THE SIMPLY TYPED
LAMBDA CALCULUS

The Simply Typed Lambda Calculus

We will enhance our untyped lambda calculus with types.

Type checking is usually a single static phase that happens
before any evaluation.

- a term "typechecks" (passes type-checking analysis) when it
has a valid type

- we don't want to evaluate any terms that don't typecheck.

The Simply Typed Lambda Calculus

- implement typecheck :: Tm -> Ty
- where the target Ty is another datatype representing your types

- we write type-checking rules to define the types of terms
- similar format as our evaluation rules. Instead of — , we define :

A Simple Starting Point

Here's the core simply typed lambda calculus,
extended with bools and numbers.

(keeping things ASCll-easy:
We occasionally write B instead
of B, and Z instead of Z.)

t=AxTt | (tt) | x

true | false | ifttt
<integers> | t+t|t-t|t*t
t<t | t>t

"is this term well-typed?"
Is just as much work as
Tu=T->T | Z | B "what is this term's type?"
v = AX:T.t | true | false | <integers>

The simply-typed lambda calculus (A_,)

- We introduce types to the lambda calculus.
- Each term in the language has a type
- If there is no valid type, it is not in the language.

- types could be implicit or explicit
- We will add some explicit annotations to our language.

- type ascription operator, . see STLC.hs
- true : B
- 5 Z
- (Pair true 5) : (B,Z)

Sample Rule: Ty-app -t Tg—T, -t Ty
[+ (t1 t2) . Tr

Notes on A_,

The core simply typed lambda calculus is strongly normalizing
- no unbounded calculation — always halts!

- we lost the ability to do any recursion by giving terms types
(why? try writing a type for the Q- and y-combinators.)

- but we can regain recursion by extending the language as before
- fix extension will look the same.

Maintaining an environment

typechecking
- navigates subterms to determine types
- but, no substitution occurs (we're not evaluating yet)

- we will need to look at a variable and 'remember’
at what type it was introduced, to understand each later usage

handling variables

- store their types when introduced:
lambda parameter is in scope during the lambda body.

- all enclosing lambdas' variables/types must be tracked
- save them in a set, I ("gamma"), called the environment.

Maintaining an environment

How can we store this information?
(in our Haskell implementation)

- We can keep a set (or list) of pairs, [(String, Ty)]

- look up variables' types

- this "environment" of all variables currently in scope
Is called Gamma (I).

M. Snyder, George Mason University 9

we remember a variable's type and can

Basic typing rules

if the set I has (x,T) in it, then
(x.T)el [can look up variable x and

+ Ty-var find its type is T
[-Xx:T

Lambdas are functions from the argument's

explicitly given type to the body's found type.

- Ty-A (LT Ht T, If we extend I with (x,T,) and
_ _ that finds t's type to be T,

M= (AXTg) & Tg— T, then the original I derives the

type of (Ax:T,.T,) to be T;—T,

: Ty-app rl_ t1 :Td_)Tr rl_ t9:Td if the argument's type is compatible, an

. application results in the func's output type.
M) T, IfI finds t,:T,—T,, and I finds

t,:T,, then [derives the
overall type of (1, t,) to be T,

M. Snyder, George Mason University 10

Typing rules: Booleans

without consulting any
o Ty_true environment, we know the
type of true is B.

- true : B
. Ty-false same for false.
I false : B
If's need boolean guards, and branches of
IfT derives a's type as B, and
’ Ty_lf [Fa: B rl—b:T1 rI_C:T1 I derives that both b and ¢
'+ ifabc: T1 have some type T, then I

derives the overall type of (if a
bc)as T

M. Snyder, George Mason University 11

Typing rules: Numbers

. Ty_Z Whole numbers are ints.
_ With no I needed, we know
= <#> 17 any literal integer is of type Z.
. . Adding ints gives us an int.
- Ty-add Il O/ i P/ If I derives that t; and t, are
[t + 1) Z both of type Z, then I derives
(t,+t,) to be of type Z.
‘ Ty'GT [+ 1:1 /A [tQ:Z Comparing ints results in a bool.
[Ft,>t, | B If I derives t1 and t2 are both

of type Z, then G derives that
t1>t2 is of type B.

Ty-sub, Ty-mul, TyLT: similar to Ty-add and Ty-GT
see STLC.hs

M. Snyder, George Mason University 12

Using Typing Rules — Typing Proof Trees

- We don't simplify (thls isn't evaluation), so our continual reduce-with-
justification doesn't work directly as it did with evaluation rules.

- We write a proof tree from bottom up to show the claim of the bottom-most
line. This is like a roadmap of the stack while running typechecking!

