
Quick Python Intro

Python Tutorial

Outline

• Basics
• Control Flow
• File I/O
• Classes
• Thoughts on Efficiency
• Practice Problems

Python Basics

print("Hello, Python!")

• Python is interpreted
• parts may get compiled (.pyc files show up)
• Running code: python3 or py command.
– Run a file as a script: demo$ python3 somefile.py
– Load interactive mode: demo$ python3 –i

– Load a file interactively: demo$ python3 –i somefile.py

• Suggestion: keep reloading your script, explore the next step,
update your file with the good stuff.

Basic Types

• int: unbounded integers. (Yes, they are objects! Can't call
functions on them though)

• float: 64-bit double-precision floating point numbers.
• bool: True or False. (capitalized)
• string: sequence of unicode characters.
– Can use single, double, or triple quotes (triple allows newlines within)
– b"stuff" is a byte string. Avoid unless you're really playing with

space/layout
– f"insert {var} values inline!"

A few operations

• Math: + – * / // (int div) ** (exponent)
• Booleans: and or not
• Relational operators: < <= > >=
– Can be chained: w < x <= y > z (is w<z? not checked…)

(w<x) and (x<=y) and (y>z)
– Short-circuited: 2>4>x quits as soon as 2>4 is False.

Compound Types

• list: sequence of any python values. (array-list impl.)
– some operations: .append(), .extend(), .pop(), .insert(), .sort() …

• tuple: immutable version of lists.
• dict: dictionary of key-value pairs. (hash table implementation)
– Keys must be hashable ("immutable all the way down" will suffice)

– Some operations: len(), .get(), del, .pop()/.popitem(), .copy(), …

• set: mutable unordered group of values. (vals must be hashable)
– Some operations: |, &, ^, -,

Indexing things

• Zero-based indexing going forward
• Negative-one-based indexing going backward
• IndexError thrown when out of bounds

msg = "index"

i n d e x

0 1 2 3 4

-5 -4 -3 -2 -1

xs = [8.5, 100, -16.3, 2.5]

8.5 100 -16.3 2.5

0 1 2 3

-4 -3 -2 -1

Sequence Operations

operation meaning result type
x in s checks if an item in s equals x. bool
x not in s checks if no items in s equal x. bool
s + t concatenation same seq. type
s*n (or: n*s) n shallow copies of s, concatenated same seq. type
len(s) length of s int
s.count(x) find # items in s equal to x int (#matches)

s.index(x[,i[,j]]) give index of first x in s. (if not found, crashes) int

(these are all expressions)

Strings

Some String Methods (See LIB 4.7.1)

usage: stringExpr . methodName (args)

11

method purpose returned value
s.upper()
s.lower()

converts letters to upper or lower case modified copy of s

s.startswith(svar[,start[,stop]])
s.endswith(svar[,start[,stop]])

is svar a prefix/suffix of s? bool

s.join(iterable) concatenates items from iterable, with
copies of string s inbetween them.

string result of all those
joined things

s.split(sep) get list of strings obtained by splitting s
into parts at each occurrence of sep.

list of strings from between
occurrences of sep

s.replace(old, new[,count]) replace all (or count) occurrences of old
str with new str.

string with replacements
performed

http://docs.python.org/py3k/library/stdtypes.html

Formatting Strings

Brief introductions here, but also read the documentation.

Three approaches:
• percent operator, % LIB 4.7.2 ZY 3.7

• format method LIB 6.1.3 ZY 7.5

• f-strings new as of Python 3.6

String Formatting: % operator

13

• describe pattern of string with placeholders, then
supply all substitutions at once.

