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How do we discuss languages?

We might focus on these qualities:

• readability: how well does a language explicitly and clearly 
describe its purpose?

• writability: how expressive is the language? how convenient is 
it for a programmer to write new code or edit existing code?

• reliability: how well does the language predictably enforce 
certain rules or patterns of usage?



Goals

Let's put that CS 330 prerequisite to use!
• Connect the grammar and language definitions to programming languages

• Syntax vs Semantics:

• Separate the representation (syntax)
• from the meaning (semantics)

• Realize how much we can control with BNFs, and what we cannot



Syntax



What is a language?
• a language is just a set of sentences.

• a sentence is a (finite) sequence of symbols.
• each (finite) sentence either is, or is not, in some language

• formal rules determine the set of sentences in a language
• If you can generate a sentence with the given production rules, you "recognize" 

that it is in the language.
• production rules map non-terminals to some mixture of terminals and non-

terminals.
• From a "start symbol" to all terminals, these rules generate all the sentences.
• Example:

• S      → Num '+' S   |   Num
• Num → Digit | Digit Num
• Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

• non-terminals: S, Num, Digit
• Start symbol: S
• terminals: +, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9



Chomsky Hierarchy of Languages

• Type 3: Regular Languages
• Type 2: Context-Free Languages
• Type 1: Context-Sensitive Languages
• Type 0: Recursively Enumerable Languages

• (we will only focus on types 3 and 2)
• Limits on what can be on the lefthand side (LHS) or 

righthand side (RHS) of production rules can 
differentiate them



Regular Languages (type 3)
These are the languages that regular expressions can describe.
• examples of regular expressions:  a*  b+  c?  ( d | e | f )
• Notes on regular expressions:

• a terminal is also a (very simple!) regular expression (a "regex" for short).
• the empty string is a regex, represented as ε.
• concatenation: AB means a string from A followed by a string from B.
• repetition (Kleene Star): A* indicates zero or more strings from A.

• A+ indicates one or more strings from A.
• selection: A | B indicates either a string from A, or a string from B.
• grouping: ( A ) uses parentheses to facilitate the other



Regular Languages (type 3)
• Recognizable by a DFA.
• Production rules:    examples

• LHS: only a non-terminal.   S ⟶ tN
• RHS: terminals, and at most one  S ⟶ Nt

non-terminal, at edge.      
• Production rules for this regex:   a+ b? c*

• S → aS | aT
• T → bU | U 
• U → ε   | cU

• style: no "information" can transmit from different places, such as 
"how many a's were there? let's have those many b's over here."

Practice: produce these strings:
• aabc
• ac
• a



Context-free Languages (type 2)
• Most programming languages are context-free.
• These are the languages recognizable by a pushdown automaton (PDA).
• Can be described by BNFs (Backus-Naur Form)
• Production rules:

• LHS: a single non-terminal
• RHS: any mixture of terminals and non-terminals

• Example representable languages:
• {an bn | n>0} (some number of a's, followed by same number of b's)
• S → SS | (S) | ε (balanced parentheses)

• A basic mathematical expressions example:
Expr → Expr  + Term  |  Expr – Term  |  Term
Term    → Var  | Num
Var       → a | b | c | d
Num    → 0 | 1 | 2 | 3 | … | 9



Context-sensitive Languages (type 1)
• Recognized by a linear bounded automaton

("a nondeterministic Turing machine whose tape is bounded by a constant 
times the length of the input")

• Rules of shape αAβ → αγβ, where A is a non-terminal, α,β are zero or 
more terminals and non-terminals, and γ is one or more terminals and 
non-terminals.   (what does this mean?)

• LHS: at least one non-terminal.
• RHS: at least one terminal or non-terminal.

Recursively Enumerable Languages (type 0)
• set of all languages that a Turing machine can recognize.
• contains all other types of languages (3, 2, 1)
• no restriction on production rules – any amount of terminals and non-

terminals on both sides.



