
LAMBDA CALCULUS
(untyped)

1M. Snyder, George Mason University

What is computation?
A representation of a value, which we can simplify to its simplest ("normal") form.

• We need expressions that can be simplified
• We need functions to pass around these expressions
• We need variables (parameters to functions)

M. Snyder, George Mason University 2

add one to input
input answer/output

Let's name the input x, and
represent this functionality:

λ x . x + 1

A function,
With parameter x,

That will calculate (x+1)

What is computation?
A representation of a value, which we can simplify to its simplest ("normal") form.

• We need expressions that can be simplified
• We need functions to pass around these expressions
• We need variables (parameters to functions)

M. Snyder, George Mason University 3

add one to input
input answer/output

5 6
Let's feed 5 to the function:

((λx.x+1) 5)

Simplify ("solve"/"evaluate"):
⟶ 5+1
⟶ 6

Let's name the input x, and
represent this functionality:

λ x . x + 1

RoadMap
• We want to understand the idea of evaluation, based directly on the evaluation rules

• We learn how to extend the language: add terms, add evaluation rules, play with the
outcome until it behaves how we want

• Eventually, the language is ready to use – we encode expressions and evaluate them.
• Writing encodings is just … coding! You write expressions in the language.
• Anything you need that’s not an extension (part of the language) can be implemented.

• We can explore what no-extensions feels like later on.
• "Church booleans", encoding libraries of functionality
• We can explore weirder extensions like recursion.
• Quick introductory video: https://www.youtube.com/watch?v=eis11j_iGMs (1st 7 minutes)

M. Snyder, George Mason University 4

https://www.youtube.com/watch?v=eis11j_iGMs

The Untyped Lambda Calculus (λ)
Designed by Alonzo Church (1930s)
• Turing Complete (Turing was his doctoral student. Small world!)
• Models functions, always as 1-input

• Definition: terms, values, and evaluation
• t ::= x | λ x . t | t t ⟵ adjacent terms are an application (t t)
• v ::= λ x . t

• Notes
• terms t are variables, lambdas, or applications
• only lambdas are values.
• this language is untyped!

5M. Snyder, George Mason University

Our chosen rules:
• Must simplify the function down to a value

before simplifying the argument
• Can recursively explore subterms to find

simplifications, with some caveats
• Can only feed values to functions

(eval argument before calling)

λ : Evaluation Semantics
Evaluation: applying these rules to simplify
your term until you have a value
(no more evaluation possible).

• E-App1 t1 → t1'
 (t1 t2) → (t1' t2)

• E-App2 t → t'
 (v t) → (v t')

• E-App-Abs __________________
 ((λ x . t) v) → t[x ↦ v]

6M. Snyder, George Mason University

E-App1: "If I know that a term t1 can be evaluated to t1',
then when I've got an application (t1 t2), I can evaluate
just t1 to t1', and then I've got (t1' t2) left over."
--
E-App2: "When an application has a value first and a
term second, and that term can evaluate further, we are
allowed to evaluate that second term."
--
E-App-Abs: "When a lambda term is applied to a value
v, it can simplify down to the body of the lambda, t, with
all occurrences of the lambda parameter x being
replaced with the argument v. We don't need any
simplifications available (nothing above the line)."

→ is evaluation; these rules
define the functionality
from input to output.

t ::= x | λ x . t | (t t)
v ::= λ x . t

Confusing at first? That's ok! This is like the DNA of evaluation; a lot is packed into just a few rules.

λ : Evaluation Semantics
How to read these rules:
• If you have this,
• And can show that this can be done (often using more evaluation recursively),
• Then what you started with can evaluate to this.

• E-App1 t1 → t1'
 (t1 t2) → (t1' t2)

Pattern Matching:
• When we need a term, we use placeholders with names like t1, t2, t1’, etc. to

represent any valid term.
• when we see the same name (e.g. t1 again), it must be the same term.
• If we need a specific term, we write it out – e.g. “λx.x”, 5, true, and so on.

