
LAMBDA CALCULUS
(untyped)
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What is computation?
A representation of a value, which we can simplify to its simplest ("normal") form.

• We need expressions that can be simplified
• We need functions to pass around these expressions
• We need variables (parameters to functions)
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add one to input
input answer/output

Let's name the input x, and
represent this functionality:

λ x . x + 1

A function,
With parameter x, 

That will calculate (x+1)



What is computation?
A representation of a value, which we can simplify to its simplest ("normal") form.

• We need expressions that can be simplified
• We need functions to pass around these expressions
• We need variables (parameters to functions)
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add one to input
input answer/output

5 6
Let's feed 5 to the function:

((λx.x+1) 5)

Simplify ("solve"/"evaluate"):
⟶ 5+1
⟶ 6

Let's name the input x, and
represent this functionality:

λ x . x + 1



RoadMap
• We want to understand the idea of evaluation, based directly on the evaluation rules

• We learn how to extend the language: add terms, add evaluation rules, play with the 
outcome until it behaves how we want

• Eventually, the language is ready to use – we encode expressions and evaluate them.
• Writing encodings is just … coding! You write expressions in the language.
• Anything you need that’s not an extension (part of the language) can be implemented.

• We can explore what no-extensions feels like later on. 
• "Church booleans", encoding libraries of functionality
• We can explore weirder extensions like recursion.
• Quick introductory video: https://www.youtube.com/watch?v=eis11j_iGMs (1st 7 minutes)
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https://www.youtube.com/watch?v=eis11j_iGMs


The Untyped Lambda Calculus (λ)
Designed by Alonzo Church (1930s)
• Turing Complete (Turing was his doctoral student. Small world!)
• Models functions, always as 1-input

• Definition: terms, values, and evaluation
• t ::=   x   |   λ x . t   |   t t   ⟵ adjacent terms are an application (t t)
• v ::=   λ x . t

• Notes
• terms t are variables, lambdas, or applications
• only lambdas are values.
• this language is untyped!
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Our chosen rules:
• Must simplify the function down to a value

before simplifying the argument
• Can recursively explore subterms to find

simplifications, with some caveats
• Can only feed values to functions

(eval argument before calling)



λ : Evaluation Semantics
Evaluation: applying these rules to simplify 
your term until you have a value
(no more evaluation possible).

• E-App1         t1 → t1'  
     (t1 t2) → (t1' t2)

• E-App2           t → t'  
       (v t) → (v t')

• E-App-Abs __________________
    ((λ x . t) v) → t[x ↦ v]
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E-App1: "If I know that a term t1 can be evaluated to t1', 
then when I've got an application (t1 t2), I can evaluate 
just t1 to t1', and then I've got (t1' t2) left over."
--------------------------------------------------
E-App2: "When an application has a value first and a 
term second, and that term can evaluate further, we are 
allowed to evaluate that second term."
--------------------------------------------------
E-App-Abs: "When a lambda term is applied to a value 
v, it can simplify down to the body of the lambda, t, with 
all occurrences of the lambda parameter x being 
replaced with the argument v. We don't need any 
simplifications available (nothing above the line)."

→  is evaluation; these rules
define the functionality
from input to output.

t ::=   x   |   λ x . t   |   (t t)
v ::=   λ x . t

Confusing at first? That's ok! This is like the DNA of evaluation; a lot is packed into just a few rules.



λ : Evaluation Semantics
How to read these rules:
• If you have this,
• And can show that this can be done (often using more evaluation recursively),
• Then what you started with can evaluate to this.

• E-App1 t1 → t1'  
  (t1 t2) → (t1' t2)

Pattern Matching:
• When we need a term, we use placeholders with names like t1, t2, t1’, etc. to 

represent any valid term.
• when we see the same name (e.g. t1 again), it must be the same term.
• If we need a specific term, we write it out – e.g. “λx.x”, 5, true, and so on.

• Parentheses represent application. For convenience, adjacency is also used.
• (((f a) b) c)      is the same as       (f a b c)
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→  is evaluation; these rules
define the functionality
from input to output.



Better with Extensions!
• Though not required, some extensions really help understand how to 

use the lambda calculus.

t ::= x | λx.t | (t t) | t + t | t – t | t * t | t > t | t < t | <ℤ's>  | true | false | if t t t | ~t

v ::= λx.t | <ℤ's> | true | false

E-Add1 𝒕𝟏 →𝒕𝟏
"

𝒕𝟏 #𝒕𝟐 	→	 𝒕𝟏
"#𝒕𝟐

    E-Add2 𝒕𝟐 →𝒕𝟐
"

𝒗#𝒕𝟐 	→	 𝒗#𝒕𝟐
"     E-Add 

𝒗𝟏 #𝒗𝟐 	→(𝒑𝒆𝒓𝒇𝒐𝒓𝒎	𝒂𝒅𝒅𝒊𝒕𝒊𝒐𝒏)