Example Grammar (type 2)
Program →  Stmts
Stmts   →  Stmt | Stmt ; Stmts
Stmt   →  Var = Expr  |  print Expr
Var   →  a | b | c | d
Expr   →  Expr  + Term | Expr – Term  |  Term
Term   →  Var | Const
Const   → Digit | Digit Const
Digit   →  0 | 1 | 2 | … | 9 

Examples (see solutions):
• c = 1
• a = 3 ; b = a+1; print b



Example Derivation
Program  must begin with start symbol

⇒ Stmts  only apply one rule at a time!
⇒ Stmt
⇒ Var = Expr  … each line is a sentential form …
⇒ a = Expr
⇒ a = Expr + Term
⇒ a = Term + Term
⇒ a = Var + Term
⇒ a = b + Term
⇒ a = b + Const
⇒ a = b + Digit

⇒ a = b + 5  end with no more non-terminals: a sentence



Derivations

Sentential Form: combination of terminals and non-terminals. Each step 
of a derivation must be a sentential form.

Leftmost derivation: always replacing the leftmost non-terminal next. 
Derivations can also be rightmost, or neither.

 → previous example was leftmost
 → rightmost derivations exist too



Practice Problems (Production Rules)

• Create production rules that recognize the 
language described by {anbn | n≥1}

 
• Create production rules that recognize lists 

of single digits, e.g. [2,4,6,8]



Parsing Sentence 
Structures



Parse Trees

• leaves: terminals
• nodes: non-terminals

• Records which 
production rules were 
applied.
• (but not in what order!)

• extracts the meaningful 
structure out of the 
original source text.
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Example Parse Tree

Production Rules:
S → D+S | D
D → 0 | 1 | 2 | … | 9

Derivation:
S

→ D + S
→ 2 + S
→ 2 + D + S
→ 2 + 3 + S
→ 2 + 3 + D
→ 2 + 3 + 4
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Associativity
Idea:     does x-y-z behave like ((x-y)-z), or like (x-(y-z)) ?
Impact:   does the left or right operator grab its arguments first?

Left-associative addition:
rule repeats LHS’s non-terminal on the left.

 Expr  →  Expr + Num  |  Num
 Num   → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Right-associative addition:
repeats LHS’s non-terminal on the right.

 Expr →  Num + Expr  |  Num
 Num   → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Usually, all math operators are left-associative except exponentiation.
Try drawing parse trees for 1+2+3 in each of the above grammars.



Associativity

Ambiguous: The following rules don't enforce left- or right-associativity.
 Expr  →  Expr + Expr  |  Num
 Num   → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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Operator Precedence
Idea: different operators are more aggressive or less aggressive in acquiring their 
arguments. (it’s a generalized PEMDAS/BEDMAS).
Impact: operators further from the start symbol are higher precedence.
 

No Precedence (same level):  Expr  →   Expr + Num  |  Expr * Num  | Num
     Num  →   0 | 1 | 2 | 3 | … | 9

Introducing Precedence (split out to separate non-terminals/rules):
Expr → Expr  + Term  |  Term
Term → Term  * Num  |  Num
Num → 0 | 1 | 2 | 3 | ... | 9

• Here, multiplication binds more tightly than addition, by design.

• more levels of precedence possible via more nestings of non-terminals.
• Because we have Expr+Term (and not Expr+Expr), addition happens to be left-associative. 

But it could have been right-associative or ambiguous.



Ambiguity
There may be multiple valid 
parse trees for a single sentence 
in a language. This is ambiguity, 
and we can't have it in our 
programming languages.