• Syntax: pattern_string % tuple

• Semantics:
→ simplify lefthand string to value
→ left to right, match placeholders in string with
values from tuple
→ substitutions obey special formatting directives

String Formatting: % operator

14

"there are %d days until %s." % (75, "holiday")

"%s ran %f miles today"% ("Zeke", 3.5)

"change is %d dollars and %d cents." % (4,39)

"you got %f%% of them, %s." % (0.95*100, "George")

"%s's number is %g/mol." % ("Avogadro",6.02214e23)

placeholder style of output accepted input

%d integer integers, floats

%f float integers, floats

%g float (scientific notation) integers, floats – but it prefers scientific notation representation

%s string anything (calls str())

%% the '%' character none – just represents the % symbol

<more> … don't memorize these: %i, %o, %u, %x, %X, %e, %E, %c, %r…

More Options

purpose examples results
state exact # columns after
decimal point (%f)

"%.2f" % (2/3)
"%.0f" % 15.5

'0.67'
'16'

state min. # columns for
entire thing

"%4d" % 30
"%3d" % 1234
"%5f" % 2.5

' 30'
'1234'
' 2.5'

use leading sign (+/-) "%+f" % 5 '+5.000000'

The format() method

A powerful option to craft a string is the format method.
• use { }'s as placeholders, put style rules inside
– examples: "{}" "{:4.2f}" "{:^5}"

• provide substitutions as arguments to .format() method

See more examples: LIB 6.1.3.2

More options…
Again, indicate min # cols and exact # cols after the decimal.

• Show as percent:

• Align left/center/right:

"{:10.2}".format(0.123)

"{:%}".format(0.12)

"{:>6}".format("hi")
"{:<6}".format("hi")
"{:^6}".format("hi")
"{:.^6}".format("hi")
"{:o^6}".format("hi")

' hi'
'hi '
' hi '
'..hi..'
'oohioo'

' 0.12'

'12.000000%'

New! f-Strings

• special version of string literals with embedded expressions
• indicated with leading f in front of open-quote.

name = "George"
age = 67
print(f"Happy {age}th birthday, {name}!")

Some corner cases of f-strings

• you can call functions and methods:
– f"{len(name)} letters long"
– f"{name.upper()}!"

• watch out for clashing quote styles!
(can't \escape them inside the {}'s)
– f"{1+3} years"
– f"{int('1')+3} years"

– f"{int(\"1\")+3} years" FORBIDDEN

printing

• Feed any number of args to print()
• Keyword arguments of note:
– sep: separator between printed items (default: sep=" ")
– end: thing printed once at the end of printing (default: end="\n")

– flush: require printing partial line now? (vs. waiting for a newline)

>>> print(2,4,6) #sep=" ", end="\n"
2 4 6
>>> print("hi", 2, True, sep=",", end="!!!")
hi,2,True!!!>>>

lists

lists: mutable sequences

• When a sequence is mutable (as lists are), we can update part
of the structure, leaving the rest alone:

• There are many operations available on mutable sequences
(see next slides).

xs = [1,2,3]
xs[1] = 99
print(xs) # prints out [1, 99, 3]

list update/delete operations

23

operation meaning
s[i] = x replace ith item of s with x
s[i:j] = t replace slice i:j with t.

lengths needn't match!)
s[i:j:k] = t replace slice i:j:k with t.

(lengths must match!)
del s[i] remove ith item from s.
del s[i:j] remove slice i:j from s.
del s[i:j:k] remove slice i:j:k from s.

try interactively.

list operations

24

operation meaning returned value

s.append(x) add x as a single value at end of s. None value

s.extend(t) individually append each item of t to
the end of s.

None value

s.insert(i,x) make space (push other spots to the
right), put x value at location i.

None value

s.pop(i) remove value at index i from sequence;
return the value that was there

item that was at index i

s.remove(x) find first occurrence of x, remove it. None
s.reverse() reverse the ordering of items. None
s.sort() sort the items in increasing order. None

append: attach a value to the list.
extend: attach a sequence to the list. try interactively.

Programming TRAP

• many mutable sequence operations return the None value

→ value is directly modified: rather than returning a modified copy,
returns the None value

→ assigning the result back to the variable discards the value!

xs = [2,5,4,1,3]
ys = [2,5,4,1,3]
xs.sort()
ys = ys.sort()
print (xs, type(xs))
print (ys, type(ys))

output when run:

[1, 2, 3, 4, 5] <class 'list'>
None <class 'NoneType'>

ys did get sorted, but then we threw out the
whole list by storing a None value into ys.