E-GT1 𝒕𝟏 →𝒕𝟏
"

𝒕𝟏 #𝒕𝟐 	→	 𝒕𝟏
"#𝒕𝟐

    E-GT2 𝒕𝟐 →𝒕𝟐
"

𝒗#𝒕𝟐 	→	 𝒗#𝒕𝟐
"     E-GT 

𝒗𝟏 #𝒗𝟐 	→(𝒄𝒉𝒆𝒄𝒌	𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏)

E-If 𝒕𝟏	→	𝒕𝟏
"

𝒊𝒇	𝒕𝟏	𝒕𝟐	𝒕𝟑→	𝒊𝒇	𝒕𝟏
" 𝒕𝟐	𝒕𝟑

     E-If-true 
𝒊𝒇	𝒕𝒓𝒖𝒆	𝒕𝟐	𝒕𝟑→	𝒕𝟐

     E-If-false 
𝒊𝒇	𝒇𝒂𝒍𝒔𝒆	𝒕𝟐	𝒕𝟑→	𝒕𝟑

E-Neg1 𝒕→𝒕"

~𝒕	→	~𝒕"
    E-Neg-T 

~𝒕𝒓𝒖𝒆	 →	 𝒇𝒂𝒍𝒔𝒆
    E-Neg-F 

~𝒇𝒂𝒍𝒔𝒆	 →	 𝒕𝒓𝒖𝒆
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E-Mul/1/2, E-Sub/1/2, E-LT/1/2
follow the same patterns as

E-Add/1/2, E-GT/1/2.



Sample Expressions
• Consider each expression. Are they already values? If not, show each reduction, 

and name the rule used.

• ((λ x . x + 1) 3)
• (λ e . e + 1)
• ((λ z . z * z) 5)

• (((λa . (λb . a)) 10) 20)
• ( ( λx . x-(1+2)) (3*4) )
• ( (λa . a*a)  ((λx . x + 1) 6) )
• ( ( (λx . (λy . (x – y) + 1)) 10) 6)
• ( ( λx . (λy . (x – y) + 1)) 10)
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⟵ why is there always only one next possible step?



Think in Trees
• Drawing out an abstract syntax tree for terms can help 

understand them:

(((λa . (λb . a)) 10) 20)
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@

@ 20

λa 10

λb

a



λ : Evaluation Rules as Trees
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@

t1 t2

@

t1' t2

t1 → t1'E-App1

@

v t2

@

v t2'

t2 → t2'E-App2



λ : Evaluation Rules as Trees
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@

λx v

t

t[x↦v]

E-App-Abs



Reading Expressions
• Too many parentheses is a pain! How can we omit some? 

• Parentheses around an application are very common, but not strictly needed: (t1 t2)

• the body of a lambda expression grabs as much as it can (it reads through until it 
hits a close-parenthesis it didn't open, or the end of the expression).

• We can remove some parentheses for slightly easier reading.

These are equivalent:

• (λx. (λy. x+y))   
•  λx. λy. x+y
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These are not:

• ((λx. x+1) 3)
• (λx. x+1    3)



Practice: Draw Trees
Draw the trees for these terms.

• λx. x+1
• λf. λ x. f x    same as:  (λf. (λx. (f x)))
• λa. ((λb.b) a)
• λx. λy. if (x<y) x 0

Might want to look at our "full language" extensions for these last few terms.
• cons 1 (cons 2 ( cons 3 nil))
• λxs . if (isnil xs) 0 (head xs)
• λself . \n . if (n=1) 1 (self (n-1))
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Extending λ

•we will add more terms and values, to have more primitives in 
our language.

•We then also add more evaluation rules that put those new 
terms to use.

•The core lambda calculus is actually pretty painful/nearly 
useless on its own (we already sneaked numbers/ops. in!)
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Extending evaluation: Booleans

• E-if       t1 → t1'  
    (if t1 t2 t3) → (if t1' t2 t3)

• E-if-true      E-if-false    
   (if true t2 t3) → t2               (if false t2 t3) → t3
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Adding Booleans
t  ::= … | true | false | if t t t
v ::= … | true | false

so, we also still have:

t ::= x | λx.t | t t  …
v ::= λx.t  …



Extension: Natural Numbers
We borrow integers from the void (just kidding – from your years and years of 
mathematics), and then define some operators. (Here, ℤ means all integer values)

Adding Naturals
t  ::= … | ℤ | t + t | t – t | t * t
v ::= … | ℤ
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E-Add-1    E-Add-2
             t1 → t1'                t2 → t2'           
   t1 + t2     →       t1' + t2    v + t2    →   v + t2'

E-Add                     
     v1 + v2  → <perform addition>
 

Same idea for subtraction and multiplication



Sample Expressions – Bools and Ints
• Consider each expression. Are they already values?