Two Valid Derivations
Expr Expr
→ Expr+Expr → Expr*Expr
→ Num+Expr → Expr+Expr*Expr
→ 2+Expr → Num+Expr*Expr
→ 2+Expr*Expr → 2+Expr*Expr
→ 2+Num*Expr → 2+Num*Expr
→ 2+3*Expr → 2+3*Expr
→ 2+3*Num → 2+3*Num
→ 2+3*4 → 2+3*4
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Rules:
Expr→ Expr + Expr  |  Expr * Expr |  Num
Op   → * | +
Num→ 0 | 1 | 2 | … | 9



Ambiguity

Removing Ambiguity: add more non-terminals to introduce precedence or 
associativity, or somehow remove all but one possible parse tree for any sentence 
that had more than one.

Ambiguous Example:   (associativity and precedence issues!)

 Expr→ Expr + Expr  |  Expr * Expr | Num
 Num→ 0 | 1 | 2 | … | 9

Disambiguated Version:          (introduced operator precedence and left-assoc.)

 Expr →  Expr + Term  |  Term
Term → Term * Num  |  Num 

 Num →  0 | 1 | 2 | ... | 9



Practice Problems - Ambiguity

• Consider a language with if-statements and if-else 
statements. Create a string showing the ambiguity.

S ⟶ if S then S | if S then S else S | true | false | print

• Fix the grammar above so that is not ambiguous.

This is known as the "dangling else" problem.



Semantics



Semantics (overview)
Static Semantics: restrictions on strings in a language beyond basic syntax rules.
• declaring variables before usage
• numeric literals being assigned to wide enough types
• many type constraints are representable as static semantics
• Attribute Grammars help decorate a parse tree with information

Dynamic Semantics: represent the meaning of expressions, statements, and the 
execution of programs. Three main approaches are:
• operational semantics (results of running on specific machine)
• denotational semantics (recursive function theory)
• axiomatic semantics (pre- and post-conditions)



Attribute Grammars

attribute values: we  decorate a parse tree with more information
• Example: what is the type of each expression in a program?

Attribute values: info about a node in a parse tree (about a non/terminal)
Semantic functions: how we generate attribute values, per production rule

Attribute predicates: constraints on attributes as they relate to each other. 
• These encode the static semantics of the language.

(whole-program constraints, using attribute values)
• must "pass" these predicate tests, or we reject the sentence.



Example

S ⟶ if S S S  |  S+S |  S<S  |  (S)  |  N
N ⟶ 1 | 2 | 3 | 4 | 5.75

Target sentence: 
5.75 + if  1<2  3  4

Question: What is the actual type
at each node? ( ℤ, ℝ, 𝔹 )
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More Examples

S ⟶ S + S  |  S?S:S  |  true | false |  C  |  T  |  N
C ⟶ 'h' | 'j'
T ⟶ "ello"
N ⟶ 1  |  2  |  3

Think about having these types in a
Java-like language: int, char, string, bool
Target Sentences:
• 2+3
• 2+"ello"
• (true? 'h' : 2) + "ello" how would Java vs Python handle this?

    (assuming we wrote corresponding syntax) 



Side note: fun with type inference

Getting more context from code is necessary for it to be compiled.
class Main {

  public static void main(String[] args) {

    System.out.println((2 < 3 ? 80 : 'c'));
    System.out.println((2 < 3 ? 80 : 'c') + 100);
    System.out.println((2 < 3 ? 80 : 'c') + "" + 100);

  }

}

• This code prints "P", "180", and "P100".
• Java had to choose a type for the if-expression (char); it wasn't stored 

in an explicitly typed variable.
• println doesn't get to affect the type of its argument



Attribute Values

What are they?
• pieces of information that can decorate nodes in a parse tree.
• example: the actual_type of true is Boolean. (see example in later slides)

Where do they come from?
• Semantic functions, defined per production rule, generate attribute values 

of that rule’s output. 
• example: S⟶S+S , where adding two ints creates an int.

• the add node's actual_type is based on the types of its two operands.
• example: S⟶S?S:S

• an if-expr’s actual_type is shared by both branches



Semantic Functions

Production Rules each have semantic functions associated with them
to generate attribute values.

