THE SIMPLY TYPED
LAMBDA CALCULUS




The Simply Typed Lambda Calculus

We will enhance our untyped lambda calculus with types.

Type checking is usually a single static phase that happens
before any evaluation.

- a term "typechecks" (passes type-checking analysis) when it
has a valid type

- we don't want to evaluate any terms that don't typecheck.



The Simply Typed Lambda Calculus

- implement typecheck :: Tm -> Ty
- where the target Ty is another datatype representing your types

- we write type-checking rules to define the types of terms
- similar format as our evaluation rules. Instead of — , we define :



A Simple Starting Point

Here's the core simply typed lambda calculus,
extended with bools and numbers.

(keeping things ASCll-easy:
We occasionally write B instead
of B, and Z instead of Z.)

t=AxTt | (tt) | x

true | false | ifttt
<integers> | t+t|t-t|t*t
t<t | t>t

"is this term well-typed?"
Is just as much work as
Tu=T->T | Z | B "what is this term's type?"
v = AX:T.t | true | false | <integers>




The simply-typed lambda calculus (A_,)

- We introduce types to the lambda calculus.
- Each term in the language has a type
- If there is no valid type, it is not in the language.

- types could be implicit or explicit
- We will add some explicit annotations to our language.

- type ascription operator, . see STLC.hs
- true : B
- 5 Z
- (Pair true 5) : (B,Z)

Sample Rule: Ty-app -t Tg—T, -t Ty
[+ (t1 t2) . Tr




Notes on A_,

The core simply typed lambda calculus is strongly normalizing
- no unbounded calculation — always halts!

- we lost the ability to do any recursion by giving terms types
(why? try writing a type for the Q- and y-combinators.)

- but we can regain recursion by extending the language as before
- fix extension will look the same.



Maintaining an environment

typechecking
- navigates subterms to determine types
- but, no substitution occurs (we're not evaluating yet)

- we will need to look at a variable and 'remember’
at what type it was introduced, to understand each later usage

handling variables

- store their types when introduced:
lambda parameter is in scope during the lambda body.

- all enclosing lambdas' variables/types must be tracked
- save them in a set, I ("gamma"), called the environment.



Maintaining an environment

How can we store this information?
(in our Haskell implementation)

- We can keep a set (or list) of pairs, [(String, Ty)]

- look up variables' types

- this "environment" of all variables currently in scope
Is called Gamma (I ).
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we remember a variable's type and can

Basic typing rules

if the set I has (x,T) in it, then
(x.T)el [ can look up variable x and

+ Ty-var find its type is T
[ -Xx:T

Lambdas are functions from the argument's

explicitly given type to the body's found type.

- Ty-A (LT Ht T, If we extend I with (x,T,) and
_ _ that finds t's type to be T,

M= (AXTg ) & Tg— T, then the original I derives the

type of (Ax:T,.T,) to be T;—T,

: Ty-app rl_ t1 :Td_)Tr rl_ t9:Td if the argument's type is compatible, an

. application results in the func's output type.
M) T, IfI finds t,:T,—T,, and I finds

t,:T,, then [ derives the
overall type of (1, t,) to be T,
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Typing rules: Booleans

without consulting any
o Ty_true environment, we know the
type of true is B.

- true : B
. Ty-false same for false.
I false : B
If's need boolean guards, and branches of
IfT derives a's type as B, and
’ Ty_lf [Fa: B rl—b:T1 rI_C:T1 I derives that both b and ¢
'+ ifabc: T1 have some type T, then I

derives the overall type of (if a
bc)as T
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Typing rules: Numbers

. Ty_Z Whole numbers are ints.
_ With no I needed, we know
= <#> 17 any literal integer is of type Z.
. . Adding ints gives us an int.
- Ty-add Il O/ i P/ If I derives that t; and t, are
[t + 1) Z both of type Z, then I derives
(t,+t,) to be of type Z.
‘ Ty'GT [+ 1:1 /A [ tQ:Z Comparing ints results in a bool.
[Ft,>t, | B If I derives t1 and t2 are both

of type Z, then G derives that
t1>t2 is of type B.

Ty-sub, Ty-mul, TyLT: similar to Ty-add and Ty-GT
see STLC.hs
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Using Typing Rules — Typing Proof Trees

- We don't simplify (thls isn't evaluation), so our continual reduce-with-
justification doesn't work directly as it did with evaluation rules.