• Parentheses represent application. For convenience, adjacency is also used.
• (((f a) b) c) is the same as (f a b c)

7M. Snyder, George Mason University

→ is evaluation; these rules
define the functionality
from input to output.

Better with Extensions!
• Though not required, some extensions really help understand how to

use the lambda calculus.

t ::= x | λx.t | (t t) | t + t | t – t | t * t | t > t | t < t | <ℤ's> | true | false | if t t t | ~t

v ::= λx.t | <ℤ's> | true | false

E-Add1 𝒕𝟏 →𝒕𝟏
"

𝒕𝟏 #𝒕𝟐 	→	 𝒕𝟏
"#𝒕𝟐

 E-Add2 𝒕𝟐 →𝒕𝟐
"

𝒗#𝒕𝟐 	→	 𝒗#𝒕𝟐
" E-Add

𝒗𝟏 #𝒗𝟐 	→(𝒑𝒆𝒓𝒇𝒐𝒓𝒎	𝒂𝒅𝒅𝒊𝒕𝒊𝒐𝒏)

E-GT1 𝒕𝟏 →𝒕𝟏
"

𝒕𝟏 #𝒕𝟐 	→	 𝒕𝟏
"#𝒕𝟐

 E-GT2 𝒕𝟐 →𝒕𝟐
"

𝒗#𝒕𝟐 	→	 𝒗#𝒕𝟐
" E-GT

𝒗𝟏 #𝒗𝟐 	→(𝒄𝒉𝒆𝒄𝒌	𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏)

E-If 𝒕𝟏	→	𝒕𝟏
"

𝒊𝒇	𝒕𝟏	𝒕𝟐	𝒕𝟑→	𝒊𝒇	𝒕𝟏
" 𝒕𝟐	𝒕𝟑

 E-If-true
𝒊𝒇	𝒕𝒓𝒖𝒆	𝒕𝟐	𝒕𝟑→	𝒕𝟐

 E-If-false
𝒊𝒇	𝒇𝒂𝒍𝒔𝒆	𝒕𝟐	𝒕𝟑→	𝒕𝟑

E-Neg1 𝒕→𝒕"

~𝒕	→	~𝒕"
 E-Neg-T

~𝒕𝒓𝒖𝒆	 →	 𝒇𝒂𝒍𝒔𝒆
 E-Neg-F

~𝒇𝒂𝒍𝒔𝒆	 →	 𝒕𝒓𝒖𝒆

M. Snyder, George Mason University 8

E-Mul/1/2, E-Sub/1/2, E-LT/1/2
follow the same patterns as

E-Add/1/2, E-GT/1/2.

Sample Expressions
• Consider each expression. Are they already values? If not, show each reduction,

and name the rule used.

• ((λ x . x + 1) 3)
• (λ e . e + 1)
• ((λ z . z * z) 5)

• (((λa . (λb . a)) 10) 20)
• ((λx . x-(1+2)) (3*4))
• ((λa . a*a) ((λx . x + 1) 6))
• (((λx . (λy . (x – y) + 1)) 10) 6)
• ((λx . (λy . (x – y) + 1)) 10)

M. Snyder, George Mason University 9

⟵ why is there always only one next possible step?

Think in Trees
• Drawing out an abstract syntax tree for terms can help

understand them:

(((λa . (λb . a)) 10) 20)

M. Snyder, George Mason University 10

@

@ 20

λa 10

λb

a

λ : Evaluation Rules as Trees
11M. Snyder, George Mason University

@

t1 t2

@

t1' t2

t1 → t1'E-App1

@

v t2

@

v t2'

t2 → t2'E-App2

λ : Evaluation Rules as Trees
12M. Snyder, George Mason University

@

λx v

t

t[x↦v]

E-App-Abs

Reading Expressions
• Too many parentheses is a pain! How can we omit some?

• Parentheses around an application are very common, but not strictly needed: (t1 t2)

• the body of a lambda expression grabs as much as it can (it reads through until it
hits a close-parenthesis it didn't open, or the end of the expression).

• We can remove some parentheses for slightly easier reading.

