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The Simply Typed Lambda Calculus

We will enhance our untyped lambda calculus with types.

Type checking is usually a single static phase that happens 
before any evaluation.

• a term "typechecks" (passes type-checking analysis) when it 
has a valid type

• we don't want to evaluate any terms that don't typecheck.
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The Simply Typed Lambda Calculus

• implement  typecheck :: Tm -> Ty
• where the target Ty is another datatype representing your types

• we write type-checking rules to define the types of terms
• similar format as our evaluation rules. Instead of ⟶ , we define :
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A Simple Starting Point
Here's the core simply typed lambda calculus, 
extended with bools and numbers.
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t ::= λx:T.t | (t t) | x
      | true | false | if t t t
      | <integers> | t + t | t - t | t * t
      | t < t  |  t > t

T ::= T⟶T  |  ℤ  |  𝔹
v ::= λx:T.t | true | false | <integers>

"is this term well-typed?"
 is just as much work as
"what is this term's type?"

(keeping things ASCII-easy:
We occasionally write B instead 
of 𝔹, and Z instead of ℤ.)



The simply-typed lambda calculus (λ→)
• We introduce types to the lambda calculus.

• Each term in the language has a type
• If there is no valid type, it is not in the language.

• types could be implicit or explicit
• We will add some explicit annotations to our language.

• type ascription operator,   :  see STLC.hs
• true : 𝔹
• 5 : ℤ
• (Pair true 5) : ⦅𝔹,ℤ⦆   
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Sample Rule: Ty-app              Γ⊢ t1:Td→Tr Γ⊢ t2:Td_
               Γ ⊢ (t1 t2) : Tr



Notes on λ→ 

The core simply typed lambda calculus is strongly normalizing

• no unbounded calculation – always halts!

• we lost the ability to do any recursion by giving terms types
(why? try writing a type for the Ω- and y-combinators.)

• but we can regain recursion by extending the language as before
• fix extension will look the same.
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Maintaining an environment

typechecking
• navigates subterms to determine types
• but, no substitution occurs (we're not evaluating yet)
• we will need to look at a variable and 'remember'

at what type it was introduced, to understand each later usage

handling variables
• store their types when introduced:

lambda parameter is in scope during the lambda body.
• all enclosing lambdas' variables/types must be tracked
• save them in a set, Γ ("gamma"), called the environment.
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Maintaining an environment

How can we store this information?
(in our Haskell implementation)

• We can keep a set (or list) of pairs, [(String, Ty)]
• look up variables' types 

• this "environment" of all variables currently in scope
is called Gamma ( Γ ).

8M. Snyder, George Mason University



Basic typing rules
• Ty-var  (x,T)∈Γ 
          Γ ⊢ x : T

• Ty-λ  (Γ,(x,Td)) ⊢ tr : Tr ___
      Γ⊢  (λ x:Td . tr)  :  Td → Tr

• Ty-app  Γ⊢ t1:Td→Tr Γ⊢ t2:Td_
      Γ ⊢ (t1 t2) : Tr
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we remember a variable's type and can 
look it up.
if the set Γ has (x,T) in it, then 
Γ can look up variable x and 
find its type is T

Lambdas are functions from the argument's 

explicitly given type to the body's found type.
If we extend Γ with (x,Td) and 
that finds tr's type to be Tr , 
then the original Γ derives the 
type of (λx:Td.Tr) to be Td→Tr

if the argument's type is compatible, an 
application results in the func's output type.
If Γ finds t1:Td→Tr , and Γ finds 
t2:Td , then Γ derives the 
overall type of (t1 t2) to be Tr



Typing rules: Booleans

• Ty-true    
    ⊢ true : 𝔹
• Ty-false    
   ⊢ false : 𝔹

• Ty-if   Γ⊢a: 𝔹   Γ⊢b:T1 Γ⊢c:T1
   Γ ⊢  if a b c : T1
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without consulting any 
environment, we know the 
type of true is 𝔹.

same for false.

If's need boolean guards, and branches of 
matching types.
If Γ derives a's type as 𝔹, and 
Γ derives that both b and c 
have some type T, then Γ 
derives the overall type of (if a 
b c) as T.



