
THE SIMPLY TYPED
LAMBDA CALCULUS

1M. Snyder, George Mason University

The Simply Typed Lambda Calculus

We will enhance our untyped lambda calculus with types.

Type checking is usually a single static phase that happens
before any evaluation.

• a term "typechecks" (passes type-checking analysis) when it
has a valid type

• we don't want to evaluate any terms that don't typecheck.

2M. Snyder, George Mason University

The Simply Typed Lambda Calculus

• implement typecheck :: Tm -> Ty
• where the target Ty is another datatype representing your types

• we write type-checking rules to define the types of terms
• similar format as our evaluation rules. Instead of ⟶ , we define :

3M. Snyder, George Mason University

A Simple Starting Point
Here's the core simply typed lambda calculus,
extended with bools and numbers.

M. Snyder, George Mason University 4

t ::= λx:T.t | (t t) | x
 | true | false | if t t t
 | <integers> | t + t | t - t | t * t
 | t < t | t > t

T ::= T⟶T | ℤ | 𝔹
v ::= λx:T.t | true | false | <integers>

"is this term well-typed?"
 is just as much work as
"what is this term's type?"

(keeping things ASCII-easy:
We occasionally write B instead
of 𝔹, and Z instead of ℤ.)

The simply-typed lambda calculus (λ→)
• We introduce types to the lambda calculus.

• Each term in the language has a type
• If there is no valid type, it is not in the language.

• types could be implicit or explicit
• We will add some explicit annotations to our language.

• type ascription operator, : see STLC.hs
• true : 𝔹
• 5 : ℤ
• (Pair true 5) : ⦅𝔹,ℤ⦆

5M. Snyder, George Mason University

Sample Rule: Ty-app Γ⊢ t1:Td→Tr Γ⊢ t2:Td_
 Γ ⊢ (t1 t2) : Tr

Notes on λ→

The core simply typed lambda calculus is strongly normalizing

• no unbounded calculation – always halts!

• we lost the ability to do any recursion by giving terms types
(why? try writing a type for the Ω- and y-combinators.)

• but we can regain recursion by extending the language as before
• fix extension will look the same.

6M. Snyder, George Mason University

Maintaining an environment

typechecking
• navigates subterms to determine types
• but, no substitution occurs (we're not evaluating yet)
• we will need to look at a variable and 'remember'

at what type it was introduced, to understand each later usage

handling variables
• store their types when introduced:

lambda parameter is in scope during the lambda body.
• all enclosing lambdas' variables/types must be tracked
• save them in a set, Γ ("gamma"), called the environment.

7M. Snyder, George Mason University

Maintaining an environment

How can we store this information?
(in our Haskell implementation)

• We can keep a set (or list) of pairs, [(String, Ty)]
• look up variables' types

• this "environment" of all variables currently in scope
is called Gamma (Γ).

8M. Snyder, George Mason University

Basic typing rules
• Ty-var (x,T)∈Γ
 Γ ⊢ x : T

• Ty-λ (Γ,(x,Td)) ⊢ tr : Tr ___
 Γ⊢ (λ x:Td . tr) : Td → Tr

• Ty-app Γ⊢ t1:Td→Tr Γ⊢ t2:Td_
 Γ ⊢ (t1 t2) : Tr

9M. Snyder, George Mason University

we remember a variable's type and can
look it up.
if the set Γ has (x,T) in it, then
Γ can look up variable x and
find its type is T

Lambdas are functions from the argument's

explicitly given type to the body's found type.
If we extend Γ with (x,Td) and
that finds tr's type to be Tr ,
then the original Γ derives the
type of (λx:Td.Tr) to be Td→Tr

if the argument's type is compatible, an
application results in the func's output type.
If Γ finds t1:Td→Tr , and Γ finds
t2:Td , then Γ derives the
overall type of (t1 t2) to be Tr

Typing rules: Booleans

• Ty-true
 ⊢ true : 𝔹
• Ty-false
 ⊢ false : 𝔹

• Ty-if Γ⊢a: 𝔹 Γ⊢b:T1 Γ⊢c:T1
 Γ ⊢ if a b c : T1

10M. Snyder, George Mason University

without consulting any
environment, we know the
type of true is 𝔹.

same for false.

If's need boolean guards, and branches of
matching types.
If Γ derives a's type as 𝔹, and
Γ derives that both b and c
have some type T, then Γ
derives the overall type of (if a
b c) as T.

