large	enough	to	
know	that	we	must	have	a	zero	in	the	largest	column	–	this	tells	us	how	many	columns	our	
number	will	need,	and	tells	us	where	to	stop.	

	 	
	 Remaining	value:	746.		

	 0 	  	  	  
	 4096  256 	 16 	 1 

	
256≤746.		We	also	ask	ourselves,	"how	many	256's	can	I	extract	from	746?"	Since	we	can	remove	
two	256's	without	going	negative,	we	place	a	2	in	that	column:	
	
256≤746.		2*256≤746.	3*256>746	(too	many).	→	2	in	256's	column.	Remaining	value:	746-2*256	
=	234.	

0 	 2 	  	  
4096  256 	 16 	 1 
		
16≤234.	"How	many	16's	can	I	subtract	from	234?"	14*16≤234,	but	15*16>234.	→	14	in	16's	
column	(represented	by	E).	Remaining	value:	234	–	(14*16)	=	234	–	224	=	10.	

0 	 2 	 E 	  
4096  256 	 16 	 1 

	
1≤10.	"How	many	1's	can	I	subtract	from	10?"	Ten	1's	will	fit	→	10	in	1's	column	(represented	by	
A).		Remaining	value:	10	–	(1*10)=0.	
	

0 	 2 	 E 	 A 
4096  256 	 16 	 1 

	
	 Final	Result:	2EA16.	
	
	 Your	Turn!	

• Convert	4610	to	binary.	
• Convert	24310	to	binary.	
• Convert	6310	to	binary.	
• Convert	6710	to	hexadecimal.	
• Convert	7910	to	hexadecimal.	
• Convert	500010	to	hexadecimal.	
• As	a	warm	up	to	the	next	section	(after	version	2),	convert	5910	to	both	binary	and	hexadecimal.	

	



Version	2.	Division	and	remainders	approach.	
	
We	already	understand	that	we	find	out	if	a	number	is	even	by	dividing	it	by	two,	and	checking	if	the	
remainder	is	a	1	or	a	0.		It	turns	out	that	every	even	number	has	a	0	in	the	1's	column	in	binary	
representation,	and	all	odd	numbers	have	a	1	in	the	1's	column	in	binary.		
	
Using	the	number	1110	as	an	example,	let's	try	to	use	division	to	consider	the	next	bits	of	our	result.	If	we	
consider	the	result	of	division,	it	tells	us	how	many	2's	we	got.		11/2	=	5R1.		This	just	tells	us	that	5*2	+	1	
=	11.		If	we	consider	the	five	2's,	how	would	the	5	look	in	binary?	Well,	we	know	5/2	=	2R1,	so	it	ends	in	a	
1.		How	would	2	look	in	binary?	Well,	we	know	it	ends	in	a	0.		2/2=	1R1.		How	would	1	look	in	binary?	
1/2=0R1,	so	it	ends	in	a	1.	We	have	nothing	left,	so	we're	done.	
	
If	we	keep	on	dividing	by	2,	and	record	the	remainders	from	right	to	left,	stopping	when	we	get	a	quotient	
of	zero,	we	can	also	find	out	the	binary	representation	of	a	number:	
	
What	is	2310	in	binary?	
	
23/2	 =	11R1	 →     1	
11/2	 =	5R1	 	 →    11	
5/2	 =	2R1	 	 →   111	
2/2	 =	1R0	 	 →  0111	
1/2	 =	0R1	 	 → 10111	
	
Result:	101112.		Again,	notice	that	we	found	the	rightmost	bit	first!	We	can	remember	this	because	
finding	the	remainder	when	dividing	by	two	(just	once)	tells	us	if	the	number	is	even	or	odd,	which	is	
evident	in	just	the	last	(rightmost)	column.		
	
The	same	approach	works	for	other	bases;	just	divide	by	that	base:	
	
5364	/	16	 =	335	R	4	 4	
335/16	 =	20	R	15							F4	 (1510	represented	by	F16).	
20	/	16	 =	1	R	4										4F4	
1	/	16			 =	0	R	1							14F4	
	
Final	answer:	14F416.		
	
	
	
Your	Turn!	

• Using	this	style	of	conversion,	convert	the	following	numbers	to	binary:	
o 1310	 810	 2310	

• Using	this	style	of	conversion,	convert	the	following	numbers	to	hexadecimal.	
o 30010	 5910	 17810		

	
	



Converting	between	base	2	and	base	16.	
	
Based	on	the	chart	on	the	right	(a	smaller	portion	of	the	original	
chart	shown	above),	we	can	see	how	four-bit	binary	patterns	
relate	to	single-symbol	hexadecimal	values.		Leading	zeroes	have	
been	added	to	the	lower	binary	numbers	so	that	we	always	see	
four	bits.		In	order	to	convert	from	binary	to	hexadecimal,	if	we	
group	a	binary	number	in	four	bit	groups	starting	from	the	right,	
we	can	use	the	chart	to	just	convert	4	bits	at	a	time.		Conversely,	
we	can	convert	from	hexadecimal	to	binary	by	just	converting	
each	hexadecimal	symbol	to	the	corresponding	4-bit	pattern.	
	
This	works	because	24		=16.		It's	no	coincidence	that	one	base	is	
worth	a	specific	column	of	the	other	base	(16=24).	Hence	we	are	
using	4	bits	to	represent	16	values.		Reconsider	5910	from	before:	
	
5910	=	1110112	=	3B16.		Splitting	the	binary	up	as	4-bit	groups	
starting	from	the	right,	we	get	11		1011.		We	can	pad	the	
leftmost	group	with	0's	to	make	it	4	bits	if	it	helps	us	think	about	
it:	0011		1011.	0011	=	3,	1011	=	B.		Result:	3B16.	
	
Suppose	we	had	some	32-bit	number,	where	the	bits	were:	
	
1010	 0000	 1111	 1000	 1111	 0001	 0110	 1010	
			A	 			0	 			F	 			8	 			F	 			1	 			6	 			A	
	
=	A0F8F16A16.		It	is	common	to	prefix	a	hex	number	with	0x	instead	of	writing	the	16	suffix:	0xA0F8F16A.	
This	is	because	source	code	is	just	raw	text;	there's	no	superscript	button	in	a	plaintext	editor	J	
	
	
Your	Turn!	
	

• Convert	these	binary	numbers	directly	to	hexadecimal:	
o 10	1010	1010	1010	1010	
o 10	1101	
o 1	0101	0101	0101	1000	1101	1011	0110	1001	1011	1110	
o 1111	1111	1111	1111	0000	1010	1010		
o 1111	1010	1100	1110	
o 1011	1110	1110	1111	

	
• Convert	these	hexadecimal	numbers	to	binary:	

o ACE	 	 1234	 	 1010	 	 CAFE	
	
	
Summary:	Number	Representations	
	
You	should	be	comfortable	with	the	table	of	numbers	that	showed	us	how	to	count	upwards.		You	should	
be	comfortable	converting	between	any	two	of	these	bases,	in	either	direction:	binary,	decimal,	
hexdecimal.		
		

Base	10:	 Base	2:	 Base	16:	
0	 0000	 0	
1	 0001	 1	
2	 0010	 2	
3	 0011	 3	
4	 0100	 4	
5	 0101	 5	
6	 0110	 6	
7	 0111	 7	
8	 1000	 8	
9	 1001	 9	
10	 1010	 A	
11	 1011	 B	
12	 1100	 C	
13	 1101	 D	
14	 1110	 E	
15	 1111	 F	