• Some are synthetic: building info up from leaves to the root node
of the parse tree (looking at sub-nodes).
• addition of two nodes with integer attributes is thus an integer

• Some are inherited: deciding attributes from root to leaves
(looking at parent-nodes).
• an expression that happens to be the guard statement of an

if-statement is expected to be a Boolean expression
• Some are intrinsic: the attribute value is determined by the node itself 

without looking at any parent/child nodes
• the actual_type of true is Boolean, without further needed context.



Attribute Predicates

• Constraints that compare attributes will further 
restrict the language. These semantic functions are 
called attribute predicates.

• These use the attribute values (calculated through 
semantic functions) to record the static semantics of 
the language.



Attribute Grammar Example

Given this grammar:
   Assign →  Var = Expr

   Expr   →  Var + Var | Num | Var

   Num    →  0 | 1 | … | 9
   Var    →  a | b | c

Attribute Values:
• actual_type: (will be synthesized)
• expected_type: (will be inherited)

Semantic Functions:
• actual()
• expected()
See implementations on next slides



Attribute Grammar Example

Targeted Production Rule:  Expr → Var1 + Var2

Semantic function implementation bits:
• expected(Expr) = <inherited from parent>

• actual(Expr) = actual(Var1)    # either of Var1 or Var2 is OK here.

Attribute Predicates:

• constraint: actual(Var1)==actual(Var2)

• constraint: actual(Expr)==expected(Expr)



Attribute Grammar Example

Targeted Production Rule:  Var → id

Attribute Predicates:

• actual(id) = lookup_type(id)

lookup_type is something like a dictionary of 
all in-scope variables and their types.



Attribute Value Computation

How are attribute values computed?

• If all attributes were inherited:
 ⟶ the tree could be decorated in top-down order.

• If all attributes were synthesized:
 ⟶ the tree could be decorated in bottom-up order.

• In many cases, both kinds are used, and some combination 
of top-down and bottom-up must be used.

• Example: typechecking tends to use both.



Similarities to Typing Rules

We will discuss typing rules later on, and we will see 
rules such as these:

What similarities do you see to evaluation rules? Are 
there any synthetic, inherited, or intrinsic attributes?

_e1::int      e2::int__
   e1+e2  ::  T 

______________
   true :: boolean
 

e1::boolean     e2::T     e3::T 
   if e1 then e2 else e3  ::  T 

⟶  evaluation
 ::   typecheck



Dynamic Semantics



How do we represent meaning?
• what does a language mean?
• little agreement on "best" way to represent semantics
• Some needs for a formal semantics:

• programmers need to know what statements mean
• compiler writers must know exactly what language constructs do 

to implement them
• correctness proofs are possible (but difficult)
• compiler generators are possible
• designers could detect ambiguities and inconsistencies



Three Approaches to Dynamic 
Semantics

Operational Semantics
 define by running on a simpler machine
Denotational Semantics
 map each non-terminal to a value
Axiomatic Semantics
 axioms / inference rules per production rule



Operational Semantics (summary)

Monkey See, Monkey Do – We define meaning by showing the 
results of running each code structure on a specific machine.

• The machine could be a VM or some idealized (simplified) 
machine.

• change in state of the machine defines each statement's 
meaning.



Operational Semantics
We define meaning by showing how some structure runs on a 
particular machine (simulated or actual).

• change in state of the entire machine (registers, memory, etc.) 
defines the structure's meaning.

• there's too much detail on a real machine:
we choose idealized virtual machines.

• great for informal descriptions: "it works like this simpler thing."

Reading further? There are two main variations:

• Natural Operational Semantics ("Big Step"): focuses on the final result

• Structural Operational Semantics ("Small Step"):
focuses on the sequence of state transitions



Operational Semantics

The definition becomes very machine-dependent L

• translate source code to an idealized computer's 
machine code

• what if this translation is formally written down? 
When the operational semantics gets too 
complicated, it becomes useless.