Typing rules: Numbers
• Ty-ℤ  _________
   ⊢ <#> : ℤ

• Ty-add Γ⊢t1:ℤ     Γ⊢t2:ℤ
      Γ⊢(t1 + t2) : ℤ

• Ty-GT Γ⊢ t1:ℤ ,   Γ⊢ t2:ℤ
     Γ⊢ t1 > t2  : 𝔹

Ty-sub, Ty-mul, TyLT: similar to Ty-add and Ty-GT
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Whole numbers are ints.
With no Γ needed, we know 
any literal integer is of type ℤ.

Adding ints gives us an int. 
If Γ derives that t1 and t2 are 
both of type ℤ, then Γ derives 
(t1+t2) to be of type ℤ.

Comparing ints results in a bool.
If Γ derives t1 and t2 are both
of type ℤ, then G derives that 
t1>t2  is of type 𝔹.

see STLC.hs



Using Typing Rules – Typing Proof Trees
• We don't simplify (this isn't evaluation), so our continual reduce-with-

justification doesn't work directly as it did with evaluation rules.

• We write a proof tree from bottom up to show the claim of the bottom-most 
line.    This is like a roadmap of the stack while running typechecking!

• each level uses a typing rule with actual terms plugged in.
• we can label which rule was used

• but it's always the one applicable rule – surprisingly simple!
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show that:   (1 + 3)  : ℤ 

_________Ty-ℤ   _________Ty-ℤ

{}⊢1 : ℤ       {}⊢3: ℤ Ty-add

      {}⊢ (1 + 3)  : ℤ



Using Typing Rules – Typing Proof Trees
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show that:   (if true 4 5)  : ℤ 

________Ty-true __________Ty-ℤ    ________Ty-ℤ

{}⊢true : 𝔹   {}⊢4 : ℤ       {}⊢5: ℤ Ty-If

         {} ⊢ (if true 4 5)  : ℤ

if

true 4 5



Using Typing Rules – Typing Proof Trees
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Begin with the knowledge that x : ℤ.         so, Γ={(x,ℤ)}   

Show that:   (4 + x)  : ℤ 

________________Ty-ℤ  ______________Ty-Var
 {(x,ℤ)} ⊢4 : ℤ        {(x,ℤ)} ⊢x: ℤ Ty-Add
       {(x,ℤ)} ⊢ (4 + x)  : ℤ

+

4 x



Using Typing Rules – Typing Proof Trees

Ty-Var  _____     __ Ty-ℤ

{(x,ℤ)}⊢x: ℤ      {(x,ℤ)}⊢1:ℤ Ty-Add

{(x,ℤ)}⊢ x+1 : ℤ______Ty-λ      _____ _Ty-ℤ

{}⊢ (λx:ℤ.x+1) : ℤ→ℤ          {}⊢3:ℤ Ty-App

{} ⊢ ((λx:ℤ.x+1) 3) : ℤ
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show that:   ((λx:ℤ.x+1)  3)  : ℤ
@

λx:ℤ 3

+

x 1



Typing Proof Tree Examples

______Ty-ℤ   _       _Ty-ℤ

{}⊢1: ℤ   {}⊢2: ℤ Ty-LT _________ Ty-ℤ  _      _Ty-ℤ

{}⊢ (1<2) : 𝔹         {}⊢ 3: ℤ     {}⊢ 4: ℤTy-If 
{}⊢ if (1<2) 3 4  : ℤ
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show that:   if (1<2) 3 4  : ℤ 

if

< 3 4

1 2



Typing Proof Tree Shape
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if

< 3 4

1 2

The shape of the syntax tree exactly gives you the
(inverted) shape of the proof tree.

______Ty-ℤ _       _Ty-ℤ 
{}⊢1: ℤ   {}⊢2: ℤ Ty-LT _________ Ty-ℤ _      _Ty-ℤ
{}⊢ (1<2) : 𝔹         {}⊢ 3: ℤ     {}⊢ 4: ℤTy-If 
{}⊢ if (1<2) 3 4  : ℤ

show that:   if (1<2) 3 4  : ℤ 



Typing Proof Tree Examples

______Ty-ℤ   Ty-ℤ

{}⊢3:ℤ         {}⊢4:ℤ Ty-Add   Ty-true

{}⊢ (3+4) : ℤ                     {}⊢ true:𝔹 Ty-Mul

{}⊢ (3+4) * true :  ???
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try/fail to show that: (3+4) * true :  ℤ 

does not typecheck:
• Ty-mul requires t2:ℤ, but we have true:𝔹 …
• (Ty-mul's t1 term does typecheck, by the way)

As soon as you can show a specific
requirement of a specific rule cannot
be satisfied, you can stop. This might
be sooner or later depending on which
parts of the proof tree you work on.