• If not, show each evaluation step down to a value, and name the rules used.

• if true 5 10
• if false true 20  ⟵ what's weird about this one?

• λ x . if x 3 6
• (6+5)*(4-3)
• ((λ x . if x 4 7) false)
• ((λ z . if true z (9+z)) 5)

M. Snyder, George Mason University 18



Alternate Extension: Natural Numbers

This is a far more manual approach than relying on ℤ : we create 
our own numbers as zero, and successor of a number. Adding 
operations such as predecessor of a number, addition, etc. would 
be an even further set of term extensions and evaluation rules.

Previously, we just used integers from mathematics "off the 
shelf", and addition's eval rule just says "do the addition". This is 
like using addq instead of re-implementing addition in a compiler, 
but we can do it manually if for some reason we want/need…
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• E-succ  t1 → t1'   E-pred   t1 → t1'  
   succ t1 → succ t1'          pred t1 → pred t1'

• E-pred-succ     
        pred(succ t) → t

Extending evaluation: Naturals
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Adding Naturals Manually
t  ::= … | zero | succ t | pred t
v ::= … | zero | succ v



Extending evaluation: Pairs

E-pair1      t1 → t1' __      E-fst           t → t' 
     pair t1 t2 → pair t1' t2         fst t → fst t'    

E-pair2        t2 → t2' __      E-snd        t → t' 
      pair v t2 → pair v t2'    snd t → snd t'
 

E-pair-fst          E-pair-snd        _____
  fst (pair t1 t2) → t1     snd (pair t1 t2) → t2
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Adding Pairs
t  ::= … | pair t t | fst t | snd t
v ::= … | pair v v



Practice: simplifying pair terms
Reduce each to a value. Name the rules used.
(if it can’t get to a value, state “no normal form”).

• pair (2+4) 6
• fst (pair 2 4)
• fst 5

• [ (λp. (fst p) + (snd p))   (pair 2 3) ]
• [ (λp. if (fst p) (snd p) 0)  (pair true 7) ]
• if (pair true false) (pair 2 3)  (pair 4 5)
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Side-topic:

Encoding instead of Extending the language
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Encoding (Using Definitions)
The language itself shouldn't be extended with every single calculation you want to do as native 
terms; we can also just build expressions and use them.
• We'll name them for convenience, but the names are only shorthand, not a lang. feature!

• definition: not  = λ x . if x false true
• definition: and = λ a . (λ b . if a b false)

Simplify these expressions.
• (not true)
• ((λ x . and x true) true)  note, and is just a function!
• ((λ x . and x true) false) thus it isn't used infix, as in (x and y)

Define these:
• or
• nor
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Encoding Boolean values/operations
Start again, now with only the core untyped lambda calculus – no 
true/false values, no if-term, no E-Bool rules.
• We just encode everything we wish we had ourselves!

• Encoding 'true' and 'false' as functions:
• true   = λ x . λ y . x
• false  = λ x . λ y . y

• Operator encodings
• not  = λ a . (a false) true
• and = λ a . (λ b . ((a b) a))
• or   = λ a . (λ b . ((a a) b))
• if   = λ b . (λ t  . (λ e . ((b t) e)))

note: all ()'s are optional on this slide

evaluate: - ((and false) true)
  -  ((or    false) true)
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The entire language:

t::= x | λx.t | (t t)
v::= λx.t

E-App1
E-App2
E-App-Abs

No if's, and's, or other
extensions – we have
to encode booleans
from only those def'ns!



Implementing the untyped lambda calculus 
Investigate implementing the untyped lambda calculus in Haskell:

• data for our terms
• is_value function to check if a term is a value

• remember, our values are just a subset of our terms.
• eval function to perform evaluation

• this needs substitution capability (see the subst function)

Until we extend our language, it'll seem ungainly – the only values we have are functions! 
no booleans, numbers, nothing.

→ see ULC_bools_nums.hs, which extends with only bools and nums.
→ see ULC_full.hs, which also extends w/recursion and lists, as well as some renaming/equality.
→ see ULC_core.hs, which has no extensions but does encodings.
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Formal Language extension recipe

• Create more terms  t::= …
• both constructors and observers

• Constructors represent data(values)
• Observers represent operations over that data

• add some new terms
• some that are new values, others that operate on those values

• add some new values v::= …
• probably a subset of the terms you added (the ones that are "answers")

• add more evaluation rules
• enough that all "proper" terms can become values
• Probably both of these styles:

• "make progress on a subterm": see E-App1, E-App2, E-If, etc.
• "consume a specific structure": see E-App-Ab s, E-If-True, E-If-False, etc.
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Coded Language extension recipe

(implementing in Haskell)

• add to datatype Tm (extend terms)
• add cases to is_val (extend the values)
• add cases to eval, subst, etc.