- We write a proof tree from bottom up to show the claim of the bottom-most
line. This is like a roadmap of the stack while running typechecking!

- each level uses a typing rule with actual terms plugged in.

- we can label which rule was used
- butit's always the one applicable rule — surprisingly simple!

showthat: (1 + 3) : Z

Ty-Z Ty-Z
{1 : Z {Y3: 7 1y-add
{}v (1 +3) :Z
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Using Typing Rules — Typing Proof Trees

show that: (if true 4 5) : Z

Ty-true Ty-Z Ty-Z
{}+true : B {4 : 7 {Y-5: Z 1y-1f
{} v (if true 4 5) : Z

true 4 5
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Using Typing Rules — Typing Proof Trees

Begin with the knowledge that x : Z. so, '={(x,Z)}

Showthat: (4+x) :Z 4 X
Ty-Z Ty-Var
{(X,Z)} H4 : Z {(X,Z)} Fx: 7Z Ty-Add

{(X,Z)} v (4 + x) : Z
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Using Typing Rules — Typing Proof Trees

show that: ((Ax:Z.x+1) 3) : Z 5
AXZ 3
|
{(X,Z)}-x: Z {(X,Z)}1:7Z 1y-add 1 [
{(X,Z)}I_ X+1 . Z Ty-A Ty-Z
{} (AX:Z.x+1) : 7Z-7 {Y-3:7 1y-app

{} v ((Ax:Z.x+1) 3) : Z



M. Snyder, George Mason University 16

Typing Proof Tree Examples

show that: if (1<2)34 : Z -
‘ o]
{+-1: 7 {Y-2: 7 war Ty-Z Ty-Z
{} (1<2) : B {} 3: 7Z {YW 4: Zry-15

{}+ if (1<2) 34 : Z
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Typing Proof Tree Shape

show that: if (1<2)34 :Z if

Ty-Z Ty-Z
{}+1: Z {}-2: Z 1y-17 Ty-Z Ty-Z
{}F (1<2) : B {}+- 3: Z {} 4: Zry-1f < 3

{3F if (1<2) 34 : Z

The shape of the syntax tree exactly gives you the
(inverted) shape of the proof tree.

17
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Typing Proof Tree Examples

As soon as you can show a specific

18

try/fail to show that: (3+4) * true : Z

Ty-Z Ty-Z

\-3:7. N-4:7. 1y-Add

requirement of a specific rule cannot
be satisfied, you can stop. This might
be sooner or later depending on which
parts of the proof tree you work on.

*

Ty-true -

{}+(3+4) : Z

+

N true:B ry-uw
(- (3+4) * true : 277 In

does not typecheck:
« Ty-mul requires t,:Z, but we have true:B ...
* (Ty-mul's t; term does typecheck, by the way)

true

and explain why.

Name the rule that fails,
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Typing Proof Tree Examples .

AX:B @

show that: ((Ax:B. if x 3 4) ((Aa:Z. a<5)9)) :Z| U K Lo]
=]

man

Ty-Var Ty-Z

Ty-Var Ty-Z Ty-Z {(a,Z)}Ya:Z {(a,Z)}5:ZryLt
{(,B)Yx:B {(x,B)} 3:Z {(x,B)}ra:Zry¢ {(a,Z)}-(a<5):B TvA _ TyZ
{(x,B)}-(if x 3 4):7Z Ty-A {}F(Aa:Z.a<5) :Z->B {}F9 : Z1y-App
{}F (Ax:B.if x 3 4):B-Z {}F((Aa:Z.a<5) 9) : B Ty-App

{}F ((Ax:B.if x 3 4) ((Aa: Z.a<k5) 9)) : Z
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Practice Problems — Typing Proof Trees

Write full typing proof trees to find the type for each expression:

1. ((MZ.X) (An:Z.n) 10))
2. ((MDZ.if true x (x+1)) 5)
3. (NRZ—Z. A Z 1 X)

4. ((NZ. Ny:Z.x+y) 5) 8)

Explain why the following do not have valid typing proof trees
(answer by discussing which subterms' needed types don't comply
with the example's needs)

5. (35)

6. ((AZ.x+1) true)
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Practice Problems - encodings

Now that we have our language, let’'s use it!
- Other than adding types to lambdas, this is just as easy as in the

untyped lambda calculus.
- We just label the type of our lambdas' arguments along the way

