Haskell

Type Classes
Monads

Algebraic Data Types (ADTs)
(quick review)

Definition
An algebraic data type declares a new type, and provides one or more ways to

create a value in the type.

» The datatype can have type parameters. (Example: Tree a)

* these are parametric polymorphism, like Java’s generics.
« Each shape of value has a constructor and 0+ arguments (listed by type)

« Aconstructor is really a function, e.g. RBG :: Int — Int — Int — Color
 instances provide the implementations of a type class for a specific type.

data Bool

True | False

data Coin = Quarter | Dime | Nickel | Penny
data Color = Green | Gold | RBG Int Int Int
data IntList = ILCons Int IntList | EmptyIL
data MyList a = Cons a (MyList a) | EmptyList
data Tree a = Leaf | Branch (Tree a) a (Tree a)

datatype usage

» We write functions over the new datatype.

» We use pattern matching to cover all expected shapes of values

data IntTree = Leaf | Br IntTree Int IntTree

sumIT :: IntTree — Int
sumIT Leaf = ©
sumIT (Br left v right) = (sumIT left) + v + (sumIT right)

See: adts in ClassCode2.hs

Type Classes

Definition
A type class declares a group of methods that can be provided at
specific types.

instances provide the implementations of a type class for a specific type.

class Show a where
show :: a — String

data IntPair = IP Int Int

instance Show IntPair where
show (IP x y) = "("++(show x)++","++(show y)++")"

— These are quite similar in purpose to Java's interfaces:
both are ad-hoc polymorphism

Example

Given a datatype that represents ordering, we can create a type
class, Ord, that understands how to order anything given an
instance:

data Ordering = LT | GT | EQ

class Ord a where
compare :: a -> a -> Ordering

instance Ord Int where
compare a b | a<b = LT
| a==b = EQ
| otherwise = GT

The real Ord has many more methods, not just compare.

More Instances

We can provide instances for any specific types we want,
whether it's a type we created or a type that is already
available (as with 1nt). We can also rely upon other
instances of the typeclass in the process.

data Color = RGB Int Int Int

instance Ord Color where
compare (RGB a b c) (RGB x y z)

| (a+b+c)<(x+y+z) = LT
| (a+b+c)==(x+y+z) = EQ
| otherwise = GT

Class Constraints

If you expect something to be usable via a typeclass instance
as part of some other code, that can be added as a class
constraint on a type variable (before the =>).

Example: pairs can be ordered by each successive element,
but we need to know the elements are themselves orderable:

instance (Ord a, Ord b) => Ord (a,b) where
compare (a,b) (c,d) = case compare a c of
EQ -> compare b d
LT -> LT
GT -> GT

Deriving Instances

Some built-in type classes have obvious instances that could be
provided automatically.

« Show and Eq are two such candidates. But we can't "override"
(redefine) an instance, so by default they aren't provided.

« To request the defaults, we add those deriving clauses:

data IntPair = IP Int Int deriving (Show, Eq)
data RoseTree = R Int | B Int [RoseTree] deriving (Show, Eq)

data Option3 a b ¢ = One a | Two b | Three ¢ deriving (Show, Eq)

Available deriving classes

Eq: provides (==) and (/=).
Ord: comparisons. (<) (<=) (>) (>=) compare
Show: convert things to strings via show::a—String

Read: parses String to target type. (you need ascriptions to tell it what to
expect). read::String — a

Enum, Bounded: deals with enumerations and [a..b] syntax

others: Sometimes you can add a language pragma (such as
{-# LANGUAGE DeriveDataTypable #-}) in order to derive specific extra class
instances, like Data.Data or Data.Typeable.

reach goal: write your own! Explore Data.Derive, allowing you to replace
what default instance is used or to add more self-defined patterns of default
instances.

More Type Classes

http://learnyouahaskell.com/types-and-typeclasses#typeclasses-101

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

https://wiki.haskell.org/Typeclassopedia

https://en.wikibooks.org/wiki/Haskell/Classes and types

https://www.haskell.org/onlinereport/basic.html

Functor Apply e Semigroup

/

Comonad

Applicative [« Monoid |- oeeeee Category
Alternative Foldable Monad | Arrow - ArrowZero (- ArrowPlus
Traversable MonadFix MonadPlus ArrowApply ArrowChoice ArrowLoop

Num

Int, Integer,
Float, Double

Real
Int, Integer,
loat, Double
RealFrac
Float, Double
RealFloat
Float, Double

Allexcept (-=)
10, IOEnor

Enum
(), Bool, Char, Ordering,
Int, Integer, Float,
Double

Integral
Int, Integer

MonadPlus Functor
10, [0, Iaybe 10, [0, Iaybe

Bounded
Int, Char, Bool, ()
Ordering, tuples

Fractional
Float, Double
Floating
Float, Double

/

https://wiki.haskell.org/Typeclassopedia
https://wiki.haskell.org/Typeclassopedia
https://wiki.haskell.org/Typeclassopedia
https://en.wikibooks.org/wiki/Haskell/Classes_and_types
https://www.haskell.org/onlinereport/basic.html