→ language is extended! What other features
    can we add?
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Side topic: Evaluation Strategy
As written, our evaluation rules require that functions' arguments are 
evaluated first:

• E-App-Abs     
      ((λ x . t) v) → t[x ↦ v]

We could have implemented lazy evaluation
(and removed E-App2):

• E-App-Abs-lazy      
      ((λ x . t1) t2) → t1 [x ↦ t2]
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Evaluation Strategy

How/where does the chosen evaluation 
strategy affect:

• your implementation?
•Your language usage?
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Building an Interpreter
Start with simple core features
• define terms, values, evaluation
• expand with more features
 

Implementation choice:
• Domain Specific Language (DSL)

• a language designed/dedicated to one task or domain of knowledge
• write all tools, e.g. parser/compiler

• Embedded DSL (EDSL)
• DSL that is implemented as a library directly in some other language.
• All of the host's features are directly available: we're actually writing code in the host language 

that heavily uses the library definitions
→ we're exploring an EDSL.
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Choosing a value space
We can have eval target a separate value type instead of Tm

choose any type that's already available in the host language, like Int.
• every single expression must result in a value of this type!
→ see ExprLang1.hs  eval :: Expr -> Int

We can make our own data type for the value space
→ see ExprLang2.hs  eval :: Expr -> Val

All the packing and unpacking between Expr vs Val is a it annoying though.
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Choosing evaluation semantics

Once we include some notion of functions in our 
code, we can then choose calling conventions.

• how can we introduce functions?
• where do declarations go?
• what kinds of declarations are allowed? (recursive?)

• we can implement any evaluation strategy, such as 
pass-by-value, pass-by-name, simply by changing 
our eval definition.
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Fun diversion

The Ω-combinator always diverges.

 Ω = (λ x . x x) (λ x . x x)

Try performing the application. What do you 
get?
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Providing primitive recursion
We can provide primitive definitions for recursion.

E-fix       
  fix (λ self. t) → t [self ↦ (fix (λ self . t))]

Adding Fix
t  ::= … | fix t
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Using Recursion
• We make a worker function that will be built into the recursive function we want.

• it needs to be fed a copy of itself as the first argument
• then, recursive calls can use that argument
• "fix worker" ties the recursive knot and gives us our recursive function.

• It's like "loop unrolling", in a functional context
• Simplification will use the E-Fix rule to supply another layer for each recursive call.
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worker =   λself. λn.
  if (n = 0)
     true
     (if  (n = 1)
          false
          (self (n-2)))
is_even = fix worker

E-fix     ___
 fix (λ self. t) → t [self ↦ (fix (λ self . t))]



Representing Recursion
In the untyped lambda calculus, we can represent recursion 
directly, or with a language extension. (see ycomb.txt)

The y combinator

ycomb = \f . ( (\x . (f (\y . x x y)))
                      (\x . (f (\y . x x y)))  )

evenF = Lam "self" $ Lam "n"
                $ If (Equal vn (Num 0)) Tru
                $ If (Equal vn (Num 1)) Fls
                $ App (Var "self")
                          (Sub vn (Num 2))

iseven = App ycomb evenF
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personally, I prefer 
extending the language.

The y-combinator is a real 
headache to watch in 
action! Though it is cool...



Extension: Lists We add primitive support for singly-linked lists

Adding Pairs

t  ::= … | cons t t | nil | isnil t | head t | tail t
v ::= … | cons t t | nil

• E-isnil   t → t' 
    isnil t  → isnil t'

• E-isnil-nil      
     isnil nil → true

• E-isnil-cons       
             isnil (cons t1 t2) → false
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• E-head1    t → t’_____   E-head   _________
      head t  → head t’            head (cons t1 t2) → t1

• E-tail1    t → t’          E-tail     _______
       tail t  → tail t’           tail (cons t1 t2) → t2



Using Lists: Recursion Needed
• In order to write a function that traverses a list, you will need to use recursion. 

(Either the fix extension or the Y-combinator work fine).

• Example: calculate the length of a list.
len = fix (λself.
        λxs. if (isnil xs)
         0
         (1 + (self (tail xs))))

• Example: calculate the sum of a list of numbers.
sum = fix (λself.
  λxs. if (isnil xs)
   0
   ((head xs) + (self (tail xs))))
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Other features
How might we introduce each of the following?
• case statements
• let expressions
• records
• abstract data types
• variable assignments
• classes and objects
• types
• type inference

What else would you want to add to your language?
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Valuable resource
To get a much more thorough treatment of writing interpreters 
for more advanced language features, look for this book:

Types and Programming Languages, by Benjamin Pierce.

→ you can view it electronically through our library's website 
for free! (VPN/logged in)
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