Concurrency

CS 463

CS 463 Concurrency

Outline

@ Concurrency Basics

© Providing Synchronization

© Java and Synchronization

CS 463 Concurrency

Concurrency Basics

Levels of concurrency

Locations of levels of concurrency

@ machine instruction

(high-level) language statement
@ unit level
@ program level

Only statement- and unit-level are interesting for us.

CS 463 Concurrency

Concurrency Basics

Categories/ Terminology

e physical concurrency: multiple independent processors
e logical concurrency: time-sharing one processor to
simulate physical concurrency

e Coroutines: (quasi-concurrency) have a single thread of
control

o but method calls/returns aren't strictly nested: also can
yield /resume

CS 463 Concurrency

Concurrency Basics

task: some unit of code that can run concurrently with
others.

@ usually work together (if not: “disjointed” task)

@ program can start task without having to pause itself.

@ task's completion doesn't always return to caller
Kinds of Tasks:

@ heavy-weight: has its own address space (like separate
processes)
@ light-weight: shared address space.

e easier to implement
e easier to share (whether on purpose or not. ..)

CS 463 Concurrency

Concurrency Basics

Task Synchronization

Can communicate through:
@ shared state
@ parameters
@ message passing

Cooperation: tasks each help coordinate sharing of resources
or timing of execution

@ awaiting completed results
Competition: tasks fight for resources.
@ mutually exclusive access

e Example: consider two read-modify-write tasks on same
memory.

CS 463 Concurrency

Concurrency Basics

Task States

new: created, hasn't started.

ready: able to run but currently not.

running: currently executing.

blocked: can't run just now.

dead: can’t run any more (whether it finished its work or
not).

Scheduler: handles waiting, notifying, etc. between tasks

CS 463 Concurrency

Concurrency Basics

Liveness, Deadlock

liveness: task's ability to make progress towards completion
@ tasks can lose their liveness.
deadlock: all tasks have lost their liveness.

@ example: each waiting on each other to do something
first.

CS 463 Concurrency

Providing Synchronization

Various Approaches

e semaphores (signals to other tasks)
e mutexes (“locks” to limit access to resources)
@ monitors

e hide shared data in monitor instead of direct-access
sharing

@ message passing (“mailboxes” between tasks)

CS 463 Concurrency

Providing Synchronization

Semaphores

Semaphore (Dijkstra, 1965)

data structure that provides controlled access to a shared
resource.

@ tasks wait for access and release access when done.

@ can implement with counter and queue

@ Uses

e competition (who manages to stop waiting first?)
e cooperation (releasing acts as a yield /cooperation)

CS 463 Concurrency

Providing Synchronization

Producer/Consumer example (cooperation)

@ Shared buffer: values can be inserted or removed, as
space allows.

e might implement as array and first/last pointers
@ Producer: generate values, put in buffer
e must wait if there’s no room in buffer at the moment
@ Consumer: takes values from buffer
e must wait if there are no values in buffer at the moment

CS 463 Concurrency

Providing Synchronization

Example Buffer: Producer/Consumer

class Buffer {
private int[] val; // array of values
private int head, last; // indexes

public void insertValue(v) {...}
public int takeValue (v) {...}

@ semaphore usage:
e two semapores - emptySpots, fullSpots

o insertValue and takeValue increment/decrement
them

CS 463 Concurrency

Providing Synchronization

EETTIES

— see ProduceConsume. java
@ includes Buffer class
@ uses synchronized keyword
— see ProducerConsumer.hs
@ many versions inside
—see: pcl.c,pc2.c, pc3.c
@ variations on producer/consumer
@ uses mutexes and condition variables

@ uses int[] as buffer

CS 463 Concurrency

see: pc1.c, pc2.c, pc3.c

Providing Synchronization

Semaphore Implementation Basics

Semaphore pseudocode

class Semaphore {
int counter;
Queue waitingTasks;

public void wait(Task t){...}
public void release(Task t) {...}

CS 463 Concurrency

Providing Synchronization

How are wait and release implemented?