Memory Usage
• These arrows help us understand complex data, such as

lists of lists.

• Every variable always stores one value in a box.
• The only new concept is that sometimes the contents

of the box is an arrow (a reference) to some other
value in memory.

4 5 6

7 8 9

xs
ys

both

xs = [4,5,6]
ys = [7,8,9]
both = [xs,ys]

List ideas

• Start empty, append as you go. Feasible in multiple dimensions.

grid = []
for row_i in range(3):

row = []
for col_i in range(5):

item = (row_i, col_i)
row.append(item)

grid.append(row)

Control Flow

Statements, assignment

• Sequential lines are run in order.
• function definitions need to be executed before actual calls
– code in function not inspected until it's called, other than syntax
– thus functions can be defined in any order and called later (e.g. main)

• Statements:
– The usual assignment: location = expression
– Increment: x = x + 1 x += 1 (can't use x++)

Control Flow Statements

• Selection: if, if-else, if-elif*, if-elif-else
• Loops: while, for
– break and continue are available;

• function calls, recursion

Branching Examples

if expr:
stmts

if expr:
stmts1

else:
stmts2

if expr1:
stmts1

elif expr2:
stmts2

elif expr3:
stmts3

…
else:

stmtsN

• All styles of branching/loops can
be nested; just indent further.
• Don't mix tabs/spaces!

• Use elif, not nested else: if:
• No switch/case statement.

while statement

• expr: boolean expression
– if True, run loop body and try again.
– Note: non-bool things will be interpreted as bools! Non-zero/non-

empty means True, zero/empty means false… bad habit.

while expr:
stmts

for statement

• General form:

• common form:

for newvar in sequenceExpr :
stmts

xs = … # some sequence
for i in range(len(xs)):

…xs[i]…

"Value" For-Loop (foreach loop)

• For-loops assign each
value of the supplied
sequence to the loop
variable.

• We directly traverse
the values in the list
themselves

print some words out.
words = ["you", "are", "great"]
for word in words:

print(word)

sum up some numbers.
vals = [1.5, 2.25, 10.75, -2.0]
total = 0
for curr_val in vals:

total += curr_val
print("sum of vals is",total)

what is the largest value?
vals = [17, 10, 99, 14, 50]
max_val = vals[0]
for val in vals:

if val > max_val:
max_val = val

print("largest:",max_val)

"Index" For-Loop (traditional-ish for-loop)

We can generate all the valid
indexes we'd like to visit, and supply
those to a for-loop instead of the
values-sequence itself.

We are thus aware of our position
(i) as well as the value at the
current position (vals[i])

where is the largest value located?
vals = [2,5,3,6,4,1]
max_loc = 0
for i in range(len(vals)):

if vals[i]>vals[max_loc]:
max_loc = i

print("maxval="+str(vals[max_val]))
print("max val @"+str(max_loc))

range() – creating int sequences

• generates pattern of numbers
(arithmetic sequences only)

• to view the sequence
immediately, call list()

• three arguments:
– start (first value)

– stop (sequence won't reach/pass this value)
– step (how much to add each time)

>>> list (range(0, 10, 1))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range(0, 30, 5))
[0, 5, 10, 15, 20, 25]
>>> list (range(0, 10, 3))
[0, 3, 6, 9]
>>> list (range(0, -5, -1))
[0, -1, -2, -3, -4]

range()

more (common) ways to call:
• range(start, stop)
– assumes step is +1

• range(stop)
– assumes start is 0
– assumes step is +1

>>> list (range(0, 10, 1))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range(0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Indexing in other orders

By constructing a different call to range(), we can index
through our sequence in more sophisticated ways than just
"in-order, all elements":

watch out! using range(),
you must get the indexes
exactly right (never out of
bounds). Slicing gracefully
ignores out-of-bounds
issues, indexing does not.

vals = [10,11,12,13,14,15,16,17]

for i in range(0, len(vals),2):
print(vals[i])

for i in range(len(vals)-1, -1, -1) :
print (vals[i])

Nested Value Loops

xss = [[5,6,7],[8,9,10]]
total = 0
for xs in xss:

for x in xs:
print("\t+ "+str(x))
total += x

print("total:",total)

output when run:

+ 5
+ 6
+ 7
+ 8
+ 9
+ 10

total: 45

• when we have multiple dimensions to our lists, we can use
that many nested loops to access each item individually.

