
Haskell
Type Classes
Monads

Algebraic Data Types (ADTs)
(quick review)

Definition
An algebraic data type declares a new type, and provides one or more ways to
create a value in the type.
• The datatype can have type parameters. (Example: Tree a)

• these are parametric polymorphism, like Java’s generics.
• Each shape of value has a constructor and 0+ arguments (listed by type)

• A constructor is really a function, e.g. RBG :: Int ⟶ Int ⟶ Int ⟶ Color
• instances provide the implementations of a type class for a specific type.

data Bool = True | False

data Coin = Quarter | Dime | Nickel | Penny
data Color = Green | Gold | RBG Int Int Int
data IntList = ILCons Int IntList | EmptyIL
data MyList a = Cons a (MyList a) | EmptyList
data Tree a = Leaf | Branch (Tree a) a (Tree a)

datatype usage
• We write functions over the new datatype.

• We use pattern matching to cover all expected shapes of values

data IntTree = Leaf | Br IntTree Int IntTree

sumIT :: IntTree ⟶ Int
sumIT Leaf = 0
sumIT (Br left v right) = (sumIT left) + v + (sumIT right)

See: adts in ClassCode2.hs

Type Classes

Definition
A type class declares a group of methods that can be provided at
specific types.

instances provide the implementations of a type class for a specific type.

class Show a where
 show :: a ⟶ String

data IntPair = IP Int Int

instance Show IntPair where
 show (IP x y) = "("++(show x)++","++(show y)++")"

→ These are quite similar in purpose to Java's interfaces:
both are ad-hoc polymorphism

Example
Given a datatype that represents ordering, we can create a type
class, Ord, that understands how to order anything given an
instance:

data Ordering = LT | GT | EQ

class Ord a where
 compare :: a -> a -> Ordering

instance Ord Int where
 compare a b | a<b = LT
 | a==b = EQ
 | otherwise = GT

The real Ord has many more methods, not just compare.

More Instances
We can provide instances for any specific types we want,
whether it's a type we created or a type that is already
available (as with Int). We can also rely upon other
instances of the typeclass in the process.

data Color = RGB Int Int Int

instance Ord Color where
 compare (RGB a b c) (RGB x y z)
 | (a+b+c)<(x+y+z) = LT
 | (a+b+c)==(x+y+z) = EQ
 | otherwise = GT

Class Constraints
If you expect something to be usable via a typeclass instance
as part of some other code, that can be added as a class
constraint on a type variable (before the =>).

Example: pairs can be ordered by each successive element,
but we need to know the elements are themselves orderable:

instance (Ord a, Ord b) => Ord (a,b) where
 compare (a,b) (c,d) = case compare a c of
 EQ -> compare b d
 LT -> LT
 GT -> GT

Deriving Instances
Some built-in type classes have obvious instances that could be
provided automatically.
• Show and Eq are two such candidates. But we can't "override"

(redefine) an instance, so by default they aren't provided.
• To request the defaults, we add those deriving clauses:

data IntPair = IP Int Int deriving (Show, Eq)

data RoseTree = R Int | B Int [RoseTree] deriving (Show, Eq)

data Option3 a b c = One a | Two b | Three c deriving (Show, Eq)

Available deriving classes
• Eq: provides (==) and (/=).

• Ord: comparisons. (<) (<=) (>) (>=) compare

• Show: convert things to strings via show::a→String
• Read: parses String to target type. (you need ascriptions to tell it what to

expect). read::String → a
• Enum, Bounded: deals with enumerations and [a..b] syntax

• others: Sometimes you can add a language pragma (such as
{-# LANGUAGE DeriveDataTypable #-}) in order to derive specific extra class
instances, like Data.Data or Data.Typeable.

• reach goal: write your own! Explore Data.Derive, allowing you to replace
what default instance is used or to add more self-defined patterns of default
instances.

More Type Classes
• http://learnyouahaskell.com/types-and-typeclasses#typeclasses-101

• http://learnyouahaskell.com/making-our-own-types-and-typeclasses

• https://wiki.haskell.org/Typeclassopedia

• https://en.wikibooks.org/wiki/Haskell/Classes_and_types

• https://www.haskell.org/onlinereport/basic.html

https://wiki.haskell.org/Typeclassopedia
https://wiki.haskell.org/Typeclassopedia
https://wiki.haskell.org/Typeclassopedia
https://en.wikibooks.org/wiki/Haskell/Classes_and_types
https://www.haskell.org/onlinereport/basic.html

More Prelude type classes
Num: represents numeric things. Definition:

class Num a where
 (+), (*), (-) :: a -> a -> a
 negate, abs, signum :: a -> a
 fromInteger :: Integer -> a

class (Num a) => Fractional a where
 quot, rem, div, mod :: a -> a -> a
 quotRem, divMod :: a -> a -> (a,a)
 toInteger :: a -> Integer
http://hackage.haskell.org/package/base-4.7.0.2/docs/Prelude.html#t:Num

http://hackage.haskell.org/package/base-4.7.0.2/docs/Prelude.html

Functor
the map function is specifically for lists:

 map :: (a→b) → [a] → [b]
It navigates the list structure, applying the function to each spot.

