
Concurrency Basics
Providing Synchronization
Java and Synchronization

Concurrency

CS 463

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Outline

1 Concurrency Basics

2 Providing Synchronization

3 Java and Synchronization

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Levels of concurrency

Locations of levels of concurrency
machine instruction
(high-level) language statement
unit level
program level

Only statement- and unit-level are interesting for us.

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Categories/Terminology

physical concurrency: multiple independent processors
logical concurrency: time-sharing one processor to
simulate physical concurrency
Coroutines: (quasi-concurrency) have a single thread of
control

but method calls/returns aren’t strictly nested: also can
yield/resume

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Tasks

task: some unit of code that can run concurrently with
others.

usually work together (if not: “disjointed” task)
program can start task without having to pause itself.
task’s completion doesn’t always return to caller

Kinds of Tasks:
heavy-weight: has its own address space (like separate
processes)
light-weight: shared address space.

easier to implement
easier to share (whether on purpose or not. . .)

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Task Synchronization

Can communicate through:
shared state
parameters
message passing

Cooperation: tasks each help coordinate sharing of resources
or timing of execution

awaiting completed results
Competition: tasks fight for resources.

mutually exclusive access
Example: consider two read-modify-write tasks on same
memory.

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Task States

new: created, hasn’t started.
ready: able to run but currently not.
running: currently executing.
blocked: can’t run just now.
dead: can’t run any more (whether it finished its work or
not).

Scheduler: handles waiting, notifying, etc. between tasks

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Liveness, Deadlock

liveness: task’s ability to make progress towards completion
tasks can lose their liveness.

deadlock: all tasks have lost their liveness.
example: each waiting on each other to do something
first.

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Various Approaches

semaphores (signals to other tasks)
mutexes (“locks” to limit access to resources)
monitors

hide shared data in monitor instead of direct-access
sharing

message passing (“mailboxes” between tasks)

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Semaphores

Semaphore (Dijkstra, 1965)

data structure that provides controlled access to a shared
resource.

tasks wait for access and release access when done.
can implement with counter and queue

Uses
competition (who manages to stop waiting first?)
cooperation (releasing acts as a yield/cooperation)

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Producer/Consumer example (cooperation)

Shared buffer: values can be inserted or removed, as
space allows.

might implement as array and first/last pointers
Producer: generate values, put in buffer

must wait if there’s no room in buffer at the moment
Consumer: takes values from buffer

must wait if there are no values in buffer at the moment

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Example Buffer: Producer/Consumer

definition:

class Buffer {
private int[] val; // array of values
private int head, last; // indexes

public void insertValue(v) {...}
public int takeValue (v) {...}

semaphore usage:
two semapores - emptySpots, fullSpots

insertValue and takeValue increment/decrement
them

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Examples

→ see ProduceConsume.java
includes Buffer class
uses synchronized keyword

→ see ProducerConsumer.hs
many versions inside

→ see rw.c, rw2.c, rw3.c
variations on producer/consumer
uses mutexes and condition variables
uses int[] as buffer

CS 463 Concurrency

see: pc1.c, pc2.c, pc3.c

Concurrency Basics
Providing Synchronization
Java and Synchronization

Semaphore Implementation Basics

Semaphore pseudocode

class Semaphore {
int counter;
Queue waitingTasks;

public void wait(Task t){...}
public void release(Task t) {...}

}

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

How are wait and release implemented?

basics of wait(sem)

if sem.counter>0:
counter -= 1

else:
sem.enqueue(theCaller)
wakeup_any_task() // if we can’t: deadlock

basics of release(sem)

if empty(sem.queue):
sem.counter += 1

else:
put caller in ready-queue
activate (sem.queue.next())

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Semaphore-based Producer/Consumer

Producer Pseudocode

loop:
<< generate value v >>
wait(emptySpots)
insertValue(v) // the guarded action
release(fullSpots)

Consumer Pseudocode

loop:
wait(fullSpots) // the guarded action
v <- takeValue()
release(emptySpots)
<< consume value >>

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Semaphore issues

Brittle
rely on producer/consumer code to correctly call wait /
release on correct semaphores.

missing waits: underflow or overflow occurs
missing releases: deadlock occurs (nobody else is woken
up)

semaphore implementation needs a single-instruction
test-and-set to be successfully implemented (took us a
long time to realize this!)

language support
usually provided as libraries.
very similar: mutex. “Mutual Exclusion”.

can lock/unlock to gain access to resource.
sort of like a semaphor where counter can’t go above 1.

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Monitors

Monitor: abstracts both shared resource (data) and
operations that interact with it all into one place.

mutual exclusion is thus a given.
programmer still must coordinate between tasks that use
the monitor.
concurrent calls are implicitly blocked.

Java’s synchronized methods act like monitors.

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Monitor notes

Competition:
straightforward with monitors (mutual exclusion is
guaranteed)

Cooperation:
programmer still does bookkeeping (e.g., # items in
buffer now)

comparison with semaphors:
Monitors are ‘better’ for competition
both struggle with cooperation
equally powerful: semaphors/monitors can implement
each other.

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Message Passing

tasks don’t interrupt each other; instead, they send
messages to each other

like mailboxes between tasks
tasks can check their mailboxes when they want, and
respond to messages or empty mailboxes as appropriate

may be synchronous or asynchronous
non-deterministic which messages arrive first in a mailbox.

consider multiple mailboxes to help tame ordering issues.

Erlang is a functional language allowing concurrent
‘processes’ to send messages to each other.

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

.

Java and Synchronization

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Java synchronized methods

Threads and synchronized methods
Create Thread objects (or Runnable ones, same effect):

the tasks are the run methods of such objects.
these tasks can run concurrently

Java threads are light-weight: share address space; low
overhead to create.

other options
java.util.concurrent.Semaphore : a counting
semaphore (counter, no queue)
java.util.concurrent.atomic : variable-level
synchronization!
Explicit Locks: Lock interface (with lock, unlock,
tryLock methods)

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Using Java’s synchronized keyword

add synchronized modifier to any method: bam!,
mutual exclusion is guaranteed here and all other
synchronized method calls on the same object.
the object itself acts as the monitor. All uses of the
object must obtain the lock to call synchronized methods.
static and synchronized? Still useful: all class-members
are grouped, and the monitor is the object
ClassName.class.
also: synchronized block:

synchronized (objectExpr){ stmts...}

behaves like sync’d method of result of objectExpr

CS 463 Concurrency

Concurrency Basics
Providing Synchronization
Java and Synchronization

Java: cooperation vs competition using
synchronized

Finally, we learn about all those “other” methods of
java.lang.Object !
Cooperation:
wait(..) enter ready queue (voluntarily pause)
notify() wake up one arbitrary ready thread (maybe no

specific enough!)
notifyAll() wake up all arbitrary threads (helps maintain

liveness vs. notify()).
Competition:
synchronized achieves mutual exclusion.

CS 463 Concurrency

	Concurrency Basics
	Providing Synchronization
	Java and Synchronization

