THE SIMPLY TYPED LAMBDA CALCULUS

The Simply Typed Lambda Calculus

We will enhance our untyped lambda calculus with types.

Type checking is usually a single static phase that happens **before** any evaluation.

- a term "typechecks" (passes type-checking analysis) when it has a valid type
- we don't want to evaluate any terms that don't typecheck.

The Simply Typed Lambda Calculus

- implement typecheck :: Tm -> Ty
 - where the target Ty is another datatype representing your types
- we write type-checking rules to define the types of terms
 similar format as our evaluation rules. Instead of → , we define :

A Simple Starting Point

Here's the core simply typed lambda calculus, extended with bools and numbers.

t ::=
$$\lambda$$
x:T.t | (t t) | x
| true | false | if t t t
| | t + t | t - t | t * t
| t < t | t > t
T ::= T→T | Z | B
v ::= λ x:T.t | true | false |

(keeping things ASCII-easy: We occasionally write B instead of *B*, and Z instead of *Z*.)

"is this term well-typed?" is just as much work as "what is this term's type?"

The simply-typed lambda calculus (λ_{\rightarrow})

- We introduce types to the lambda calculus.
 - Each term in the language has a type
 - If there is no valid type, it is not in the language.
 - types could be implicit or explicit
 - We will add some explicit annotations to our language.
- type ascription operator,
 - true : \mathbb{B}
 - 5: Z
 - (Pair true 5) : ((𝔅,ℤ))

see STLC.hs

Notes on λ_{\rightarrow}

The core simply typed lambda calculus is strongly normalizing

- no unbounded calculation always halts!
- we lost the ability to do any recursion by giving terms types (why? try writing a type for the Ω- and y-combinators.)
- but we can regain recursion by extending the language as before
 - fix extension will look the same.

Maintaining an environment

typechecking

- navigates subterms to determine types
- but, no substitution occurs (we're not evaluating yet)
- we will need to look at a variable and 'remember' at what type it was introduced, to understand each later usage

handling variables

- store their types when introduced: lambda parameter is in scope during the lambda body.
- all enclosing lambdas' variables/types must be tracked
- save them in a set, Γ ("gamma"), called the environment.

Maintaining an environment

How can we store this information? *(in our Haskell implementation)*

- We can keep a set (or list) of pairs, [(String, Ty)]
 - look up variables' types
- this "environment" of all variables currently in scope is called Gamma (Γ).

Basic typing rules

• Ty-var (x,T)∈Γ Γ⊢x : T

• Ty-
$$\lambda$$
 $(\Gamma, (x, T_d)) \vdash t_r : T_r$
 $\Gamma \vdash (\lambda x: T_d \cdot t_r) : T_d \rightarrow T_r$

• Ty-app
$$\underline{\Gamma \vdash t_1:T_d \rightarrow T_r}$$
 $\underline{\Gamma \vdash t_2:T_d}$
 $\Gamma \vdash (t_1 t_2): T_r$

we remember a variable's type and can look it up. if the set Γ has (x, T) in it, then

Γ can look up variable x and find its type is T

Lambdas are functions from the argument's explicitly given type to the body's found type. If we extend Γ with (x, T_d) and that finds t_r 's type to be T_r , then the original Γ derives the type of $(\lambda x: T_d, T_r)$ to be $T_d \rightarrow T_r$

if the argument's type is compatible, an application results in the func's output type. If Γ finds $t_1:T_d \rightarrow T_r$, and Γ finds $t_2:T_d$, then Γ derives the overall type of (t_1, t_2) to be T_r

Typing rules: Booleans

Ty-true	
	⊢ true : ₿
 Ty-false 	
	⊢ false :
• Ty-if <u>Γ⊢a:</u>	<u> </u>

without consulting any environment, we know the type of true is \mathbb{B} .

same for false.

If's need boolean guards, and branches of matching types.
If Γ derives a's type as B, and Γ derives that both b and c have some type T, then Γ derives the overall type of (if a b c) as T.

Typing rules: Numbers

• Ty-ℤ

⊢ <#> : ℤ

Ty-add

$$\frac{\Gamma \vdash t_1:\mathbb{Z} \quad \Gamma \vdash t_2:\mathbb{Z}}{\Gamma \vdash (t_1 + t_2):\mathbb{Z}}$$

• Ty-GT

$$\frac{\Gamma \vdash t_1:\mathbb{Z} \ , \ \Gamma \vdash t_2:\mathbb{Z}}{\Gamma \vdash t_1 > t_2 \ : \mathbb{B}}$$

Whole numbers are ints. With no Γ needed, we know any literal integer is of type \mathbb{Z} .