• best usage: informal definitions serve programmers 
and implementers.



Operational Semantics

• Horror Story: the semantics of PL/1 (est. 1976) were formally 
defined via operational semantics with the Vienna Definition 
Language(VDL), but it was too complex to be useful.

• Operational Semantics defines meaning in terms of a lower-level 
programming language. Leads to circular definitions;
keeps pushing the true meaning to another level. 
We're not going to focus too much on operational semantics.



Denotational Semantics (overview)

Recursive Function Theory – 
we map each structure to a mathematical object (a value).
• Examples: eval_bool, eval_expr, eval_stmt, etc.

• these mapping functions of one structure might in turn use 
other mapping functions, all the way down.

• usefulness: a carefully specified definition is executable! J
• See our haskell implementations of the lambda calculus.



Denotational Semantics

• Based on recursive function theory, different semantics 
are encoded per production rule. This works very well with the 
recursive nature of a BNF's definition.

• abstract (not tied to specific machine characteristics)

• Originally from Scott and Strachey (1970)

• Tied more directly to mathematics, it can express correctness of 
programs; it can be used in compiler generation systems.

• It's not as useful for language users though.



Denotational Semantics: Approach

Quick definition:
• The state of a program is all its current variables and their values.

• To track the current state: we could record a list or table of names-to-
values.
 [  a:5,  b:12,  c:[1,2,3],  other:True, …  ]

• Helper functionality: let lookup be a function that accepts a Name to look 
up, a current State, and returns the named variable's current Value.
 lookup :: Name → State → Value



Expressions  (example: evalE)
Define: expression evaluation.     Value space: Integers∪{error}
 
evalE :: Expr ⟶ State ⟶ Int
evalE(Num n,    state) = n

evalE(Var name, state) = lookup(name, state)

evalE(BinOp expr1 '+' expr2,state) =
    let v1 = evalE(expr1,state)
   v2 = evalE(expr2,state)
    in if (v1==error or v2==error):
       then error
       else v1+v2

evalE(BinOp expr1 '*' expr2,state) =  …



Denotational Semantics: Approach
• value space : choose a mathematical object(type) for each language entity.

• Perhaps integers, bools, strings, state-of-memory, or combinations of such things.
• example:  valuespace = ints ∪ reals ∪ bools ∪ ⊥ 

• Define functions mapping from each entity to the chosen objects
• E.g. mapping each term to an integer

• Include the error value, so failing computations have a value 
representation. This value is called Bottom; it's considered an element of 
every single type. Often shown as ⊥.

• Loops are converted to recursion.
• As statements, the value space is probably the new program state.

 



Denotational Semantics: Basic Idea

To define the semantics of some calculation, such as type checking/evaluation:

• group up the language's structures: related expressions, statements, or even 
more fine-grained, such as digits, identifiers, boolean expressions, etc.

• choose a value space: usually the type of results your calculation yields. 
Perhaps integers, other types, whatever the calculation should yield. This can 
be a combination of things, such as Ints ∪ Doubles ∪ Booleans ∪ …

• define functions that can all call upon each other, each defining the meaning 
(e.g., typeof) for each of those groups.

• e.g.,  evalBool, evalExpr, evalStmt

• taken together, these functions define the semantics of that calculation.