- each level uses a typing rule with actual terms plugged in.

- we can label which rule was used
- butit's always the one applicable rule — surprisingly simple!

showthat: (1 + 3) : Z

Ty-Z Ty-Z
{1 : Z {Y3: 7 1y-add
{}v (1 +3) :Z

M. Snyder, George Mason University

Using Typing Rules — Typing Proof Trees

show that: (if true 4 5) : Z

Ty-true Ty-Z Ty-Z
{}+true : B {4 : 7 {Y-5: Z 1y-1f
{} v (if true 4 5) : Z

true 4 5

M. Snyder, George Mason University 14

Using Typing Rules — Typing Proof Trees

Begin with the knowledge that x : Z. so, '={(x,Z)}

Showthat: (4+x) :Z 4 X
Ty-Z Ty-Var
{(X,Z)} H4 : Z {(X,Z)} Fx: 7Z Ty-Add

{(X,Z)} v (4 + x) : Z

M. Snyder, George Mason University 15

Using Typing Rules — Typing Proof Trees

show that: ((Ax:Z.x+1) 3) : Z 5
AXZ 3
|
{(X,Z)}-x: Z {(X,Z)}1:7Z 1y-add 1 [
{(X,Z)}I_ X+1 . Z Ty-A Ty-Z
{} (AX:Z.x+1) : 7Z-7 {Y-3:7 1y-app

{} v ((Ax:Z.x+1) 3) : Z

M. Snyder, George Mason University 16

Typing Proof Tree Examples

show that: if (1<2)34 : Z -
‘ o]
{+-1: 7 {Y-2: 7 war Ty-Z Ty-Z
{} (1<2) : B {} 3: 7Z {YW 4: Zry-15

{}+ if (1<2) 34 : Z

M. Snyder, George Mason University

Typing Proof Tree Shape

show that: if (1<2)34 :Z if

Ty-Z Ty-Z
{}+1: Z {}-2: Z 1y-17 Ty-Z Ty-Z
{}F (1<2) : B {}+- 3: Z {} 4: Zry-1f < 3

{3F if (1<2) 34 : Z

The shape of the syntax tree exactly gives you the
(inverted) shape of the proof tree.

17

M. Snyder, George Mason University

Typing Proof Tree Examples

As soon as you can show a specific

18

try/fail to show that: (3+4) * true : Z

Ty-Z Ty-Z

\-3:7. N-4:7. 1y-Add

requirement of a specific rule cannot
be satisfied, you can stop. This might
be sooner or later depending on which
parts of the proof tree you work on.

*

Ty-true -

{}+(3+4) : Z

+

N true:B ry-uw
(- (3+4) * true : 277 In

does not typecheck:
« Ty-mul requires t,:Z, but we have true:B ...
* (Ty-mul's t; term does typecheck, by the way)

true

and explain why.

Name the rule that fails,

M. Snyder, George Mason University 19

Typing Proof Tree Examples .

AX:B @

show that: ((Ax:B. if x 3 4) ((Aa:Z. a<5)9)) :Z| U K Lo]
=]

man

Ty-Var Ty-Z

Ty-Var Ty-Z Ty-Z {(a,Z)}Ya:Z {(a,Z)}5:ZryLt
{(,B)Yx:B {(x,B)} 3:Z {(x,B)}ra:Zry¢ {(a,Z)}-(a<5):B TvA _ TyZ
{(x,B)}-(if x 3 4):7Z Ty-A {}F(Aa:Z.a<5) :Z->B {}F9 : Z1y-App
{}F (Ax:B.if x 3 4):B-Z {}F((Aa:Z.a<5) 9) : B Ty-App

{}F ((Ax:B.if x 3 4) ((Aa: Z.a<k5) 9)) : Z

M. Snyder, George Mason University 20

Practice Problems — Typing Proof Trees

Write full typing proof trees to find the type for each expression:

1. ((MZ.X) (An:Z.n) 10))
2. ((MDZ.if true x (x+1)) 5)
3. (NRZ—Z. A Z 1 X)

4. ((NZ. Ny:Z.x+y) 5) 8)

Explain why the following do not have valid typing proof trees
(answer by discussing which subterms' needed types don't comply
with the example's needs)

5. (35)

6. ((AZ.x+1) true)

M. Snyder, George Mason University

Practice Problems - encodings

Now that we have our language, let’'s use it!
- Other than adding types to lambdas, this is just as easy as in the

untyped lambda calculus.
- We just label the type of our lambdas' arguments along the way

