LAMBDA CALCULUS

(untyped)
The Untyped Lambda Calculus (λ)

Designed by Alonzo Church (1930s)
- Turing Complete *(Turing was his doctoral student!)*
- Models functions, always as 1-input

Definition: terms, values, and evaluation
- $t ::= x | \lambda x . t | (t t)$
- $v ::= \lambda x . t$

Notes
- terms t are variables, lambdas, or applications
- only lambdas are values.
- this language is untyped!
Evaluation: applying these rules to simplify your term until you have a value (no more evaluation possible).

- **E-App1**: \(\frac{t_1 \rightarrow t_1'}{(t_1 \; t_2) \rightarrow (t_1' \; t_2)} \)

- **E-App2**: \(\frac{t \rightarrow t'}{(v \; t) \rightarrow (v \; t')} \)

- **E-App-Abs**: \(\frac{((\lambda \; x \; . \; t) \; v) \rightarrow t[x \rightarrow v]}{} \)

E-App1: "If I know that a term \(t_1 \) can be evaluated to \(t_1' \), then when I've got an application \((t_1 \; t_2) \), I can evaluate just \(t_1 \) to \(t_1' \), and then I've got \((t_1' \; t_2) \) left over."

E-App2: "When an application has a value first and a term second, and that term can evaluate further, we are allowed to evaluate that second term."

E-App-Abs: "When a lambda term is applied to a value \(v \), it can simplify down to the body of the lambda, \(t \), with all occurrences of the lambda parameter \(x \) being replaced with the argument \(v \). We don't need any simplifications available (nothing above the line)."
Sample Expressions

- Consider each expression. Are they already values? If not, show each reduction, and name the rule used.

- \(((\lambda x . x + 1) 3)\)
- \((\lambda e . e + 1)\)
- \(((\lambda z . z * z) 5)\)

- \(((\lambda a . (\lambda b . a)) 10) 20\)
- \((\lambda a . a*a) ((\lambda x . x + 1) 6))\)
- \(((\lambda x . (\lambda y . x – y + 1)) 10) 6)\)
- \((\lambda x . (\lambda y . x – y + 1)) 10)\)
Think in Trees

• Drawing out an abstract syntax tree for terms can help understand them:

$$(((\lambda a \cdot (\lambda b \cdot a)) \, 10) \, 20)$$
\(\lambda : \text{Evaluation Rules as Trees} \)

E-App1

\(t_1 \rightarrow t_1' \)

\[
\begin{array}{c}
\text{@} \\
t_1 \\
t_2 \\
\end{array} \rightarrow \\
\begin{array}{c}
\text{@} \\
t_1' \\
t_2 \\
\end{array}
\]

E-App2

\(t_2 \rightarrow t_2' \)

\[
\begin{array}{c}
\text{@} \\
v \\
t_2 \\
\end{array} \rightarrow \\
\begin{array}{c}
\text{@} \\
v \\
t_2' \\
\end{array}
\]
$\lambda : \text{Evaluation Rules as Trees}$

E-App-Abs
Reading Expressions

- the body of a lambda expression grabs as much as it can (it reads through until it hits a close-parenthesis it didn't open, or the end of the expression).
- We can remove some parentheses for slightly easier reading.

These are equivalent:

- $(\lambda x. (\lambda y. x+y))$
- $\lambda x. \lambda y. x+y$

These are not:

- $((\lambda x. x+1) 3)$
- $(\lambda x. x+1 3)$
Extending λ

- we will add more terms and values, to have more primitives in our language.
- The core lambda calculus is actually pretty painful/nearly useless on its own (we already sneaked numbers/ops in!)

Adding Booleans

| t ::= ... | true | false | if t t t |
| v ::= ... | true | false |
Extending evaluation: Booleans

Add these rules:

• **E-if**

 \[
 \frac{t_1 \rightarrow t_1'}{\text{(if } t_1 \text{ } t_2 \text{ } t_3 \text{)} \rightarrow \text{(if } t_1' \text{ } t_2 \text{ } t_3 \text{)}}
 \]

• **E-if-true**

 \[
 \frac{}{\text{(if true } t_2 \text{ } t_3 \text{)} \rightarrow t_2}
 \]

• **E-if-false**

 \[
 \frac{}{\text{(if false } t_2 \text{ } t_3 \text{)} \rightarrow t_3}
 \]
Extension: Natural Numbers

We borrow integers from the void (just kidding – from your years and years of mathematics), and then define some operators. (Here, \(\mathbb{Z} \) means all integer values)

Adding Naturals

| t ::= ... | \(\mathbb{Z} \) | t + t | t – t | t * t |
| v ::= ... | \(\mathbb{Z} \) |

E-Add-1

\[
\begin{align*}
\text{t}_1 + \text{t}_2 & \rightarrow \text{t}_1' + \text{t}_2 \\
\text{t}_1 & \rightarrow \text{t}_1'
\end{align*}
\]

E-Add-2

\[
\begin{align*}
\text{v} + \text{t}_2 & \rightarrow \text{v} + \text{t}_2' \\
\text{t}_2 & \rightarrow \text{t}_2'
\end{align*}
\]

E-Add

\[
\begin{align*}
\text{v1} + \text{v2} & \rightarrow \text{<perform addition>}
\end{align*}
\]

Same idea for subtraction and multiplication
Sample Expressions – Bools and Ints

- Consider each expression. Are they already values?
 - If not, show each reduction, and name the rule used.
 - Show what happens in each step.