Functors are any structure that has "spots" akin to the items in a list.
Some examples: values in tree structures; values in Maybe types.

class Functor f where
 fmap :: (a→b) → f a → f b

More typeclass examples:
typeclasses/TypeClasses*.hs

Monads

TODO:

• Read to/through the LYAHFGG materials on
monads (chapters 12, 13)

• Read the RWH materials on monads
(CH 7, 14, and more)

• Play with IO
• Play with Maybe

Idea (Not the Definition)
• Monads are used to represent a computation.

• we compose pieces of represented computation together into larger
computation

• We want to have a more direct way to simulate other kinds of computation.
We will use monads to model extra computational features not directly
implemented in Haskell.
• Ultimately, uses >>= and return operations
• but do-notation makes it prettier

• Example of representing a computational style: our lambda calculus
implementations in Haskell provided a model of computation via eval.
 eval :: Tm → Val

Monad Examples
• IO Monad: implements side effects: file I/O, user interaction, updatable

variables, and more. This one is special – you can't peek under the hood of this one!

• Maybe Monad: simulates chains of steps that might not generate a value

• Error Monad: simulates failures (like explicit exception handling)
• List Monad: simulates non-determinism.

• State Monad: simulates having an updatable variable and sequential operations.
• Reader Monad: simulates having an environment of info (like Γ in λ⟶)

• Writer Monad: simulates having a "logger"/console to emit values to while
evaluating.

Monad Implementations:
a peek

• Generally will use datatype values to represent that monad's computations

• Your code can use these values to build up expressions.

• Provides instance of class Monad
• Allows chaining expressions together
• Allows do-notation (convenient syntax)

• Probably provides a typeclass that embodies common operations for that monad.
Often this is used more than the ADT directly!

• Needs a "run-" method that lets us take an expression representing a computation
in that monad, plus any other needed starting info, and simulates the computation
described.
• Think of our eval function over Tm in our lambda calculus implementation.

class Monad m where
 (>>=) :: m a -> (a -> m b) -> m b
 return :: a -> m a

We explore some example usage first; then we'll peek at some implementations.

Running Monads (crib sheet)
State Monad: simulate having an updatable variable and sequential operations.
runState :: (State s a) → s → (a,s)

• Given a State computation and a starting state, run the computation based on that initial state. Give
back the resulting answer and updated state.

Reader Monad: simulate having an environment of info (like Γ in λ⟶)
runReader :: (Reader r a) → r → a

• Given a Reader computation and a starting environment, what is the resulting value from the represented
expression?

Writer Monad: simulates having a "logger"/console to emit values to while evaluating.
runWriter :: (Writer w a) → (a,w)

• Given a Writer computation, evaluate the answer as well as what , what is the resulting value from the
represented expression?

Maybe Monad: simulates chains of fail-possible steps.
(no runMaybe::(Maybe a)⟶ a . Maybes are already in the language!)

IO Monad: implements side effects: file I/O, user interaction, updatable variables, and more.
(no runIO::IO a → a. Why is that unsafe? We'll learn…)

Monad: the Idea
• We build programs out of pieces of computation, and

selectively run the computation when the program is fully
constructed.
→ it's like an embedded language
⟶ or like our lambda calculi, for extra features

• Example: statefulness (having variables to read/write)
→ e.g. access to a [(String,Value)] list throughout a
function

• Multiple statements are often sequenced by semi-colon in
imperative languages; we similarly chain operations
together (via "bind", >>=)

Special Case: The IO Monad
• all side effects* are relegated to the IO monad –

to operations such as:
• getLine :: IO String
• putStr, putStrLn :: String -> IO ()
• readFile :: FilePath -> IO String

• You can tell, just by the type, which functions
will lead to side-effects, because they'll have IO
in the return-type.