These are equivalent:

• (λx. (λy. x+y))
• λx. λy. x+y

M. Snyder, George Mason University 13

These are not:

• ((λx. x+1) 3)
• (λx. x+1 3)

Practice: Draw Trees
Draw the trees for these terms.

• λx. x+1
• λf. λ x. f x same as: (λf. (λx. (f x)))
• λa. ((λb.b) a)
• λx. λy. if (x<y) x 0

Might want to look at our "full language" extensions for these last few terms.
• cons 1 (cons 2 (cons 3 nil))
• λxs . if (isnil xs) 0 (head xs)
• λself . \n . if (n=1) 1 (self (n-1))

M. Snyder, George Mason University 14

Extending λ

•we will add more terms and values, to have more primitives in
our language.

•We then also add more evaluation rules that put those new
terms to use.

•The core lambda calculus is actually pretty painful/nearly
useless on its own (we already sneaked numbers/ops. in!)

15M. Snyder, George Mason University

Extending evaluation: Booleans

• E-if t1 → t1'
 (if t1 t2 t3) → (if t1' t2 t3)

• E-if-true E-if-false
 (if true t2 t3) → t2 (if false t2 t3) → t3

16M. Snyder, George Mason University

Adding Booleans
t ::= … | true | false | if t t t
v ::= … | true | false

so, we also still have:

t ::= x | λx.t | t t …
v ::= λx.t …

Extension: Natural Numbers
We borrow integers from the void (just kidding – from your years and years of
mathematics), and then define some operators. (Here, ℤ means all integer values)

Adding Naturals
t ::= … | ℤ | t + t | t – t | t * t
v ::= … | ℤ

17M. Snyder, George Mason University

E-Add-1 E-Add-2
 t1 → t1' t2 → t2'
 t1 + t2 → t1' + t2 v + t2 → v + t2'

E-Add
 v1 + v2 → <perform addition>

Same idea for subtraction and multiplication

Sample Expressions – Bools and Ints
• Consider each expression. Are they already values?

• If not, show each evaluation step down to a value, and name the rules used.

• if true 5 10
• if false true 20 ⟵ what's weird about this one?

• λ x . if x 3 6
• (6+5)*(4-3)
• ((λ x . if x 4 7) false)
• ((λ z . if true z (9+z)) 5)

M. Snyder, George Mason University 18

Alternate Extension: Natural Numbers

This is a far more manual approach than relying on ℤ : we create
our own numbers as zero, and successor of a number. Adding
operations such as predecessor of a number, addition, etc. would
be an even further set of term extensions and evaluation rules.

Previously, we just used integers from mathematics "off the
shelf", and addition's eval rule just says "do the addition". This is
like using addq instead of re-implementing addition in a compiler,
but we can do it manually if for some reason we want/need…

19M. Snyder, George Mason University

• E-succ t1 → t1' E-pred t1 → t1'
 succ t1 → succ t1' pred t1 → pred t1'

• E-pred-succ
 pred(succ t) → t

Extending evaluation: Naturals

20M. Snyder, George Mason University

Adding Naturals Manually
t ::= … | zero | succ t | pred t
v ::= … | zero | succ v

Extending evaluation: Pairs

E-pair1 t1 → t1' __ E-fst t → t'
 pair t1 t2 → pair t1' t2 fst t → fst t'

E-pair2 t2 → t2' __ E-snd t → t'
 pair v t2 → pair v t2' snd t → snd t'

E-pair-fst E-pair-snd _____
 fst (pair t1 t2) → t1 snd (pair t1 t2) → t2

21M. Snyder, George Mason University

Adding Pairs
t ::= … | pair t t | fst t | snd t
v ::= … | pair v v

Practice: simplifying pair terms
Reduce each to a value. Name the rules used.
(if it can’t get to a value, state “no normal form”).