Typing rules: Numbers
• Ty-ℤ _________
 ⊢ <#> : ℤ

• Ty-add Γ⊢t1:ℤ Γ⊢t2:ℤ
 Γ⊢(t1 + t2) : ℤ

• Ty-GT Γ⊢ t1:ℤ , Γ⊢ t2:ℤ
 Γ⊢ t1 > t2 : 𝔹

Ty-sub, Ty-mul, TyLT: similar to Ty-add and Ty-GT

11M. Snyder, George Mason University

Whole numbers are ints.
With no Γ needed, we know
any literal integer is of type ℤ.

Adding ints gives us an int.
If Γ derives that t1 and t2 are
both of type ℤ, then Γ derives
(t1+t2) to be of type ℤ.

Comparing ints results in a bool.
If Γ derives t1 and t2 are both
of type ℤ, then G derives that
t1>t2 is of type 𝔹.

see STLC.hs

Using Typing Rules – Typing Proof Trees
• We don't simplify (this isn't evaluation), so our continual reduce-with-

justification doesn't work directly as it did with evaluation rules.

• We write a proof tree from bottom up to show the claim of the bottom-most
line. This is like a roadmap of the stack while running typechecking!

• each level uses a typing rule with actual terms plugged in.
• we can label which rule was used

• but it's always the one applicable rule – surprisingly simple!

M. Snyder, George Mason University 12

show that: (1 + 3) : ℤ

_________Ty-ℤ _________Ty-ℤ

{}⊢1 : ℤ {}⊢3: ℤ Ty-add

 {}⊢ (1 + 3) : ℤ

Using Typing Rules – Typing Proof Trees
M. Snyder, George Mason University 13

show that: (if true 4 5) : ℤ

________Ty-true __________Ty-ℤ ________Ty-ℤ

{}⊢true : 𝔹 {}⊢4 : ℤ {}⊢5: ℤ Ty-If

 {} ⊢ (if true 4 5) : ℤ

if

true 4 5

Using Typing Rules – Typing Proof Trees
M. Snyder, George Mason University 14

Begin with the knowledge that x : ℤ. so, Γ={(x,ℤ)}

Show that: (4 + x) : ℤ

________________Ty-ℤ ______________Ty-Var
 {(x,ℤ)} ⊢4 : ℤ {(x,ℤ)} ⊢x: ℤ Ty-Add
 {(x,ℤ)} ⊢ (4 + x) : ℤ

+

4 x

Using Typing Rules – Typing Proof Trees

Ty-Var _____ __ Ty-ℤ

{(x,ℤ)}⊢x: ℤ {(x,ℤ)}⊢1:ℤ Ty-Add

{(x,ℤ)}⊢ x+1 : ℤ______Ty-λ _____ _Ty-ℤ

{}⊢ (λx:ℤ.x+1) : ℤ→ℤ {}⊢3:ℤ Ty-App

{} ⊢ ((λx:ℤ.x+1) 3) : ℤ

M. Snyder, George Mason University 15

show that: ((λx:ℤ.x+1) 3) : ℤ
@

λx:ℤ 3

+

x 1

Typing Proof Tree Examples

______Ty-ℤ _ _Ty-ℤ

{}⊢1: ℤ {}⊢2: ℤ Ty-LT _________ Ty-ℤ _ _Ty-ℤ

{}⊢ (1<2) : 𝔹 {}⊢ 3: ℤ {}⊢ 4: ℤTy-If
{}⊢ if (1<2) 3 4 : ℤ

M. Snyder, George Mason University 16

show that: if (1<2) 3 4 : ℤ

if

< 3 4

1 2

Typing Proof Tree Shape
M. Snyder, George Mason University 17

if

< 3 4

1 2

The shape of the syntax tree exactly gives you the
(inverted) shape of the proof tree.

______Ty-ℤ _ _Ty-ℤ
{}⊢1: ℤ {}⊢2: ℤ Ty-LT _________ Ty-ℤ _ _Ty-ℤ
{}⊢ (1<2) : 𝔹 {}⊢ 3: ℤ {}⊢ 4: ℤTy-If
{}⊢ if (1<2) 3 4 : ℤ

show that: if (1<2) 3 4 : ℤ

Typing Proof Tree Examples

______Ty-ℤ Ty-ℤ

{}⊢3:ℤ {}⊢4:ℤ Ty-Add Ty-true

{}⊢ (3+4) : ℤ {}⊢ true:𝔹 Ty-Mul

{}⊢ (3+4) * true : ???