Adding ints gives us an int. If Γ derives that t_1 and t_2 are both of type \mathbb{Z} , then Γ derives (t_1+t_2) to be of type \mathbb{Z} .

Comparing ints results in a bool. If Γ derives t1 and t2 are both of type \mathbb{Z} , then G derives that t1>t2 is of type \mathbb{B} .

Ty-sub, Ty-mul, TyLT: similar to Ty-add and Ty-GT

see STLC.hs

- We don't simplify (this isn't evaluation), so our continual reduce-withjustification doesn't work directly as it did with evaluation rules.
- We write a **proof tree** from bottom up to show the claim of the bottom-most line. *This is like a roadmap of the stack while running typechecking!*
- each level uses a typing rule with actual terms plugged in.
- we can label which *rule* was used
 - but it's always the one applicable rule surprisingly simple!

show that:

$$(1 + 3)$$
 :
 \mathbb{Z}
 $Ty - \mathbb{Z}$
 $Ty - \mathbb{Z}$
 $Ty - \mathbb{Z}$
 $\{\} \vdash 1$
 :
 \mathbb{Z}
 $\{\} \vdash 3$:
 \mathbb{Z}
 $\{\} \vdash (1 + 3)$
 :
 \mathbb{Z}

show that: (if true 4 5) : \mathbb{Z}

Begin with the knowledge that $x : \mathbb{Z}$. so, $\Gamma = \{(x, \mathbb{Z})\}$

Show that: $(4 + x) : \mathbb{Z}$

X

14

Typing Proof Tree Shape

	show th	at:	if (1<2) 3	<mark>84</mark> :ℤ	
Ty- Z		_ту-Z			
<u>{}</u> ⊢1: ℤ	{}⊢2: ℤ	Ty-LT		Ту-Z	<i>Ty-</i>
{}⊢ (1<2)	: B		{}⊢ 3: ℤ	{}⊢ 4:	<u> </u> Ту-1f
{}⊢ if (1	<2) 3 4	: Z			

The shape of the syntax tree exactly gives you the (inverted) shape of the proof tree.

Typing Proof Tree Examples

try/fail to show that: (3+4) * true : Z

As soon as you can show a specific requirement of a specific rule cannot be satisfied, you can stop. This might be sooner or later depending on which parts of the proof tree you work on.

does not typecheck:

- Ty-mul requires t₂:Z, but we have true:B …
- (Ty-mul's t₁ term does typecheck, by the way)

Name the rule that fails, and explain why.

Practice Problems – Typing Proof Trees

Write full typing proof trees to find the type for each expression:

- 1. ((λx:ℤ.x) ((λn:ℤ.n) 10))
- 2. $((\lambda x:\mathbb{Z}.if true x (x+1)) 5)$
- 3. $(\lambda f: \mathbb{Z} \rightarrow \mathbb{Z}. \lambda x: \mathbb{Z}.f x)$
- 4. (((λx:ℤ. λy:ℤ.x+y) 5) 8)

Explain why the following do not have valid typing proof trees (answer by discussing which subterms' needed types don't comply with the example's needs)

- 5. (35)
- 6. ((λx:ℤ.x+1) true)

Practice Problems - encodings

Now that we have our language, let's use it!

- Other than adding types to lambdas, this is just as easy as in the untyped lambda calculus.
 - We just label the type of our lambdas' arguments along the way

Encode these:

- and $:: \mathbb{B} \to \mathbb{B} \to \mathbb{B}$
- or $:: \mathbb{B} \to \mathbb{B} \to \mathbb{B}$
- ge $:: \mathbb{Z} \to \mathbb{Z} \to \mathbb{B}$
- inc $:: \mathbb{Z} \to \mathbb{Z}$
- max3 :: $\mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}$

(greater or equal than)

Extending λ_{\rightarrow}

- Terms/values extended as before \rightarrow often need explicit types, e.g. $\lambda x:T.t$
- Often add one new type to T ::= for each extension
- Each term gets exactly one typing rule
 - \rightarrow no substitution, so **easier** than evaluation rules!
 - \rightarrow must maintain Γ , so **trickier** than evaluation rules!
 - → usually invoke typechecking (:) on all subterms, used to claim overall term's type

Practice: Pairs Extension

Language additions:

t ::= ... | pair t t | fst t | snd t v ::= ... | pair t t T ::= ... | ((T , T))

Evaluation Rules:

(same as before)

Typing Rules: (one per new term)

Practice Problems – Pairs + Typing Proof Trees

Draw typing proof trees to find these expressions' types:

- 1. pair true 4
- 2. fst (pair 3 true)
- 3. snd p, with $\Gamma = \{(p, (\mathbb{B},\mathbb{Z}))\}.$
- 4. λp:((ℤ,𝔅)). if (snd p) (fst p) 0
- 5. (pair (x: $\mathbb{Z}.x+1$) ($\lambda f: \mathbb{Z} \longrightarrow \mathbb{Z}.f 1$))

Fails typechecking:

1. fst (λx :Z.pair x x)

Practice: Recursion Extension

We again add Fix to the language, only now it involves typed lambdas.