• pair (2+4) 6
• fst (pair 2 4)
• fst 5

• [(λp. (fst p) + (snd p)) (pair 2 3)]
• [(λp. if (fst p) (snd p) 0) (pair true 7)]
• if (pair true false) (pair 2 3) (pair 4 5)

M. Snyder, George Mason University 22

Side-topic:

Encoding instead of Extending the language

M. Snyder, George Mason University 23

Encoding (Using Definitions)
The language itself shouldn't be extended with every single calculation you want to do as native
terms; we can also just build expressions and use them.
• We'll name them for convenience, but the names are only shorthand, not a lang. feature!

• definition: not = λ x . if x false true
• definition: and = λ a . (λ b . if a b false)

Simplify these expressions.
• (not true)
• ((λ x . and x true) true) note, and is just a function!
• ((λ x . and x true) false) thus it isn't used infix, as in (x and y)

Define these:
• or
• nor

M. Snyder, George Mason University 24

Encoding Boolean values/operations
Start again, now with only the core untyped lambda calculus – no
true/false values, no if-term, no E-Bool rules.
• We just encode everything we wish we had ourselves!

• Encoding 'true' and 'false' as functions:
• true = λ x . λ y . x
• false = λ x . λ y . y

• Operator encodings
• not = λ a . (a false) true
• and = λ a . (λ b . ((a b) a))
• or = λ a . (λ b . ((a a) b))
• if = λ b . (λ t . (λ e . ((b t) e)))

note: all ()'s are optional on this slide

evaluate: - ((and false) true)
 - ((or false) true)

25M. Snyder, George Mason University

The entire language:

t::= x | λx.t | (t t)
v::= λx.t

E-App1
E-App2
E-App-Abs

No if's, and's, or other
extensions – we have
to encode booleans
from only those def'ns!

Implementing the untyped lambda calculus
Investigate implementing the untyped lambda calculus in Haskell:

• data for our terms
• is_value function to check if a term is a value

• remember, our values are just a subset of our terms.
• eval function to perform evaluation

• this needs substitution capability (see the subst function)

Until we extend our language, it'll seem ungainly – the only values we have are functions!
no booleans, numbers, nothing.

→ see ULC_bools_nums.hs, which extends with only bools and nums.
→ see ULC_full.hs, which also extends w/recursion and lists, as well as some renaming/equality.
→ see ULC_core.hs, which has no extensions but does encodings.

26M. Snyder, George Mason University

Formal Language extension recipe

• Create more terms t::= …
• both constructors and observers

• Constructors represent data(values)
• Observers represent operations over that data

• add some new terms
• some that are new values, others that operate on those values

• add some new values v::= …
• probably a subset of the terms you added (the ones that are "answers")

• add more evaluation rules
• enough that all "proper" terms can become values
• Probably both of these styles:

• "make progress on a subterm": see E-App1, E-App2, E-If, etc.
• "consume a specific structure": see E-App-Ab s, E-If-True, E-If-False, etc.

27M. Snyder, George Mason University

Coded Language extension recipe

(implementing in Haskell)

• add to datatype Tm (extend terms)
• add cases to is_val (extend the values)
• add cases to eval, subst, etc.

→ language is extended! What other features
 can we add?

28M. Snyder, George Mason University

Side topic: Evaluation Strategy
As written, our evaluation rules require that functions' arguments are
evaluated first:

• E-App-Abs
 ((λ x . t) v) → t[x ↦ v]

We could have implemented lazy evaluation
(and removed E-App2):

• E-App-Abs-lazy
 ((λ x . t1) t2) → t1 [x ↦ t2]

29M. Snyder, George Mason University

Evaluation Strategy

How/where does the chosen evaluation
strategy affect:

• your implementation?
•Your language usage?

30M. Snyder, George Mason University

Building an Interpreter
Start with simple core features
• define terms, values, evaluation
• expand with more features

Implementation choice:
• Domain Specific Language (DSL)

• a language designed/dedicated to one task or domain of knowledge
• write all tools, e.g. parser/compiler

• Embedded DSL (EDSL)
• DSL that is implemented as a library directly in some other language.
• All of the host's features are directly available: we're actually writing code in the host language

that heavily uses the library definitions
→ we're exploring an EDSL.

