
Haskell

Language Features Overview

• functional
• higher order functions, recursion instead of loops

• declarative feel
• focus on describing logic of "what", instead of "how" to compute

• non-strict ("lazy")
• Only computes any sub-expression when absolutely needed

• pure*
• No side-effects like re-assignment, printing, etc.
• * - for all but one tiny corner of the language (the IO monad)

• typing:
• strongly statically typed
• type inference with optional ascriptions

Usage

• Compile
• can compile to a main function ghc --make -o somename YourFile.hs

• Interpret
• Can load modules and interpret functions ghci YourFile.hs
• REPL ("read-eval-print loop") – you can interactively load modules, add definitions

inline, explore computations

• Compilation/Type Checking
• You will fight the type checker at compilation time much more, and then see far

fewer runtime exceptions, than you may be used to.
• So use the REPL to explore what changes your code needs next

Basic Datatypes
• Some basic types: Int, Float, Double, Bool, Char

• lists: [Int] [Double] [a] [a -> b]
• Comma-separated values in square brackets. [1,2,3]
• These are singly-linked lists. brackets/commas are just "syntactic sugar" for the underlying

representation. You can represent one node with the cons operator (:)
• headval : tailval (1:[]) (1: (2: (3:[])))

• strings are literally just a list of Char: [Char]
• Also can use double-quotes as "syntactic sugar" (pretty syntax for usability)

• tuples of length 2+:
• parenthesized comma separated listing. (x,y,z)

• Lambdas(functions):
• \ x -> expr

More about Types

• type variables: any lowercase identifiers where a type is expected
• Example: a ⟶ [a]

• representing "forall types a, the function from one value of type a to a list of values of type a"
• Example: (a⟶ b) ⟶ [a] ⟶ [b]

• "forall types a and b, this accepts a function of type a-to-b, and a list of a's, to return a list of b's.

• Type ascriptions:
• any expression can have a required type ascribed with (::)
• Useful for narrowing down the type for your intent, and get better error messages
• Examples:

• (5::Int)
• (\x -> x+1)::(Int ⟶ Int)

Definitions

• a file can have many top-level definitions.
• Each definition is one or more equations, with a pattern on the lefthand side, and

an expression on the righthand side.
• patterns are for matching your data's shape – it's not an expression you evaluate! Learning

where patterns go and where expressions go is an important early step.

• we'll revisit this more all throughout, and learn more of what happens here.

inc x = x+1

length [] = 0
length (val:vals) = 1 + (length vals)

Lists

• focus on the fact that they are singly-linked lists
• We process them one node at a time
• Pattern matching lets us focus on a list either being empty [] or non-empty (using the

cons(:) constructor)

isEmpty :: [a] ⟶ Bool
isEmpty [] = True
isEmpty (x:xs) = False

length :: [a] ⟶ Int
length [] = 0 -- [] means empty list
length (x:xs) = 1 + length (xs) -- (x:xs) is a pattern; x is the head value,

-- xs is the rest of the list

Expressions
• Branching
• If-expressions

• if expr then expr else expr
• Case statements

• case expr of
pattern -> expr
pattern -> expr
. . .

• Iteration
• Recursion only (no loops!)

• functions
• anonymous: lambdas
• \x -> expr

• named: let-expressions
• let f x = expr in expr

• higher-order functions
• arg. or return type is a function

• partial applications are common
• Feed some but not all args.

Abstract Data Types

• Build-your-own datatypes.
• Some basic types are defined this way:
• data Bool = True | False
• data Maybe a = Just a | Nothing
• data Color = Green| Blue | RGB Int Int Int
• data Either a b = Left a |Right b

• Give a name, perhaps some type variables, and then different
constructors that can each take some number of arguments.
• may feel much like our lambda calculus extensions

General file contents

• At the top, a module statement

module Homework4 where

• Next, maybe some import statements

import Data.List
import Prelude hiding (zipWith, any)

• The rest of the file is just "top-level definitions".

add x y = x+y

isEmpty [] = True
isEmpty (x:xs) = False

Pattern Matching

• We see a focus on the shape of our data
• We know what type we have, but which

constructor was used?
• We need:

• a constructor, with sub-patterns for each of its arguments.
• simple variable names work as guaranteed-match patterns
• concrete values, e.g. [], 5, True, etc. (some are truly just more constructors)

• We define functions as a series of patterns-to-expressions
• In the order presented, if the pattern matches, simplify to that expression (take that path)
• Variables and concrete values allowed in patterns
• Expressions don't occur inside patterns (common beginner's syntactic mistake!)
• the "don't-care" wildcard underscore _ is useful.

• Matches one thing that you won't be using. Example: middle (_,v,_) = v

map f [] = []
map f (x:xs) = (f x) : map f xs

justs :: [Maybe a] -> [a]
justs (Nothing:xs) = justs xs
justs ((Just x) :xs) = x:justs xs
justs [] = []

Top-Level Definitions
• Functions

• Can have multiple equation lines, each with a different pattern of arguments
• A function with no arguments? These variables are like "zero-argument" functions

• datatype definitions
• data Bool = True | False
• data Color = Green | Gold | RGB Int Int Int
• data Optional a = Present a | Empty
• data MyList a = Cons a (MyList a) | Nil

• Type synonyms
• Only benefit is ease of use, e.g.:

• type Name = String
• type State = [(String,Int)]

Some corner cases, catalogued

• Patterns (functions or case expressions)
• non-exhaustive pattern match error:

• the function was called with data that didn't match any of our provided patterns.
• overlapping patterns warning:

• we wrote a pattern that can't ever be used, because an earlier more general pattern wins

• Numbers
• Type classes and the provided numeric types

• Many functions are more general than we're expecting, and we'll choose to use type ascriptions to
keep life simple

• converting between number types is weird…

• Negative numbers, precedence of (-)
• Partial application makes negative numbers a bit cumbersome. We'll often need to parenthesize them.