• Note the access pattern, as well as the total calculation.

Nested Index Loops

• Create an index for each dimension of your sequence.
• Nest loops for each dimension.
• Access each element individually (and starting from the

entire structure like xss below), no matter how many
dimensions.

xss = [[5,6,7],[8,9,10]]
for i in range(len(xss)):

for j in range(len(xss[i])):
print(xss[i][j])

output when run:

5
6
7
8
9
10

Nested Index Loops
• Our data doesn't have to have multiple dimensions for our

algorithm to find use for nested loops.

are there any duplicates in the list?
xs = [2,3,5,4,5,1,7,8]
has_dupes = False
for i in range(len(xs)):

for j in range(len(xs)):
if (i!=j) and xs[i]==xs[j]:

has_dupes = True
break

print("any dupes?",has_dupes)

are there any duplicates in the list?
xs = [2,3,5,4,5,1,7,8]
has_dupes = False
for i in range(len(xs)):

for j in range(i+1, len(xs)):
if xs[i]==xs[j]:

has_dupes = True
break

print("any dupes?",has_dupes)

• note: what is different/better about the second version?

loop variable pattern-matching

- We can dissect each tuple with our for-loop variable(s).
- This is called tuple unpacking. Provide a pattern of variables.

tups = [('a',1), ('b',2),('c',3)]
for (c,n) in tups:

print(c*n)

output when run:

a
bb
ccc

Aliases Example

xs = [1,2,3]
ys = [4,5,6]
both = [xs,ys]
xs[1] = 7
print("xs is",xs)
print("both is", both)
ys = [8,9]
print("ys is",ys)
print("both is", both)

xs is [1, 7, 3]
both is [[1, 7, 3], [4,5,6]]
ys = [8, 9]
both is [[1, 7, 3], [4, 5, 6]]

program output:

What is happening?

• variables are not the same as values.
• alias: when multiple names for the same location

exist (such as xs vs both[0]) – changing the
value by any name is witnessed from all others

• reassigning a variable re-establishes what the
variable stores

• updating part of a value doesn't change which
variables currently refer to the value

• We draw multiple arrows to the same value in our
memory diagrams.

id() built-in function

45

• id(thing) returns a unique int value.

• detect aliases when id(x)==id(y) actual int
value doesn't matter, only whether they are
the same or not

• memory diagrams: two aliases both point to
the shared value

• Note: python will auto-find/alias pre-
existing strings!

• Note: Python also stores ints from -5 to 256.

>>> xs = [1,2,3]
>>> ys = [4,5,6]
>>> lists = [xs,ys]
>>> id(xs)
4302079040
>>> id(ys)
4301525288
>>> id(lists)
4301525360
>>> id(lists[0])
4302079040
>>> id(lists[1])
4301525288
>>> xs = [7,8,9]
>>> id(xs)
4301525864
>>> id(lists[0])
4302079040

Dictionaries – example

dictionary:
• collection of key-value pairs
• no preserved ordering of keys (Python3.6+ is preserving insertion ordering!)