- (if true 5 10)
- (if false true 20)
- (if true 5 false) ← what's weird about this one?

- (λ x . if x 3 6)
- ((λ x . if x 4 7) false)
- ((λ z . if true z 9) 5)

- (((λ a . (λ b . if b 100 200)) (2+3)) (if (a>4) true false))
 - Assume we've added > operator. Uses numbers and booleans!
Using Definitions

We can name expressions and use them.
Using these definitions:

- definition: \(\text{not} = (\lambda x . \text{if } x \text{ false true})\)
- definition: \(\text{and} = (\lambda a . (\lambda b . \text{if } a b \text{ false}))\)

Simplify these expressions.

- \((\text{not true})\)
- \((\lambda x . \text{and } x \text{ true}) \text{ true})\)
 \(\text{note, and is just a function!}\)
- \((\lambda x . \text{and } x \text{ true}) \text{ false})\)
 \(\text{thus it isn't used infix (x and y)}\)

Define these:

- or
- nor
Alternate Extension: Natural Numbers

This is a far more manual approach than relying on \mathbb{Z}: we create our own numbers as zero, successor of a number, and predecessor of a number. Adding operations would be an even further set of term extensions and evaluation rules.

<table>
<thead>
<tr>
<th>Adding Naturals</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t ::= \ldots \mid \text{zero} \mid \text{succ } t \mid \text{pred } t$</td>
</tr>
<tr>
<td>$v ::= \ldots \mid \text{zero} \mid \text{succ } v$</td>
</tr>
</tbody>
</table>
Extending evaluation: Naturals

- **E-succ**
 \[
 \text{succ } t_1 \rightarrow \text{succ } t_1'
 \]

- **E-pred**
 \[
 \text{pred } t_1 \rightarrow \text{pred } t_1'
 \]

- **E-pred-succ**
 \[
 \text{pred}(\text{succ } t) \rightarrow t
 \]
Extension: Pairs

We add primitive support for paired values.

Adding Pairs

| t ::= ... | pair t t | fst t | snd t |
| v ::= ... | pair v v |

- **E-pair1**
 - \(t_1 \rightarrow t_1' \)
 - \(\text{pair } t_1 t_2 \rightarrow \text{pair } t_1' t_2 \)

- **E-pair2**
 - \(t_2 \rightarrow t_2' \)
 - \(\text{pair } v t_2 \rightarrow \text{pair } v t_2' \)
Extending evaluation: Pairs

- **E-fst**
 \[t \rightarrow t' \]
 \[\text{fst} \ t \rightarrow \text{fst} \ t' \]

- **E-snd**
 \[t \rightarrow t' \]
 \[\text{snd} \ t \rightarrow \text{snd} \ t' \]

- **E-pair-fst**
 \[\text{fst} (\text{pair} \ t_1 \ t_2) \rightarrow t_1 \]

- **E-pair-snd**
 \[\text{snd} (\text{pair} \ t_1 \ t_2) \rightarrow t_2 \]
Practice: simplifying pair terms

Reduce each to a value. Name the rules used. (If it can’t get to a value, state “no normal form”).

- pair (2+4) 6
- fst (pair 2 4)
- fst 5

- [(λp. (fst p) + (snd p)) (pair 2 3)]
- [(λp. if (fst p) (snd p) 0) (pair true 7)]
- if (pair true false) (pair 2 3) (pair 4 5)
Encoding Values

• Without any extensions, we can still represent some simple values.
 • we used numbers and mathematical operators on the previous slide, but those aren't actually in our core language!

• Each value shall be represented as a higher-order function

• Note, we much prefer extending the core language!
Encoding Boolean values/operations

Start again with only the core untyped lambda calculus – no true/false values, no if-term, no E-Bool rules.

- Encoding 'true' and 'false' as functions:
 - true = \lambda x . \lambda y . x
 - false = \lambda x . \lambda y . y

- Operator encodings
 - not = \lambda a . (a false) true
 - and = \lambda a . (\lambda b . ((a b) a))
 - or = \lambda a . (\lambda b . ((a a) b))
 - if = \lambda b . (\lambda t . (\lambda e . ((b t) e)))

note: all ()'s are optional on this slide
Implementing the untyped lambda calculus

Investigate implementing the untyped lambda calculus in Haskell:

- **data** for our terms
- **is_value** function to check if a term is a value
- **eval** function to perform evaluation
 - needs substitution capability (subst function)

Until we extend our language, it'll seem ungainly – the only values we have are functions! no booleans, numbers, nothing.