Sample IO program
(preferred do-notation)

main :: IO ()

main = do

 putStrLn "what is your name?"

 name <- getLine

 putStrLn "how old are you?"

 ageStr <- getLine

 let age = read ageStr::Int

 putStr $ (map toUpper name)

 putStrLn $ ": you're nearly "++(show (age+1))

file: IOStuff.hs

Sample IO program
(using >>= directly, "normal" layout)

main :: IO ()
main =
 putStrLn "what is your name?"
 >>= (\ _ ->
 getLine
 >>= (\ name ->
 putStrLn "how old are you?"
 >>= (\ _ ->
 getLine
 >>= (\ ageStr ->
 let age = read ageStr::Int
 in putStr (map toUpper name)
 >>= (\ _ ->
 putStrLn $ ": you're nearly "++(show (age+1))
)))))

file: IOStuff.hs

Sample IO program
(using >>= directly – with layout mimicking the do-notation)

main :: IO ()

main =

 putStrLn "what is your name?" >>= (\ _ ->

 getLine >>= (\ name ->

 putStrLn "how old are you?" >>= (\ _ ->

 getLine >>= (\ ageStr ->

 let age = read ageStr::Int in

 putStr (map toUpper name) >>= (\ _ ->

 putStrLn $ ": you're nearly "++(show (age+1))

)))))

file: IOStuff.hs

Performing IO in Haskell
• Write any pure functions as before, without the IO monad.

• try to write as much of the program as you can in pure style

• write one main::IO() function (plus helpers) that deals with the user/files/world.

• sequence your pure calculations with IO actions
• imperative code often has the same pattern – objects hide their

implementations internally, and there's probably only one main() method that
interacts with the outside world

• Any side-effectful function will have IO in its (return) type.

Finding Definitions
• Looking for specific functions? Hoogle is your friend:

https://hoogle.haskell.org/

• Guess the type.

• search for example "String -> IO ()"
• we found the putStrLn function!

• We also realize we'll need to
import System.IO

https://hoogle.haskell.org/

Monads Behind the Scenes

• chain multiple operations together to compose more complex operations.
• with "bind", >>=, or preferably with do-notation

• The chosen monad defines what chain operations mean.
• the implementation of >>= is the crucial bit that defines the special features

present. It accepts two arguments to build a larger computation:
• an initial computation (:: m a)
• function from one value (result of "running" that initial computation) to

define a new computation that could be run (a -> m b)
• A bind of both arguments is just some computation (:: m b)
• do-syntax and syntactic sugar hides most >>= operators (nice!)

class Monad m where
 (>>=) :: m a -> (a -> m b) -> m b
 return :: a -> m a

Impetus for the Maybe Monad:
multiple failworthy actions

• Consecutive calculations that each may fail can
require multiple case-exprs over a Maybe value.

• helper functions might not be sufficient/desirable to
avoid this linear indentation.

smallerMaxCasey :: ([Int],[Int]) -> Maybe Int
smallerMaxCasey (xs,ys) =
 case maybeMax xs of
 Nothing -> Nothing
 Just xsMax -> case maybeMax ys of
 Nothing -> Nothing
 Just ysMax -> Just (min xsMax ysMax)

writing this code (without the fail-response notion) is annoying

file: MaybeMonad.hs

Maybe, as a Monad
instance Monad Maybe where
 return:: a ⟶ Maybe a
 return x = Just x
 (>>=):: Maybe a ⟶ (a ⟶ Maybe b) ⟶ Maybe b
 Nothing >>= _ = Nothing
 (Just x) >>= f = f x

M
ay

be
M

on
ad

.h
s

• have the value we want to return? Just return it.
• want to chain two operations together?

• if the first one gave us Nothing, we don't care what the second operation
was – the whole process failed, and the answer is Nothing.

• if the first one gave us Just the value x, we can feed it to the second
operation to find out the overall answer.

• chances are, the "second operation" is itself a long chain of operations.
• As long as it results in some Maybe a type, it'll work.

hiding in the Prelude somewhere…
https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-Maybe.html#t:Maybe

class Monad m where
 (>>=) :: m a -> (a -> m b) -> m b
 return :: a -> m a

Using >>= versus using return

smallerMaxBind :: ([Int],[Int]) -> Maybe Int
smallerMaxBind (xs,ys) =
 maybeMax xs >>= (\ maxX ->
 maybeMax ys >>= (\ maxY ->
 Just (min maxX maxY)
)
)

smallerMax :: ([Int],[Int]) -> Maybe Int
smallerMax (xs,ys) = do
 xsMax <- maybeMax xs
 ysMax <- maybeMax ys
 return (min xsMax ysMax)

(equivalent definitions, using different syntax styles)

file: MaybeMonad.hs

Same functionality
• The cases, >>=, and do-notation versions all performed the same

calculations.
• we explicitly indicate how to handle failures and continued calculations

with cases/>>=, but the do-notation separates "how to perform
chaining" code from the steps we're chaining.

