
Concurrency
CS 463 @ GMU

Outline

• Basic ideas

• Providing Synchronization

• Java and Synchronization

Levels of Concurrency

Locations of levels of concurrency
• Machine instructions
• (high level) language statements
• Unit level
• Program level

Only statement- and unit-level are where we will focus.

Categories/Terminology

• Physical concurrency: multiple independent processors
• Logical concurrency: time-sharing one processor to simulate physical

concurrency
• Co-routines (quasi-concurrency): have a single thread of control
• But method calls/returns aren't strictly nested: you can also yield/resume.

Tasks

Task: some unit of code that can run concurrently with others.
• usually work together (if not: "disjointed" task)
• a program can start task without having to pause itself
• task's completion doesn't always return to caller.

Kinds of tasks:
• Heavy-weight: has its own address space (like separate processes)
• Light-weight: shares address space.
• Easier to implement (faster)
• Easier to share memory (whether on purpose or not!)

Task synchronization

Can communicate through:
• Shared state
• Parameters
• Message passing

Cooperation: tasks each help coordinate sharing of resources and timing of
execution.
• Awaiting completed results, staying in sync with each other

Competition: tasks fight for resources or get in each others' way
• Mutually exclusive access to resources
• Example: consider two read-modify-write tasks using the same memory.

Task states

• New: created, hasn't started running.
• Ready: able to run but currently not.
• Running: currently executing.
• Blocked: can't run just now.
• Dead: can't run anymore (whether it finished its work or is stuck)

Scheduler: handles waiting, notifying, etc. between tasks.

Liveness, Deadlock

• Liveness: a task's ability to make progress towards completino
• Tasks can lose their liveness.

• Deadlock: all tasks have lost their liveness.
• Example: each task is waiting on another to do something first
• It's like a stalemate.

Various Approaches

• Semaphores
• signals to other tasks

• Mutexes
• "locks" to limit access to resources

• Monitors
• hide shared data in monitor instead of direct-access sharing

• Message passing
• "mailboxes" between tasks

Semaphores

Uses
• competition (who manages to stop waiting first?)
• cooperation (releasing a resource acts as a yield/cooperation)

Semaphore (Dijkstra, 1965)

A data structure that provides controlled access to a shared resource.
• tasks wait for access and release access when done.

Producer-Consumer example (cooperation)

• Shared "buffer": values can be inserted or removed into a queue.
• Often implemented as an array with first/last item pointers

• Producer: generates values to put in the buffer.
• Must wait if there's no space in the buffer at the moment

• Consumer: takes values from the buffer
• Must wait if there are no values in the buffer at the moment

Example Buffer (producer/consumer)
class Buffer {

 private int[] val;

 private in head, last;
 public void insertValue(int v){…}

 public int take Value () {…}
}

Semaphore Usage:
• two semaphores: emptySpots, fullSpots
• insertValue and takeValue will increment/decrement the counters of how many

spots are available
• We can add tasks to a queue of tasks who are waiting their turn.

Code Examples

⟶ see ProduceConsume.java
• includes a Buffer class
• uses Java's synchronized keyword

⟶ see pc1.c, pc2.c, pc3.c
• variations on producer/consumer problem
• uses mutexes and condition variables
• uses int[] as the buffer.

(when we get to "round 2" of learning concurrency:)
⟶ see ProducerConsumer.hs
• many versions inside

Semaphore implementation sketch

class Semaphore {

 int counter;

 Queue waitingTasks;
 public void wait (Task t) {…}

 public void release (Task t) {…}
}

public void wait(Task t) {
 if (sem.counter>0) counter-=1;

 else {
 sem.enqueue(t);
 wakeup_any_task();
 }

}

public void release (Task t) {
 if (sem.queue.empty()) counter+=1;

 else {
 sem.queue.add(t);
 activate(sem.queue.next());
 }

}

Producer/Consumer sketch
//Producer

loop:
 <<generate value v>>
 wait(emptySpots)

 buffer.insertValue(v)
 release(fullSpots)

//Consumer

loop:

 wait(fullSpots)
 v = buffer.takeValue()

 release(emptySpots)
 << consume v >>

Semaphore Issues

• brittle code
• relies on producer/consumer code to correctly call wait/release, on the

correct semaphores
• missing waits? dual access is likely
• missing releases? deadlock quite likely (tasks don't get woken up)

• semaphore implementation needs a single instruction "test-and-set"
• took the computing field quite some time to realize this!

• language support needs:
• usually provided as libraries
• very similar: mutex ("mutual exclusion")

• can lock/unlock to gain access to a resource (task is blocked when resource is in use)
• sort of like a semaphore where counter can't go above 1.

Monitors

• Monitor: abstracts away both the shared resource (data) and the
operations that interact with it, all into one place.
• very much the OO mentality
• mutual exclusion is pretty much a given
• programmer still must coordinate between tasks that use the monitor.
• concurrent calls are implicitly blocked.

Java's synchronized methods act as monitors.

Monitor notes

• Competition
• straightforward with monitors (mutual exclusion is guaranteed*)

• Cooperation
• programmer still does bookkeeping, e.g. tracking #items in the buffer

• comparison with semaphores:
• monitors are 'better' for competition
• both struggle with cooperation
• equally powerful: each can implement the other.

Message Passing

• tasks don't interrupt each other. Instead, they send messages to each
other
• like mailboxes between tasks
• tasks can check their mailboxes when they want, and respond to messages or

empty mailboxes as appropriate.
• may by synchronous or asynchronous
• non-deterministic which messages arrive first in a mailbox
• consider multiple mailboxes to help tame ordering issues

• Erlang is a programming language that allows concurrent 'processes'
to send messages to each other.
• ("Ericsson Language" - like the telecomm company)

Java and synchronization

• Threads and synchronized methods
• create Thread objects (or Runnable ones, same effect)

• the tasks are the run methods of those objects.
• We explicitly start() them , and once the method is done/returns, the task is complete.
• these tasks can run concurrently

• some other options
• java.util.concurrent.Semaphore: a counting semaphore (counter, no queue)
• java.util.concurrent.atomic: variable-level synchronization (protects assignments)
• java.util.concurrent.locks: explicit locks. Lock interface has lock, unlock, tryLock

methods.

Using Java's synchronized keyword

• add synchronized modifier to any method:
• mutual exclusion is guaranteed here and all other synchronized method calls

on the same instance (object)
• the object itself acts as the monitor. All uses of the object must be given

permission (the lock) to call synchronized methods.
• static and synchronized? Still useful: all class-members are grouped, and the

monitor is the object ClassName.class.
• synchronized block:
• you can synchronize an arbitrary block of code. Give the monitor object and

the code:
 synchronized (objectExpr) { stmts…}
• behaves like a synchronized method of objectExpr's class.

Java: cooperation vs competition using
synchronized

• finally you get to see the rest of the Object class's methods!
• wait(..) enter a ready queue (voluntary pause)
• notify(..) wake up any ready thread (maybe not specific enough)
• notifyAll(..) wake up all arbitrary threads (helps maintain liveness)

• Competition:
• synchronized achieves mutual exclusion between the synchronized blocks.