• keys must be unique, keys must be hashable
• can add/update/remove key-value pairs
• great way to 'index' things by non-consecutive ints

key value

"Andrew" 95

"Jerzy" 82

"Mark" 82

scores

scores = {"Andrew":95, "Jerzy":82, "Mark":82 }

Dictionary Examples
Syntax: {key1:val1, key2:val2, … keyn:valn}

Other Creation Strategies:
• Using dict function with keyword args, unquoted-strings as keys:

• Using dict function and sequence of length-two-sequences:
dict (a=1, b=2, c=55)

stuff = [["a",1], ["b",2], ["c",55]]
dict (stuff)

empty = { }
number_names = {1:"one", 2:"two", 3:"three"}
name_parts = {"first":"George", "last":"Mason"}
random = {1:"a", (1,2,3):"abc", None:"shall pass"}

Dictionary Operations
function/method/operation usage
len: # of key-value pairs. len(d)
indexing: by key d[k]
get: (use optional parameter ‘default’ if not found) d.get(k) d.get(k, default)

del: remove a key-value pair del d[k]
in, not in: test key's presence k in d k not in d
clear: remove all key-value pairs d.clear()
copy: create a shallow copy d.copy()
keys, values, items:
get the keys, values, or key-val pairs

d.keys() d.values()
d.items()

pop: pop value at k (or return default)
popitem(): pop any value

d.pop(k) d.pop(k,default)
d.popitem()

update: insert all of another dict's key-value pairs d_receiver.update(d_supplier)

Getting Keys, Values, or Key-Value Pairs

49

>>> d = {"a":1,"b":2,"c":3}
>>> d.keys()
dict_keys(['c', 'b', 'a'])
>>> d.values()
dict_values([3, 2,1])
>>> d.items()
dict_items([('c', 3), ('b', 2), ('a', 1)])

Dictionary Iteration

50

d = {"a":1, "b":2, "c":3}
print ("by keys:")
for k in d.keys():

print (k, d[k])

print ("\nby values:")
for v in d.values():

print (v)

print ("\nby items:")
for (k,v) in d.items():

print (k,v)

by keys:
c 3
b 2
a 1

by values:
3
2
1

by items:
c 3
b 2
a 1

Dictionary Ideas

• Make a sparse matrix with
int-tuple keys.
– Only stores needed keys

– Guaranteed no duplicate entries for same key
– Main issue: navigating in order without attempting

mymap = {(0,0):"origin",
(1,3):"secret lair",
(1000,32):"forgotten isle"
}

Exceptions

Exceptions

Some Common Exceptions

54

Exception Type Description
FileNotFoundError tried to open a non-existent file
IndexError tried to index into a structure with a not-present index.
KeyError tried to access non-existent key in a dictionary.
NameError identifier for a name couldn't be found in scope.
SyntaxError syntax error encountered.
TypeError type error encountered, e.g. argument to built-in is of wrong type.
ValueError built-in function/operation received value of right type, but wrong

value (e.g., int() received a str, but it didn't represent a number)

ZeroDivisionError tried to divide by zero.

Exceptions Hierarchy (excerpt)

BaseException
+-- KeyboardInterrupt
+-- Exception

+-- ArithmeticError
| +-- ZeroDivisionError
+-- EnvironmentError
| +-- OSError
| +-- FileNotFountError
+-- EOFError
+-- LookupError
| +-- IndexError
| +-- KeyError
+-- NameError
+-- SyntaxError
+-- SystemError
+-- TypeError
+-- ValueError

• There are many exception
classes organized into a
hierarchy
→ each name here is its own
python type!

• indentations: indicates
inheritance (parent/child
relationships).
• A KeyError is a more specific kind of

LookupError; it's allowed anywhere
a LookupError is.

• abbreviated version of the
hierarchy →→→→→→

(found at https://docs.python.org/3/library/exceptions.html#exception-hierarchy)

https://docs.python.org/3/library/exceptions.html

variations: multiple except blocks, multiple types per block
try:

import sys
filename = sys.argv[1]
f = open(filename) # file might not exist
lines = f.readlines()
f.close()
xs = []
for line in lines:

xs . append (int(line))# might not be an int.
secret = xs[3] / xs[10] # index might not exist
print("secret result:",secret)

except FileNotFoundError:
print("file didn't exist.")

except (ValueError, IndexError) as e:
print("bad input!", type(e), str(e))

except Exception as anyname: # any zero-division??
print("catch-all: unforseen! ", str(anyname))

print("end of example.")