31M. Snyder, George Mason University

Choosing a value space
We can have eval target a separate value type instead of Tm

choose any type that's already available in the host language, like Int.
• every single expression must result in a value of this type!
→ see ExprLang1.hs eval :: Expr -> Int

We can make our own data type for the value space
→ see ExprLang2.hs eval :: Expr -> Val

All the packing and unpacking between Expr vs Val is a it annoying though.

32M. Snyder, George Mason University

Choosing evaluation semantics

Once we include some notion of functions in our
code, we can then choose calling conventions.

• how can we introduce functions?
• where do declarations go?
• what kinds of declarations are allowed? (recursive?)

• we can implement any evaluation strategy, such as
pass-by-value, pass-by-name, simply by changing
our eval definition.

33M. Snyder, George Mason University

Fun diversion

The Ω-combinator always diverges.

 Ω = (λ x . x x) (λ x . x x)

Try performing the application. What do you
get?

34M. Snyder, George Mason University

Providing primitive recursion
We can provide primitive definitions for recursion.

E-fix
 fix (λ self. t) → t [self ↦ (fix (λ self . t))]

Adding Fix
t ::= … | fix t

35M. Snyder, George Mason University

Using Recursion
• We make a worker function that will be built into the recursive function we want.

• it needs to be fed a copy of itself as the first argument
• then, recursive calls can use that argument
• "fix worker" ties the recursive knot and gives us our recursive function.

• It's like "loop unrolling", in a functional context
• Simplification will use the E-Fix rule to supply another layer for each recursive call.

M. Snyder, George Mason University 36

worker = λself. λn.
 if (n = 0)
 true
 (if (n = 1)
 false
 (self (n-2)))
is_even = fix worker

E-fix ___
 fix (λ self. t) → t [self ↦ (fix (λ self . t))]

Representing Recursion
In the untyped lambda calculus, we can represent recursion
directly, or with a language extension. (see ycomb.txt)

The y combinator

ycomb = \f . ((\x . (f (\y . x x y)))
 (\x . (f (\y . x x y))))

evenF = Lam "self" $ Lam "n"
 $ If (Equal vn (Num 0)) Tru
 $ If (Equal vn (Num 1)) Fls
 $ App (Var "self")
 (Sub vn (Num 2))

iseven = App ycomb evenF

37M. Snyder, George Mason University

personally, I prefer
extending the language.

The y-combinator is a real
headache to watch in
action! Though it is cool...

Extension: Lists We add primitive support for singly-linked lists

Adding Pairs

t ::= … | cons t t | nil | isnil t | head t | tail t
v ::= … | cons t t | nil

• E-isnil t → t'
 isnil t → isnil t'

• E-isnil-nil
 isnil nil → true

• E-isnil-cons
 isnil (cons t1 t2) → false

38M. Snyder, George Mason University

• E-head1 t → t’_____ E-head _________
 head t → head t’ head (cons t1 t2) → t1

• E-tail1 t → t’ E-tail _______
 tail t → tail t’ tail (cons t1 t2) → t2

Using Lists: Recursion Needed
• In order to write a function that traverses a list, you will need to use recursion.

(Either the fix extension or the Y-combinator work fine).

• Example: calculate the length of a list.
len = fix (λself.
 λxs. if (isnil xs)
 0
 (1 + (self (tail xs))))

• Example: calculate the sum of a list of numbers.
sum = fix (λself.
 λxs. if (isnil xs)
 0
 ((head xs) + (self (tail xs))))

M. Snyder, George Mason University 39

Other features
How might we introduce each of the following?
• case statements
• let expressions
• records
• abstract data types
• variable assignments
• classes and objects
• types
• type inference

What else would you want to add to your language?

40M. Snyder, George Mason University

Valuable resource
To get a much more thorough treatment of writing interpreters
for more advanced language features, look for this book:

Types and Programming Languages, by Benjamin Pierce.

→ you can view it electronically through our library's website
for free! (VPN/logged in)

41M. Snyder, George Mason University