M. Snyder, George Mason University 18

try/fail to show that: (3+4) * true : ℤ

does not typecheck:
• Ty-mul requires t2:ℤ, but we have true:𝔹 …
• (Ty-mul's t1 term does typecheck, by the way)

As soon as you can show a specific
requirement of a specific rule cannot
be satisfied, you can stop. This might
be sooner or later depending on which
parts of the proof tree you work on.

*

+ true

3 4

Name the rule that fails,
and explain why.

Typing Proof Tree Examples

 _________Ty-Var ___________Ty-ℤ

________Ty-Var _______Ty-ℤ _______Ty-ℤ {(a,ℤ)}⊢a:ℤ {(a,ℤ)}⊢5:ℤTy-LT

{(x,𝔹)}⊢x:𝔹 {(x,𝔹)}⊢ 3:ℤ {(x,𝔹)}⊢4:ℤTy-If {(a,ℤ)}⊢(a<5):𝔹 Ty-λ Ty-ℤ

{(x,𝔹)}⊢(if x 3 4):ℤ ___Ty-λ {}⊢(λa:ℤ.a<5):ℤ→𝔹 {}⊢9:ℤTy-App

{}⊢ (λx:𝔹.if x 3 4):𝔹→ℤ {}⊢((λa:ℤ.a<5) 9) : 𝔹 _Ty-App
{}⊢ ((λx:𝔹.if x 3 4) ((λa: ℤ.a<5) 9)) : ℤ

M. Snyder, George Mason University 19

show that: ((λx:𝔹. if x 3 4) ((λa:ℤ. a<5) 9)) : ℤ

@

λx:𝔹 @

<

a 5

λa:ℤ 9if

x 3 4

Practice Problems – Typing Proof Trees
Write full typing proof trees to find the type for each expression:

1. ((λx:ℤ.x) ((λn:ℤ.n) 10))
2. ((λx:ℤ.if true x (x+1)) 5)
3. (λf:ℤ→ℤ. λx:ℤ.f x)
4. (((λx:ℤ. λy:ℤ.x+y) 5) 8)

Explain why the following do not have valid typing proof trees
(answer by discussing which subterms' needed types don't comply
with the example's needs)
5. (3 5)
6. ((λx:ℤ.x+1) true)

M. Snyder, George Mason University 20

Practice Problems - encodings

Now that we have our language, let’s use it!

• Other than adding types to lambdas, this is just as easy as in the
untyped lambda calculus.
• We just label the type of our lambdas' arguments along the way

Encode these:
• and :: 𝔹 ⟶ 𝔹 ⟶ 𝔹
• or :: 𝔹 ⟶ 𝔹 ⟶ 𝔹
• ge :: ℤ ⟶ ℤ ⟶ 𝔹 (greater or equal than)
• inc :: ℤ ⟶ ℤ
• max3 :: ℤ ⟶ ℤ ⟶ ℤ ⟶ ℤ

M. Snyder, George Mason University 21

Extending λ→
• Terms/values extended as before
→ often need explicit types, e.g. λx:T.t

• Often add one new type to T ::= for each extension
• Each term gets exactly one typing rule
→ no substitution, so easier than evaluation rules!
→ must maintain Γ, so trickier than evaluation rules!
→ usually invoke typechecking (:) on all subterms,
 used to claim overall term's type

M. Snyder, George Mason University 22

Practice: Pairs Extension
Language additions:
t ::= … | pair t t | fst t | snd t
v ::= … | pair t t
T ::= … | ⦅ T , T ⦆

Evaluation Rules:
(same as before)

Typing Rules:
(one per new term)

M. Snyder, George Mason University 23

Ty-Pair: Γ⊢ t1:T1, Γ⊢ t2:T2 .
 Γ⊢ pair t1 t2 : ⦅ T1, T2⦆

Ty-Fst: Γ⊢ t: ⦅ T1, T2 ⦆
 Γ⊢ fst t : T1

Ty-Snd: Γ⊢ t: ⦅ T1, T2⦆ .
 Γ⊢ snd t : T2

Practice Problems – Pairs + Typing Proof Trees

Draw typing proof trees to find these expressions' types:

1. pair true 4
2. fst (pair 3 true)
3. snd p, with Γ={(p, ⦅𝔹,ℤ⦆)}.
4. λp:⦅ℤ,𝔹⦆. if (snd p) (fst p) 0
5. (pair (x:ℤ.x+1) (λf: ℤ⟶ℤ.f 1))

Fails typechecking:
1. fst (λx:ℤ.pair x x)

M. Snyder, George Mason University 24

Practice: Recursion Extension
We again add Fix to the language, only now it involves typed lambdas.