Notes
• when exception occurs, only the first

compatible except-block runs!

Example details
• sys.argv lets us access the command-

line arguments
• except block for FileNotFoundError

didn't want to inspect the exception
value; no as e clause needed.

• ValueError, IndexError, and any child
classes of exceptions are all handled
here.
• wanted to inspect the object, so

as <name> clause included.
• except Exception block handles

exceptions of type Exception and any
child classes – that's all exceptions!

ex3.py

variations

• we can inspect the exception value if desired:

• we can ignore the particular value and still catch those types by
skipping the as-clause:

except SomeType as anyname:
statements <can use anyname>

except SomeType:
statements

variations

• we can have multiple except blocks.
– first block to handle the actual type of raised

exception is the only one to run
– "parent" types of exceptions match all child types

(the deeper indentations of that chart are child types)
– except Exception thus catches anything

• we can catch anything, and ignore the particular
value, with a raw except: block

caution – things can still crash

• any raised exception whose type isn't compatible
with any of the except blocks will "escape":
– it crashes further, out of the next layer of try-blocks,

function calls, until it either is caught elsewhere or crashes
the entire program.

xs = [5,10,15,20]
try:

index = int(input("which spot? "))
val = xs[index]
print("you chose "+str(val))

except ValueError:
print("that wasn't an int.")

print("end of program.")

ex4.py Sample Inputs:
• 2 # successful
• three # ValueError caught
• 39 # IndexError escapes!

Validating Input

Loop continues to execute, raising and handling exceptions,
until user complies.

need_input = True
while need_input:

try:
n = int(input("#items: "))
fr = int(input("#friends: "))
each = n/fr
need_input = False

except Exception as e:
print(e)

print("everyone gets %s items." % each)

ex5.py demo$ python3 ex5.py
#items: asdf
invalid literal for int() with base 10: 'asdf'
#items: 3
#friends: 0
division by zero
#items: 10
#friends: 5
everyone gets 2.0 items.

sample calls

validating input: alternate version

We can use while True: and break with exceptions for a
convenient way to escape: if any exceptions occur, we skip the
break and the loop forces us to try again.

while True:
try:

n = int(input("#items: "))
fr = int(input("#friends: "))
each = n/fr
break

except Exception as e:
print(e)

print("everyone gets %s items." % each)

ex5_alt.pyneed_input = True
while need_input:

try:
n = int(input("#items: "))
fr = int(input("#friends: "))
each = n/fr
need_input = False

except Exception as e:
print(e)

print("everyone gets %s items." % each)

ex5.py

Practice Problem

What happens if we instead had the while
loop inside the try block, like this?

try:
need_input = True
while need_input:

x = int(input("#: "))
need_input = False

except Exception as e:
print(e)

print ("successfully got x: "+str(x))

practice1.py

Raising Exceptions

• We can generate an exception on purpose
(and hopefully catch it somewhere else!)

• performed with a raise statement, which needs an expression
of some Exception type. This usually means calling a constructor
(__init__ method). Examples:

– raise Exception("boo!")
– raise ArithmeticError ("this doesn't add up!")
– raise ValueError("needed a positive number")

– except IOError as e:
print ("catching it, re-raising it.")
raise e

Functions

Function definitions

• Function definition statement: given a name, parameters list,
and body.

• Can be nested to any depth!
• Functions are first-class:

they can be passed around
as values (uncalled!)

def max3(a, b, c):
if a>=b and a>= c:

return a
if b >= c:

return b
return c

Argument options

• Positional arguments
– Plain parameters; must be given, no defaults available.
– def'n: def foo(a, b, c, d)
– call: foo(1,2,3,4)

• Default arguments
– At definition site; tail of params list can have defaults.
– def'n: def foo (a, b, c=0, d=0, go=True)
– calls: foo(1,2) foo(1,2,3) foo(1,2,3,False)
– Beware of complex default values!