*

+ true

3 4

Name the rule that fails,
and explain why.



Typing Proof Tree Examples

                     _________Ty-Var  ___________Ty-ℤ

________Ty-Var _______Ty-ℤ  _______Ty-ℤ   {(a,ℤ)}⊢a:ℤ  {(a,ℤ)}⊢5:ℤTy-LT

{(x,𝔹)}⊢x:𝔹 {(x,𝔹)}⊢ 3:ℤ  {(x,𝔹)}⊢4:ℤTy-If  {(a,ℤ)}⊢(a<5):𝔹       Ty-λ       Ty-ℤ

{(x,𝔹)}⊢(if x 3 4):ℤ ___Ty-λ       {}⊢(λa:ℤ.a<5):ℤ→𝔹         {}⊢9:ℤTy-App

{}⊢ (λx:𝔹.if x 3 4):𝔹→ℤ          {}⊢((λa:ℤ.a<5) 9) : 𝔹    _Ty-App 
{}⊢ ((λx:𝔹.if x 3 4) ((λa: ℤ.a<5) 9)) : ℤ

M. Snyder, George Mason University 19

show that:   ((λx:𝔹. if x 3 4) ((λa:ℤ. a<5) 9))  : ℤ 

@

λx:𝔹 @

<

a 5

λa:ℤ 9if

x 3 4



Practice Problems – Typing Proof Trees
Write full typing proof trees to find the type for each expression:

1. ((λx:ℤ.x) ((λn:ℤ.n) 10))
2. ((λx:ℤ.if true x (x+1)) 5)
3. (λf:ℤ→ℤ. λx:ℤ.f x)
4. (((λx:ℤ. λy:ℤ.x+y) 5) 8)

Explain why the following do not have valid typing proof trees 
(answer by discussing which subterms' needed types don't comply 
with the example's needs)
5. (3 5)
6. ((λx:ℤ.x+1) true)
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Practice Problems - encodings

Now that we have our language, let’s use it!

• Other than adding types to lambdas, this is just as easy as in the 
untyped lambda calculus.
• We just label the type of our lambdas' arguments along the way

Encode these:
• and  :: 𝔹 ⟶ 𝔹 ⟶ 𝔹
• or   :: 𝔹 ⟶ 𝔹 ⟶ 𝔹
• ge   :: ℤ ⟶ ℤ ⟶ 𝔹  (greater or equal than)
• inc  :: ℤ ⟶ ℤ
• max3 :: ℤ ⟶ ℤ ⟶ ℤ ⟶ ℤ
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Extending λ→
• Terms/values extended as before
→ often need explicit types, e.g. λx:T.t

• Often add one new type to T ::= for each extension
• Each term gets exactly one typing rule
→ no substitution, so easier than evaluation rules!
→ must maintain Γ, so trickier than evaluation rules!
→ usually invoke typechecking (:) on all subterms, 
     used to claim overall term's type
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Practice: Pairs Extension
Language additions:
t ::= … | pair t t | fst t | snd t
v ::= … | pair t t
T ::= … | ⦅ T , T ⦆

Evaluation Rules:
(same as before)

Typing Rules:
(one per new term)
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Ty-Pair: Γ⊢ t1:T1,  Γ⊢ t2:T2 . 
     Γ⊢ pair t1 t2  : ⦅ T1, T2⦆ 

Ty-Fst: Γ⊢ t: ⦅ T1, T2 ⦆
     Γ⊢ fst t  : T1

Ty-Snd: Γ⊢ t: ⦅ T1, T2⦆ .
    Γ⊢ snd t  : T2



Practice Problems – Pairs + Typing Proof Trees

Draw typing proof trees to find these expressions' types:

1. pair true 4
2. fst (pair 3 true)
3. snd p, with Γ={(p, ⦅𝔹,ℤ⦆)}.
4. λp:⦅ℤ,𝔹⦆.  if (snd p) (fst p) 0
5. (pair (x:ℤ.x+1) (λf: ℤ⟶ℤ.f 1))

Fails typechecking:
1. fst (λx:ℤ.pair x x)
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Practice: Recursion Extension
We again add Fix to the language, only now it involves typed lambdas.