basics of wait (sem)

if sem.counter>0:
counter -= 1
else:
sem. enqueue (theCaller)
wakeup_any_task() // if we can’t: deadlock

basics of release(sem)

if empty(sem.queue):
sem.counter += 1

else:
put caller in ready-queue
activate (sem.queue.next())

CS 463 Concurrency

Providing Synchronization

Semaphore-based Producer/Consumer

Producer Pseudocode

loop:
<< generate value v >>
wait (emptySpots)
insertValue(v) // the guarded action
release(fullSpots)

Consumer Pseudocode

loop:
wait (fullSpots) // the guarded action
v <- takeValue()
release (emptySpots)
<< consume value >>

CS 463 Concurrency

Providing Synchronization

Semaphore issues

@ Brittle

o rely on producer/consumer code to correctly call wait /
release on correct semaphores.

@ missing waits: underflow or overflow occurs
@ missing releases: deadlock occurs (nobody else is woken

up)
e semaphore implementation needs a single-instruction
test-and-set to be successfully implemented (took us a
long time to realize this!)

@ language support

e usually provided as libraries.
o very similar: mutex. “Mutual Exclusion”.

@ can lock/unlock to gain access to resource.
o sort of like a semaphor where counter can't go above 1.

CS 463 Concurrency

Providing Synchronization

Monitors

Monitor: abstracts both shared resource (data) and
operations that interact with it all into one place.

@ mutual exclusion is thus a given.

@ programmer still must coordinate between tasks that use
the monitor.

@ concurrent calls are implicitly blocked.

Java's synchronized methods act like monitors.

CS 463 Concurrency

Providing Synchronization

Monitor notes

Competition:
@ straightforward with monitors (mutual exclusion is
guaranteed)
Cooperation:
@ programmer still does bookkeeping (e.g., # items in
buffer now)

@ comparison with semaphors:
o Monitors are ‘better’ for competition

e both struggle with cooperation
e equally powerful: semaphors/monitors can implement

each other.

CS 463 Concurrency

Providing Synchronization

Message Passing

@ tasks don't interrupt each other; instead, they send
messages to each other

o like mailboxes between tasks
o tasks can check their mailboxes when they want, and
respond to messages or empty mailboxes as appropriate

@ may be synchronous or asynchronous
@ non-deterministic which messages arrive first in a mailbox.

e consider multiple mailboxes to help tame ordering issues.

@ Erlang is a functional language allowing concurrent
‘processes’ to send messages to each other.

CS 463 Concurrency

Java and Synchronization

Java and Synchronization

CS 463 Concurrency

Java and Synchronization

Java synchronized methods

@ Threads and synchronized methods
o Create Thread objects (or Runnable ones, same effect):
o the tasks are the run methods of such objects.
o these tasks can run concurrently
o Java threads are light-weight: share address space; low
overhead to create.

@ other options
e java.util.concurrent.Semaphore : a counting
semaphore (counter, no queue)
e java.util.concurrent.atomic : variable-level
synchronization!
o Explicit Locks: Lock interface (with lock, unlock,
tryLock methods)

CS 463 Concurrency

Java and Synchronization

Using Java's synchronized keyword

@ add synchronized modifier to any method: bam!,
mutual exclusion is guaranteed here and all other
synchronized method calls on the same object.

@ the object itself acts as the monitor. All uses of the
object must obtain the lock to call synchronized methods.

@ static and synchronized? Still useful: all class-members
are grouped, and the monitor is the object
ClassName.class.

@ also: synchronized block:
synchronized (objectExpr){ stmts...}

@ behaves like sync'd method of result of objectExpr

CS 463 Concurrency

Java and Synchronization

Java: cooperation vs competition using

synchronized

Finally, we learn about all those “other” methods of
java.lang.Object !
Cooperation:

wait(..) enter ready queue (voluntarily pause)
notify () wake up one arbitrary ready thread (maybe no
specific enough!)
notifyAl1l() wake up all arbitrary threads (helps maintain
liveness vs. notify()).
Competition:
synchronized achieves mutual exclusion.

CS 463 Concurrency

	Concurrency Basics
	Providing Synchronization
	Java and Synchronization