→ see **ULC_bools_nums.hs**, which includes booleans and numbers.
Formal Language extension recipe

• Create more terms \(t::= \ldots \)
 • both **constructors** and **observers**
 • Constructors represent data(values)
 • Observers represent operations over that data

• add some new terms (if any) to be values \(v::= \ldots \)

• add more evaluation rules
 • enough that all "proper" terms can become values
 • observers will inspect/consume constructors

M. Snyder, George Mason University
Coded Language extension recipe

(implementing in Haskell)

- add to datatype \texttt{Tm} (extend terms)
- add cases to \texttt{is_val} (extend the values)
- add cases to \texttt{eval}, \texttt{subst}, etc.

→ language is extended! What other features can we add?
Aside: Evaluation Strategy

As written, our evaluation rules require that functions' arguments are evaluated first:

- **E-App-Abs**

 \[((\lambda x . t) v) \rightarrow t[x \mapsto v] \]

We could have implemented lazy evaluation (and **removed** E-App2):

- **E-App-Abs-lazy**

 \[((\lambda x . t_1) t_2) \rightarrow t_1 [x \mapsto t_2] \]
Evaluation Strategy

How/where does the chosen evaluation strategy affect:

- your implementation?
- Your language usage?
Building an Interpreter

Start with simple core features
- define terms, values, evaluation
- expand with more features

Implementation choice:
- **Domain Specific Language (DSL)**
 - a language designed/dedicated to one task or domain of knowledge
 - write all tools, e.g. parser/compiler
- **Embedded DSL (EDSL)**
 - DSL that is implemented as a library directly in some other language.
 - All of the host's features are directly available: we're actually writing code in the host language that heavily uses the library definitions → we're exploring an EDSL.
Choosing a value space

We can choose any type that's already available in the host language, like \texttt{Int}.
• every single expression must result in a value of this type!

→ see \texttt{ExprLang1.hs} \hspace{1cm} \texttt{eval :: Expr -> Int}

We can make our own data type for the value space

→ see \texttt{ExprLang2.hs} \hspace{1cm} \texttt{eval :: Expr -> Val}
Choosing evaluation semantics

Once we include some notion of functions in our code, we can then choose calling conventions.

• how can we introduce functions?
• where do declarations go?
• what kinds of declarations are allowed? (recursive?)

• we can implement any evaluation strategy, such as pass-by-value, pass-by-name, simply by changing our eval definition.
Fun diversion

The Ω-combinator always diverges.

$$\Omega = (\lambda x . x x) (\lambda x . x x)$$

Try performing the application. What do you get?
Providing primitive recursion

We can provide primitive definitions for recursion.

Adding Fix

\[
\begin{align*}
t & ::= \ldots \mid \text{fix } t
\end{align*}
\]

E-fix

\[
\text{fix } (\lambda \text{self. } t) \rightarrow t [\text{self} \mapsto (\text{fix } (\lambda \text{self} . t))]
\]
Using Recursion

- We make a worker function that, when "fixed", will be the recursive function we want.
 - it needs to be fed a copy of itself as the first argument
 - then, recursive calls call that argument
 - "fix worker" ties the recursive knot and gives us our recursive function.
 - Simplification will use the E-Fix rule to supply another layer for each recursive call.

```
worker = λself. λn.
    if (n = 0)
        true
    (if (n = 1)
        false
        (self (n-2)))

is_even = fix worker
```
Representing Recursion

In the untyped lambda calculus, we can represent recursion directly, or with a language extension. (see `ycomb.txt`

<table>
<thead>
<tr>
<th>The y combinator</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ycomb = \f . ((\x . (f (\y . x x y))) (\x . (f (\y . x x y))))</code></td>
</tr>
<tr>
<td><code>evenF = Lam "self" $ Lam "n" $ If (Equal vn (Num 0)) Tru $ If (Equal vn (Num 1)) Fls $ App (Var "self") (Sub vn (Num 2))</code></td>
</tr>
<tr>
<td><code>iseven = App ycomb evenF</code></td>
</tr>
</tbody>
</table>

personally, I prefer extending the language. The y-combinator is a real headache to watch in action!
Other features

How might we introduce each of the following?
• case statements
• let expressions
• records
• abstract data types
• variable assignments
• classes and objects
• types
• type inference

What else would you want to add to your language?
Valuable resource

To get a much more thorough treatment of writing interpreters for more advanced language features, look for this book:

Types and Programming Languages, by Benjamin Pierce.

→ you can view it electronically through our library's website for free! (VPN/logged in)