Language addition: t ::= … | fix t (note: fix t is not a value!)

M. Snyder, George Mason University 25

E-Fix: _______________________________
 fix (λ x:T . t) → t [x ↦ (fix (λ x:T . t))]

Ty-Fix: Γ⊢t:T⟶ T_
 Γ ⊢ fix t : T

Typing Rule:
(one per new term)

Evaluation Rule:
(same as before,
with type ascription)

Practice Problems - Recursion

Draw proof trees to find these expressions' types:

1. fix (λself:ℤ⟶ℤ. λn:ℤ. if (n<2) 1 (n*(self (n-1)))
• Just sketch the bottom two levels to see Ty-Fix in use.

Encode these no-lists-involved things:
2. factorial (shown above)
3. fibonacci

M. Snyder, George Mason University 26

Practice: Lists Extension (p.1/2)

Language additions:
t ::= … | nil T | cons t t | head t | tail t | isnil t note: nil needs a type! Why?
T ::= ... | ⟦ T ⟧
v ::= ... | nil T | cons t t

M. Snyder, George Mason University 27

E-head: t → t'
head t → head t'

E-head-cons: head(cons t1 t2) → t1

E-tail: t → t'
tail t → tail t'

E-tail-cons: tail(cons t1 t2) → t2

E-isnil: t → t'
isnil t → isnil t'

E-isnil-true: isnil (nil T) → true

E-isnil-false: isnil (cons t1 t2) → false

Evaluation Rules:

Practice: Lists Extension (p.2/2)

Language additions:
 t ::= … | nil T | cons t t | head t | tail t | isnil t
T ::=... | ⟦ T ⟧
v ::= ... | nil T | cons t t

M. Snyder, George Mason University 28

Ty-head: Γ⊢ t: ⟦T⟧ .
 Γ⊢ head t : T

Ty-tail: Γ⊢ t: ⟦T⟧ .
 Γ⊢ tail t : ⟦T⟧

Ty-isnil: Γ⊢ t: ⟦T⟧ .
 Γ⊢ isnil t : 𝔹

Typing Rules: (one per new term)

Ty-nil:
⊢ nil ⟦T⟧ : ⟦T⟧

Ty-cons: Γ ⊢ t1:T , Γ⊢ t2: ⟦T⟧ .

Γ⊢ cons t1 t2 : ⟦T⟧

Evaluation Rules:
(same as before)

nil T: the T should be the
overall list-type, e.g. nil⟦ℤ⟧

Practice Problems - Lists

Draw proof trees to find these expressions' types:

1. head (if true (cons 5 (nil ⟦ℤ⟧)) (nil ⟦ℤ⟧)))
2. head (tail (cons 10 (cons 12 (cons 13 (nil ⟦ℤ⟧)))))

Encode these:
3. length:: ⟦ℤ⟧ ⟶ ℤ
4. map:: (ℤ⟶ℤ) ⟶ ⟦ℤ⟧ ⟶ ⟦ℤ⟧
5. nth :: ⟦ℤ⟧ ⟶ ℤ ⟶ ℤ could fail at evaluation!

M. Snyder, George Mason University 29

Thoughts
• With no extensions, (with only t::=x|λx:T.t|(t t))

λ→ is degenerate (it has no values). Why?

• evaluation should preserve types – a term's value should not
change types due to further evaluation.
→ true for λ→ as presented

• erasure: after typechecking, we can erase all types in λ→ and
evaluation is unaffected. That's neat!
• Java's Generics were added this way
• "unerasing" is the process of inferring types

M. Snyder, George Mason University 30

Curry-Howard Correspondence
• Strikingly similar features shared between logic and type theory.
• continues through many more complex features of type theory!
 Propositions as Types analogy

M. Snyder, George Mason University 31

Logic concept Type Theory concept

proposition • a statement (may be T/F) types group of values

P ⊃ Q • given proof P, make proof of Q type P → Q function from P to Q

P ∧ Q • stmt that P and Q are true type P × Q product type (e.g. tuple)

P ∨ Q • stmt that P or Q is true type P + Q union type (e.g. Either a b)

proof of P • way to show truth of P term of type P way to construct value

P is provable • claim: P is true type P inhabited claim: elt of P exists