Encode these:

cand ¢ B — B — B

- or B — B — B

- ge 4L — 7 — B (greater or equal than)
inc :: Z — Z

*max3 :: Z — 1 — 1 — 7

21

M. Snyder, George Mason University 22

Extending A_,

- Terms/values extended as before
— often need explicit types, e.g. Ax:T.t

- Often add one new type to T ::= for each extension

- Each term gets exactly one typing rule
— no substitution, so easier than evaluation rules!
— must maintain ', so trickier than evaluation rules!
— usually invoke typechecking (:) on all subterms,
used to claim overall term's type

M. Snyder, George Mason University

Practice: Pairs Extension

Language additions:

t:=...|pairtt|fstt|sndt
vi=...|pairtt
T:=...|(T,T)

Evaluation Rules:
(same as before)

Typing Rules:

(one per new term)

23

Ty-Pair: [-t:T,, 1T,

[+ pairt;t, : (T4, T5)

Ty-Fst: T+t (T,,T,)
[-fstt : T,

Ty-Snd: -t (T4, T,).
[-sndt : T,

M. Snyder, George Mason University 24

Practice Problems — Pairs + Typing Proof Trees

Draw typing proof trees to find these expressions' types:

pair true 4

fst (pair 3 true)

snd p, with '={(p, (B,Z))}.
Ap:(Z,B). if (snd p) (fstp) 0
(pair (X:Z.x+1) (Mf: Z—Z.f 1))

ok~ wbdh -~

Fails typechecking:
1. fst (AX:Z.pair X X)

M. Snyder, George Mason University 25

Practice: Recursion Extension

We again add Fix to the language, only now it involves typed lambdas.

Language addition: to=... | fix t (note: fix t is not a value!)

Evaluation Rule: |
(same as before, E-Fix:
with type ascription)

fix AXiT.t) > t[xe (fix (AT . 1)

Typing Rule: Ty-Fix: _ [HtT—T
(one per new term) M-fixt:T

M. Snyder, George Mason University 26

Practice Problems - Recursion

Draw proof trees to find these expressions' types:

1. fix (Aself:Z—Z. M:Z. if (n<2) 1 (n*(self (n-1)))

- Just sketch the bottom two levels to see Ty-Fix in use.

Encode these no-lists-involved things:
2. factorial (shown above)
3. fibonacci

M. Snyder, George Mason University

Practice: Lists Extension s

Language additions:

t =
T::= | [T1
V=

Evaluation Rules:

| nil T|constt|headt]tailt]isnilt

| nil T|constt

note: nil needs a type! Why?

E-head:

t—t

head t — head t'

E-tail:

E-head-cons: head(cons t; t;) — t4

t -t

tail t — tail t'

E-tail-cons:

tail(cons t4 t;) — t5

E-isnil: t—t
isnil t — isnil t'

E-isnil-true: isnil (nil T) — true

E-isnil-false: isnil (cons t4 t,) — false

M. Snyder, George Mason University

Practice: Lists Extension 2z

Language additions:

t::=...|nilT|constt|headt|tailt|isnilt
T:=.. | [T]
vi=..|nilT|constt

Evaluation Rules:
(same as before)

28

nil T: the T should be the
overall list-type, e.qg. nil [Z]

Typing Rules: (one per new term)

Ty-nil:

Ty-cons:

Ty-head:
=il [T - [T] Ty-tail:
[T, TELT]

[=constyty @ [T] Ty-isnil:

=t [T

Fl—headt:T‘

[t [T]

M- tailt © [T]

[+t [T]

M=isnilt : B

M. Snyder, George Mason University 29

Practice Problems - Lists

Draw proof trees to find these expressions' types:

1. head (if true (cons 5 (nil [Z])) (nil [Z])))
2. head (tail (cons 10 (cons 12 (cons 13 (nil [Z])))))

Encode these:

3. length:: [Z] — Z

4. map:: (Z—Z) — [Z] — [Z]

5. nthiZ] - Z — Z could fail at evaluation!

M. Snyder, George Mason University 30

Thoughts

- With no extensions, (with only t::=x|Ax:T.t|(t t))
A_, is degenerate (it has no values). Why?

- evaluation should preserve types — a term's value should not
change types due to further evaluation.
— true for A_, as presented

- erasure: after typechecking, we can erase all types in A_, and
evaluation is unaffected. That's neat!
- Java's Generics were added this way
- "unerasing" is the process of inferring types

Curry-Howard Correspondence

- Strikingly similar features shared between logic and type theory.
- continues through many more complex features of type theory!
Propositions as Types analogy

Logic concept Type Theory concept

« given proof P, make proof of Q | type P — Q function from P to Q

« stmtthat P or Q is true type P + Q union type (e.g. Either a b)

P is provable | « claim: P is true type P inhabited | claim: elt of P exists