→ see MaybeMonad.hs for more examples from the Maybe Monad.

⟶ here is a nice longform discussion on this "failure path" mentality:
 https://fsharpforfunandprofit.com/rop/
 see the slides or video on "Railway Oriented Programming"

https://fsharpforfunandprofit.com/rop/

Motivation:
The State Monad

Writing a (helper) function that threads through some background "state",
which is sometimes used, sometimes updated for further calls, is a common
pattern (see sumIter, maxH). This can be annoying.

sum xs = sumIter 0 xs

sumIter :: Int -> [Int] -> Int
sumIter n [] = n
sumIter n (x:xs) = sumIter (n+x) xs

maxL :: [Int] -> Maybe Int
maxL [] = Nothing
maxL (x:xs) = Just (maxH xs x)

maxH :: [Int] -> Int -> Int
maxH [] m = m
maxH (x:xs) m = if x > m then (maxH xs x) else (maxH xs m)

this version has to manually thread through its 'state' (extra parameters)

State, as a Monad
data State s a = State (s -> (a,s))
to run something that needs a state input, give it its input.
runState :: (State s a) -> s -> (a,s)
runState (State f) s = f s

instance Monad (State s) where
 # when given a state, just pass it through.
 return a = State (\s -> (a,s))
 # feed state to the first part; get the output state and feed to second part.
 (State f) >>= gm = State $ \s -> case (f s) of
 (val, s') -> runState (gm val) s'

Goals:
• identify how the input-state is abstracted out, and applied later.
• look for the chaining of multiple 'stateful' actions

(don't get caught up on this – using
State is more important than fully
understanding its implementation
for now)

Adding "non-proper morphisms"

class MonadState s m | m -> s where
 get :: m s
 put :: s -> m ()

instance MonadState s (State s) where
 get = State $ \s -> (s,s)
 put s = State $ _ -> ((),s)

Some data/state/value is being threaded through our calc.
• we want to get the current state (read it)
• we want to put a new current state (assign to it/replace it)
• already possible with bind, but we want convenient

shorthand methods. We use a typeclass.

m -> s : This is a functional dependency."knowing type m dictates the type s."

Common Usage: State
• Using get and put, in do-notation, describe some computations that

you'd like to do that are stateful. They'll have types like this:
compM :: arg1 ⟶ … ⟶ argN ⟶ State s a

• "run" the simulation at the top level (like a driver function), via
runState, evalState, or execState, e.g.:
go :: args ⟶ a
go args = evalState (compM args) sinitial

go2 :: args ⟶ a
go2 args = case runState (compM args) sinitial of
 (lastval,laststate) -> lastval

Using get/put
to create state-simulations
fibM :: Int -> State (Int,Int) Int
fibM 0 = do
 (a,b) <- get # get current state (it's a pair of ints)
 return a # answer is a.
fibM n = do
 (a, b) <- get # get current state pair
 put (b, a+b) # change stored state pair
 fibM (n-1) # recurse, knowing state changed

fib :: Int -> Int
fib n = case runState (fibM n) (1,1) of
 # ignore our (a,b) state since we're done
 (ans, (a,b)) -> ans

Larger Example:
Stack Machine

• See StateExamples.hs for an example that builds a stack machine
• first, without using State
• we'll have many functions that will mirror aspects of the actual state

monad
• finally, we'll draw the parallels between the two representations, and

view our work in the state monad.

• if you squint, you could view it as something familiar:

>>= version do-notation imperative analog

expr >>= \n → … name ← expr name = expr;

expr1 >> expr2 expr
expr

stmt1 ; stmt2

List Monad
trying all possibilities (non-determinism)

rightTri n =
 [(a,b,c)
 | a <- [1..n]
 , b <- [a..n]
 , c <- [b..n],
 , a*a+b*b==c*c
]

rightTri_do n = do
 a <- [1..n]
 b <- [a..n]
 c <- [b..n]
 guard $ a*a+b*b==c*c
 return (a,b,c)

List comprehensions can be written in do-notation.
• generators are separate binding lines
• guards (filtering out unworthy values) use guard :: Bool -> [()]
• return value is the piece-wise result

list comprehension version do-notation version

More Monads!
• Reader – for maintaining an environment (like Γ)
• Writer – for sending values (messages) to a log
• Error – for representing error cases
• ...

• Multiple monads at once: you need monad
transformers or other entirely different approaches
(beyond the scope of this presentation…)