Encode these:

cand ¢ B — B — B

- or B — B — B

- ge 4L — 7 — B (greater or equal than)
inc :: Z — Z

*max3 :: Z — 1 — 1 — 7

21
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Extending A_,

- Terms/values extended as before
— often need explicit types, e.g. Ax:T.t

- Often add one new type to T ::= for each extension

- Each term gets exactly one typing rule
— no substitution, so easier than evaluation rules!
— must maintain ', so trickier than evaluation rules!
— usually invoke typechecking (:) on all subterms,
used to claim overall term's type
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Practice: Pairs Extension

Language additions:

t:=...|pairtt|fstt|sndt
vi=...|pairtt
T:=...|(T,T)

Evaluation Rules:
(same as before)

Typing Rules:

(one per new term)

23

Ty-Pair: [-t:T,, 1T,

[+ pairt;t, : (T4, T5)

Ty-Fst: T+t (T,,T,)
[-fstt : T,

Ty-Snd: -t (T4, T,).
[-sndt : T,
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Practice Problems — Pairs + Typing Proof Trees

Draw typing proof trees to find these expressions' types:

pair true 4

fst (pair 3 true)

snd p, with '={(p, (B,Z))}.
Ap:(Z,B). if (snd p) (fstp) 0
(pair (X:Z.x+1) (Mf: Z—Z.f 1))

ok~ wbdh -~

Fails typechecking:
1. fst (AX:Z.pair X X)
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Practice: Recursion Extension

We again add Fix to the language, only now it involves typed lambdas.

Language addition: to=... | fix t (note: fix t is not a value!)

Evaluation Rule: |
(same as before, E-Fix:
with type ascription)

fix AXiT.t) > t[xe (fix (AT . 1)

Typing Rule: Ty-Fix: _ [HtT—T
(one per new term) M-fixt:T




M. Snyder, George Mason University 26

Practice Problems - Recursion

Draw proof trees to find these expressions' types:

1. fix (Aself:Z—Z. M:Z. if (n<2) 1 (n*(self (n-1)))

- Just sketch the bottom two levels to see Ty-Fix in use.

Encode these no-lists-involved things:
2. factorial (shown above)
3. fibonacci
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Practice: Lists Extension s

Language additions:

t =
T::= | [T1
V=

Evaluation Rules:

| nil T|constt|headt]tailt]isnilt

| nil T|constt

note: nil needs a type! Why?

E-head:

t—t

head t — head t'

E-tail:

E-head-cons: head(cons t; t;) — t4

t -t

tail t — tail t'

E-tail-cons:

tail(cons t4 t;) — t5

E-isnil: t—t
isnil t — isnil t'

E-isnil-true:  isnil (nil T) — true

E-isnil-false: isnil (cons t4 t,) — false
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Practice: Lists Extension 2z

Language additions:

t::=...|nilT|constt|headt|tailt|isnilt
T:=.. | [T]
vi=..|nilT|constt

Evaluation Rules:
(same as before)

28

nil T: the T should be the
overall list-type, e.qg. nil [Z]

Typing Rules: (one per new term)

Ty-nil:

Ty-cons:

Ty-head:
=il [T - [T] Ty-tail:
[T, TELT]

[=constyty @ [T] Ty-isnil:

=t [T

Fl—headt:T‘

[t [T]

M- tailt © [T]

[+t [T]

M=isnilt : B
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Practice Problems - Lists

Draw proof trees to find these expressions' types:

1. head (if true (cons 5 (nil [Z])) (nil [Z])))
2. head (tail (cons 10 (cons 12 (cons 13 (nil [Z])))))

Encode these:

3. length:: [Z] — Z

4. map:: (Z—Z) — [Z] — [Z]

5. nthiZ] - Z — Z could fail at evaluation!
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Thoughts

- With no extensions, (with only t::=x|Ax:T.t|(t t))
A_, is degenerate (it has no values). Why?

- evaluation should preserve types — a term's value should not
change types due to further evaluation.
— true for A_, as presented

- erasure: after typechecking, we can erase all types in A_, and
evaluation is unaffected. That's neat!
- Java's Generics were added this way
- "unerasing" is the process of inferring types



Curry-Howard Correspondence

- Strikingly similar features shared between logic and type theory.
- continues through many more complex features of type theory!
Propositions as Types analogy

Logic concept Type Theory  concept

« given proof P, make proof of Q | type P — Q function from P to Q

« stmtthat P or Q is true type P + Q union type (e.g. Either a b)

P is provable | « claim: P is true type P inhabited | claim: elt of P exists