Expressions (same example, evalE)
Define: expression evaluation.     Value space: Integers∪{error}
 
evalE :: Expr ⟶ State ⟶ Int
evalE(Num n,    state) = n

evalE(Var name, state) = lookup(name, state)

evalE(BinOp expr1 '+' expr2,state) =
    let v1 = evalE(expr1,state)
   v2 = evalE(expr2,state)
    in if (v1==error or v2==error):
       then error
       else v1+v2

evalE(BinOp expr1 '*' expr2,state) =  …



Assignment Statements (evalS)

Define: assignment.           Value space: state sets ∪{error}

evalS :: Stmt ⟶ State ⟶ State
evalS(x := expr, s) = let  v = evalE(expr,s) 
    in if v==error:
                         then error
                         else update(s, (x,v))

# however you want to reset name's value in s
update :: State ⟶ (Name, Val) ⟶ State
update(s, (name, val)) =   ( s[name] == val )



Loops (evalS)

evalS :: Stmt ⟶ State ⟶ State
evalS(while b do L, s) =
  let bv = evalB(b, s)
  in if (bv==false)
     then s
     else if (bv==true)
          then let s2 = evalS(L, s)
               in evalS(while b do L, s2)
          else error

              



Loop Meaning

• the loop's meaning is the resulting state: variables and their values.

• A loop is converted from iteration to recursion, where the 
recursive control is mathematically defined by other recursive 
state-mapping functions.

• recursion is easier to describe with mathematical rigor than 
iteration



Denotational Semantics:
Example

See DenExpr.hs for an example.
• defines digits, expressions, statements
• provides functions evalE and evalS.
• sneak peek at some Haskell code – just focus on 

general ideas of denotational semantics, and the 
specifics of Haskell code will be our focus later.
• I think it reads better than the book's notation...



Denotational Semantics: Summary

• can be used to prove correctness of programs

• provides a rigorous way to think about programs

• can aid language design

• has been used in compiler generation systems

• not very useful to language users (programmers)



Axiomatic Semantics (overview)

Proof by Conditions – allows us to prove some claim by 
carefully showing the implications of each individual statement 
in the program.
• define axioms and inference rules for each production rule
• pre- and post-conditions help expose meaning of statement
• start with the post-condition of the entire program, and work 

backwards, seeking the weakest pre-condition necessary. 
Loops are difficult!



Axiomatic Semantics

• Pre-condition: an assertion (about variables' 
relations) that is true just before a statement

• Post-condition: an assertion (about variables' 
relations) that is true following a statement

• Weakest Pre-condition: the least restrictive pre-
condition that will guarantee the post-condition.



Form

• pre/post form:        {P} statement {Q}

let's find a precondition.
• example:    ?   a=b+1   {a>1}

• possible precondition: {b>10}
• weakest precondition: {b>  0}



Axiomatic Semantics:
Assignment

• axiom for assignment statements:
 (x=E):   "same Q, except that now variable X maps to E."

 
    {Q} x = E   {QX→E}

• The Rule of Consequence: "update pre/post conditions."

 {P} S {Q},  P' ⇒ P, Q ⇒ Q'
  {P'} S {Q'}



Axiomatic Semantics:
Sequences

Inference rule for sequences of the form: s1; s2

 {PA} S1 {PB}
 {PB} S2 {PC}

      {PA} S1 {PB}, {PB} S2 {PC}
          {PA} S1; S2 {PC}



Axiomatic Semantics:
Selection

• inference rule for selection:  if B then S1 else S2

 {B and P} S1 {Q},    {(not B) and P} S2 {Q}

     {P} if B Then S1 else S2 {Q}



Axiomatic Semantics:
Summary

• difficult to develop axioms and inference rules 
for all statements in a language

• good for correctness proofs, great for formally 
reasoning about programs

• not useful for language implementers, nor for 
language users.



Comparing Semantics

Operational: the state changes are defined by 
coded algorithms

Denotational: state changes are defined by 
mathematical functions

Axiomatic: state changes are directly/manually 
referenced in pre- and post-conditions as needed 
(a bit ad hoc)



Summary

Syntax: regexs/BNFs/etc. describe the structural syntax of a language.

Static Semantics: Attribute Grammars and semantic functions can 
further encode the constraints on the structure of well-formed 
programs.

Dynamic Semantics: No best approach to record/reason about a 
program's meaning, but we compared operational, denotational, and 
axiomatic semantics. 