• def put_stuff (these_vals, here = [])

• Keyword arguments
– At call time. Supply arguments in any order, by name.
– powerful when mixed with default args.
– foo (b=5, a=100, go=False) # note: c not given, will use default

Argument Options – variadic arguments

• Variadic arguments: accepting any # of positional args.
– at def'n: last positional arg has * in front; grouped into tuple.
• def not_first(drop_me, *the_rest): return the_rest

– at call: feed any number.
• not_first("drop",1,2,3) not_first("give none")

– Related: use sequence to feed multiple regular (non-variadic)
arguments:
• "explode" the sequence with a star: *xs
• xs = [2,4,6]; max3(*xs)

Argument Options – variadic keyword arguments

• Keyword args:
– at def'n: last arg has ** in front

• can give arbitrary keyword arguments
• grouped into dictionary.
• .format() usage: "{:>{padwidth}}".format(value, padwidth=max(len(a),len(b)))

– Related: explode a dictionary into plain keyword args
• d={'a':2,'b':4,'c':6}; max3(**d)

• Mixing Styles:
– All positional args, then variadic args, then default args, then kwargs.
– def foo(pos, itio, nal, *vargs, d="ef",au="LTS", **kwargs)

File I/O

Reading files - examples

fileRef = open ("myfile.txt") #access it
lines = fileRef . readlines() #read it to list of line-strings
fileRef . close() #always close the file!
for line in lines: #use it! just a list of strings now

print(line.upper(), end="") # shout it out!
print ("done!")

file_ref = open ("sample.txt") # get access to file
str_contents = file_ref . read () # read entire file as string
file_ref . close () # close file when done

<use entire file's contents as string>

Reading files - more examples

with open ("myfile.txt") as f: # will auto-close f after with-scope.
for line in f: #use f. again a line at a time here.

print(line.upper(), end="") # shout it out!

f = open ("sample.txt") # get access to file
for line in f: # lazily read a line at a time

print(line.upper(), end="") # shout it out!
f.close() # always close the file!

reading files

• compare to physically reading a book
– also, think of file's contents as a python string, indexed 0 and up

• you have a 'bookmark' tracking where you are, updating as you go
– you can read a few characters at a time, a line at a time, or the whole thing at

once

sample call meaning (starting at your 'bookmark' always) return value

f . read (n) read up to n characters string

f . read () read all remaining characters string

f . readline (n) read up to n characters on current line string

f . readline () read the rest of the current line string

f . readlines () read all remaining lines list of strings

write(x)

73

0123456789
ABCDEFGHIJ
qrstuvwxyz

test.txt (before close)
>>> file = open("test.txt","w")
>>> s = "Line 1\nLine 2\nLine 3\n"
>>> file.write(s)
21
>>> file.close()

Line 1
Line 2
Line 3

test.txt (after close)
• absolutely nothing except what you write goes

into the file – no newlines, spacings, or anything.
• you can write parts of one line in as many write

calls as you need

file writing methods

74

• calling write and writelines is like successive print calls, only
the output goes to a file (and no newlines or separators are
ever added, only exactly what you write)

• nothing is actually written to the file until you close it!

method behavior example call

write(x) writes string x to file f.write("stuff\nhere")

writelines(xs) writes strings in list xs to file parts=['a\n','\b'n\c', 'd','e','f']
f.writelines(parts)

Classes

Python classes – Initial Thoughts

• All good hygiene is your responsibility.
– Subclasses can pretty much replace/ignore parent class
– add/delete instance variables at will, per object
– add/delete methods at will, per class

• Double-underscore naming convention: "special" methods that hook into
builtin functions or class implementation will have double-underscores at
beginning/end of names:

__init__ __str__ __repr__
__eq__ __lt__ __gt__ ...

Class Definitions

class Person:
min_age = 0 # class variable: shared; Person.min_age
constructor.
def __init__(self, name, age):
self.name = name
self.age = max(age, min_age)

def greet(self): # note the \ arbitrary line break
return ("Hi, I'm {}. I'm {} years old." \

.format(self.name, self.age))