Language addition: t ::= ... | fix t

(note: fix t is not a value!)

Evaluation Rule:

(same as before, with type ascription)

E-Fix:
fix
$$(\lambda x:T . t) \rightarrow t [x \mapsto (fix (\lambda x:T . t))]$$

Typing Rule: (one per new term)

Ty-Fix:
$$\Gamma \vdash t: T \longrightarrow T$$

 $\Gamma \vdash fix t : T$

Practice Problems - Recursion

Draw proof trees to find these expressions' types:

- 1. fix (λ self: $\mathbb{Z} \rightarrow \mathbb{Z}$. λ n: \mathbb{Z} . if (n<2) 1 (n*(self (n-1)))
 - Just sketch the bottom two levels to see Ty-Fix in use.

Encode these no-lists-involved things:

- 2. factorial (shown above)
- 3. fibonacci

Practice: Lists Extension (p.1/2)

Language additions:

t ::= ... | nil **T** | cons t t | head t | tail t | isnil t T ::= ... | [[T]] v ::= ... | nil T | cons t t note: nil needs a type! Why?

Evaluation Rules:

E-head:	$\frac{t \rightarrow t'}{\text{head } t \rightarrow \text{head } t'}$	E-isnil:	$\frac{t \rightarrow t'}{\text{isnil } t \rightarrow \text{isnil } t'}$
E-head-cons:	head(cons $t_1 t_2) \rightarrow t_1$		
E-tail:	$t \rightarrow t'$	E-isnil-true:	isnil (nil T) \rightarrow true
	tail t \rightarrow tail t'	E-isnil-false:	isnil (cons $t_1 t_2$) \rightarrow false
E-tail-cons:	tail(cons $t_1 t_2) \rightarrow t_2$		

Practice: Lists Extension (p.2/2)

Evaluation Rules: *(same as before)*

Language additions:

t ::= ... | nil **T** | cons t t | head t | tail t | isnil t T ::=... | [[T]] v ::= ... | nil T | cons t t

nil T: the T should be the overall list-type, e.g. nil [[Z]]

Typing Rules: (one per new term)

Practice Problems - Lists

Draw proof trees to find these expressions' types:

- head (if true (cons 5 (nil [[ℤ]])) (nil [[ℤ]]))
- 2. head (tail (cons 10 (cons 12 (cons 13 (nil [[Z]])))))

Encode these:

- 3. length:: $\llbracket \mathbb{Z} \rrbracket \longrightarrow \mathbb{Z}$
- 4. map:: $(\mathbb{Z} \longrightarrow \mathbb{Z}) \longrightarrow \llbracket \mathbb{Z} \rrbracket \longrightarrow \llbracket \mathbb{Z} \rrbracket$
- 5. nth :: $\llbracket \mathbb{Z} \rrbracket \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}$

could fail at evaluation!

Thoughts

- With no extensions, (with only $t::=x[\lambda x:T.t](t t)$) λ_{\rightarrow} is degenerate (it has no values). Why?
- evaluation should preserve types a term's value should not change types due to further evaluation.
 → true for λ_→ as presented
- **erasure**: after typechecking, we can erase all types in λ_{\rightarrow} and evaluation is unaffected. That's neat!
 - Java's Generics were added this way
 - "unerasing" is the process of inferring types

Curry-Howard Correspondence

 Strikingly similar features shared between logic and type theory.
 continues through many more complex features of type theory! *Propositions as Types analogy*

Logic	concept	Type Theory	concept
proposition	• a statement (may be T/F)	types	group of values
P⊃Q	• given proof P, make proof of Q	type $P \rightarrow Q$	function from P to Q
ΡΛQ	• stmt that P and Q are true	type P × Q	product type (e.g. tuple)
PVQ	stmt that P or Q is true	type P + Q	union type (e.g. Either a b)
proof of P	way to show truth of P	term of type P	way to construct value
P is provable	claim: P is true	type P inhabited	claim: elt of P exists