Language addition: t ::= … | fix t (note: fix t is not a value!)
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E-Fix: _______________________________
  fix (λ x:T . t) → t [x ↦ (fix (λ x:T . t))]

Ty-Fix: Γ⊢t:T⟶ T_
       Γ ⊢ fix t : T 

Typing Rule:
(one per new term)

Evaluation Rule:
(same as before, 
with type ascription)



Practice Problems - Recursion

Draw proof trees to find these expressions' types:

1. fix (λself:ℤ⟶ℤ. λn:ℤ.  if (n<2) 1 (n*(self (n-1)))
• Just sketch the bottom two levels to see Ty-Fix in use.

Encode these no-lists-involved things:
2. factorial (shown above)
3. fibonacci
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Practice: Lists Extension (p.1/2)

Language additions:  
t  ::= … | nil T | cons t t | head t | tail t | isnil t note: nil needs a type! Why?
T ::= ... |  ⟦ T ⟧
v ::= ... | nil T | cons t t
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E-head: t → t'
head t → head t'

E-head-cons: head(cons t1 t2) → t1

E-tail: t → t'
tail t → tail t' 

E-tail-cons: tail(cons t1 t2) → t2

E-isnil: t → t'
isnil t → isnil t'  

 
E-isnil-true: isnil (nil T) → true

E-isnil-false:   isnil (cons t1 t2) → false

Evaluation Rules:



Practice: Lists Extension (p.2/2)

Language additions:  
  t ::= … | nil T | cons t t | head t | tail t | isnil t
T ::=... |  ⟦ T ⟧
v ::= ... | nil T | cons t t
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Ty-head: Γ⊢ t: ⟦T⟧     .
   Γ⊢ head t : T

Ty-tail: Γ⊢ t: ⟦T⟧     .   
  Γ⊢ tail t  : ⟦T⟧

Ty-isnil: Γ⊢ t: ⟦T⟧     .   
  Γ⊢ isnil t  : 𝔹

Typing Rules: (one per new term)

Ty-nil:
⊢ nil ⟦T⟧ : ⟦T⟧ 

Ty-cons: Γ ⊢ t1:T ,    Γ⊢ t2: ⟦T⟧ .

Γ⊢ cons t1 t2  :  ⟦T⟧

Evaluation Rules:
(same as before)

nil T: the T should be the
overall list-type, e.g. nil⟦ℤ⟧



Practice Problems - Lists

Draw proof trees to find these expressions' types:

1. head (if true (cons 5 (nil ⟦ℤ⟧)) (nil ⟦ℤ⟧)))
2. head (tail (cons 10 (cons 12 (cons 13 (nil ⟦ℤ⟧)))))

Encode these:
3. length:: ⟦ℤ⟧ ⟶ ℤ
4. map:: (ℤ⟶ℤ) ⟶ ⟦ℤ⟧ ⟶ ⟦ℤ⟧
5. nth :: ⟦ℤ⟧ ⟶ ℤ ⟶ ℤ   could fail at evaluation!
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Thoughts
• With no extensions, (with only t::=x|λx:T.t|(t t))

λ→ is degenerate (it has no values). Why?

• evaluation should preserve types – a term's value should not 
change types due to further evaluation.
→ true for λ→ as presented

• erasure: after typechecking, we can erase all types in λ→ and 
evaluation is unaffected. That's neat!
• Java's Generics were added this way
• "unerasing" is the process of inferring types
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Curry-Howard Correspondence
• Strikingly similar features shared between logic and type theory.
• continues through many more complex features of type theory!
 Propositions as Types analogy
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Logic concept Type Theory concept

proposition • a statement (may be T/F) types group of values

P ⊃ Q • given proof P, make proof of Q type  P → Q function from P to Q

P ∧ Q • stmt that P and Q are true type P × Q product type (e.g. tuple)

P ∨ Q • stmt that P or Q is true type P + Q union type (e.g. Either a b)

proof of P • way to show truth of P term of type P way to construct value

P is provable • claim: P is true type P inhabited claim: elt of P exists