SubClass Definitions

class Point:
def __init__(self, x=0,y=0):
self.x = x
self.y = y

def magnitude(self):
return (x*x + y*y) ** 0.5

def __str__(self):
return f"({self.x},{self.y})"

def shift(xshift=0, yshift=0):
self.x += xshift
self.y += yshift

def slope(self, other):
rise = other.y – self.y
run = other.x – self.x
return rise / run

class Point3D(Point):
def __init__(self, x, y, z):

manually call parent's __init__
preferably first!!
super().__init__(x,y)
self.z = z

def __str__(self):
return "(%s,%s,%s)" % (self.x, self.y, self.z)

def __repr__(self):
return str(self)

def project_down(self):
go to 2D; make new object.
return Point(self.x, self.y)

Class oddness: adding fields to individual objects

• You can (accidentally?) create
new instance variables for any
single object by assigning it.

p = Point(1,2)
p.another = 3

del p.another
del p.x

• You can (accidentally?)
add/modify methods for a class:

wishing you had this in Point3D? Make it happen!
def shift3(self, xshift=0, yshift=0, zshift=0):

self.x+=xshift; self.y+=yshift; self.z+=zshift

Point3D.shift3 = shift3 # now available!
tri.shift3(100,200,300) # hurts my brain…

User-Defined Exceptions

• We can create our own types of exceptions.
• They can be raised, propagated, and caught as usual.
• Just include Exception as the parent class as shown below

80

x = int(input("#? "))
if x==13:

raise BadInput("that's unlucky!")
print(x*10)

except BadInput as e:
print("uhoh: "+e.value)

except Exception as e:
print(e)

demo$ python3 ex11.py
#? 5
50
demo$ python3 ex11.py
#? 13
uhoh: that's unlucky!
demo$ python3 ex11.py
#? asdf
invalid literal for int() with base 10: 'asdf'

sample usage
class BadInput(Exception):

def __init__(self, value):
self.value = value

Functions and Recursion

Recursive functions

• Just call yourself:

def fact(n):
if n<=1:

return 1
return n*fact(n-1)

• Or call each other:

def even(n):
if n==0:

return True
return odd(n-1)

def odd(n):
if n==0:

return False
return even(n-1)

Higher-order functions

• map, zip, and reduce: common functions that need functions as
arguments.

• map: given a function and a list of values, apply the function to
each item and generate a list of answers.
– map(lambda s : s.upper(), ["Hello", "reu"]) ⟶ ["HELLO", "REU"]

• zip: given two lists, create list of pairs, combining same-index values
from each. Only as long as shortest list.
– zip([1,2,3],[4,5,6,7,8]) ⟶ [(1,4),(2,5),(3,6)]

• functools.reduce: given binary operator and list, collapse list to
single value.
– reduce(lambda x, y: x+y, [1,2,3,4,5]) ⟶ 15

Using higher-order functions

• Average test scores from all students whose attendance is
poor:

• Implement other things:

mia = filter(lambda s: s.attendance<0.25, roster)
mia_scores = map (lambda s: s.test, mia)
avg_mia_score = sum(mia_scores)/len(mia_scores)

def max(xs): return reduce(lambda x,y: x if x>y else y, xs)
def plus_ones(xs): return list(map(lambda x: x+1, xs))
def evens(xs): return filter(even, xs)

Speed Up and Go Big!

Dealing with more data, deeper recursion, etc.

Recursive functions – memoize to go faster

• Save answers in shared mutable default value:

def fastfib(n, ans={}):
if n<=1:

return 1
n1 = ans[n-1] if (n-1) in ans else fastfib(n-1)
n2 = ans[n-2] if (n-2) in ans else fastfib(n-2)
ans[n] = n1+n2
return ans[n]

def fib(n):
if n<=1:

return 1
return fib(n-1)+fib(n-2)

Out of stack space? Make your own.

• Build your own stack. (see def iterfib in tutorial.py)
• rethink your whole algorithm. (see def loopfib in tutorial.py)

fib(123456) # RecursionError, booo! Now what?