More Prelude type classes

Num: represents numeric things. Definition:

class Num a where
(+): (*)J (') e ad->a -> a4
negate, abs, signum :: a -> a
fromInteger :: Integer -> a

class (Num a) => Fractional a where
quot, rem, div, mod :: a -> a -> a
quotRem, divMod :: a -> a -> (a,a)
toInteger :: a -> Integer

http://hackage.haskell.org/package/base-4.7.0.2/docs/Prelude.html#t:Num

http://hackage.haskell.org/package/base-4.7.0.2/docs/Prelude.html

Functor

the map function is specifically for lists:

map :: (a—b) — [a] — [b]

It navigates the list structure, applying the function to each spot.

Functors are any structure that has "spots" akin to the items in a list.
Some examples: values in tree structures; values in Maybe types.

class Functor f where
fmap :: (a—b) > fa—fb

More typeclass examples:
typeclasses/TypeClasses*.hs

Monads

TODO:

Read to/through the LYAHFGG materials on
monads (chapters 12, 13)

Read the RWH materials on monads
(CH 7, 14, and more)

Play with IO
Play with Maybe

Idea (Not the Definition)

Monads are used to represent a computation.
- we compose pieces of represented computation together into larger
computation

We want to have a more direct way to simulate other kinds of computation.
We will use monads to model extra computational features not directly
implemented in Haskell.

« Ultimately, uses >>= and return operations
* but do-notation makes it prettier

Example of representing a computational style: our lambda calculus
implementations in Haskell provided a model of computation via eval.
eval :: Tm — Val

Monad Examples

IO Monad: implements side effects: file I/O, user interaction, updatable
variables, and more. This one is special — you can't peek under the hood of this one!

Maybe Monad: simulates chains of steps that might not generate a value
Error Monad: simulates failures (like explicit exception handling)

List Monad: simulates non-determinism.

State Monad: simulates having an updatable variable and sequential operations.
Reader Monad: simulates having an environment of info (like ' in A_,)

Writer Monad: simulates having a "logger"/console to emit values to while
evaluating.

Monad Implementations:
a peek

Generally will use datatype values to represent that monad's computations

* Your code can use these values to build up expressions.

Provides instance of class Monad class Monad m where
(>>=) ::ma->(a->mb) ->mb
- Allows chaining expressions together return ::a ->ma

« Allows do-notation (convenient syntax)

Probably provides a typeclass that embodies common operations for that monad.
Often this is used more than the ADT directly!

Needs a "run-" method that lets us take an expression representing a computation
in that monad, plus any other needed starting info, and simulates the computation

described.
« Think of our eval function over Tm in our lambda calculus implementation.

We explore some example usage first; then we'll peek at some implementations.

Running Monads (crib sheet)

State Monad: simulate having an updatable variable and sequential operations.
runState :: (State s a) —»s — (a,s)

. Given a State computation and a starting state, run the computation based on that initial state. Give
back the resulting answer and updated state.

Reader Monad: simulate having an environment of info (like ' in A_,)
runReader :: (Reader r a) > r — a

. Given a Reader computation and a starting environment, what is the resulting value from the represented
expression?

Writer Monad: simulates having a "logger"/console to emit values to while evaluating.
runWriter :: (Writer w a) — (a,w)
. Given a Writer computation, evaluate the answer as well as what , what is the resulting value from the

represented expression?

Maybe Monad: simulates chains of fail-possible steps.
(no runMaybe::(Maybe a)— a . Maybes are already in the Language!)

IO Monad: implements side effects: file I1/0O, user interaction, updatable variables, and more.
(no runIO::I0 a — a. wWhy is that unsafe? We'll Learn..)

Monad: the Idea

« We build programs out of pieces of computation, and
selectively run the computation when the program is fully

constructed.

— it's like an embedded language
— or like our lambda calculi, for extra features

« Example: statefulness (having variables to read/write)
— e.g. access toa [(String,Value)] list throughout a
function

« Multiple statements are often sequenced by semi-colon in
imperative languages; we similarly chain operations
together (via "bind", >>=)

Special Case: The 10 Monad

+ all side effects™ are relegated to the IO monad —
to operations such as:
 getlLine :: I0 String
 putStr, putStrLn :: String -> 10 ()
* readFile :: FilePath -> IO String

* You can tell, just by the type, which functions
will lead to side-effects, because they'll have 10
In the return-type.

Sample 10 program

(preferred do-notation)

main :: IO ()

main = do
putStrLn "what is your name?"
name <- getLine
putStrLn "how old are you?"
ageStr <- getLine
let age = read ageStr::Int
putStr ¢ (map toUpper name)

putStrLn $ ": you're nearly "++(show (age+l))
file: IOStuff.hs

Sample 10 program

(using >>= directly, "normal” layouft)

main :: IO ()

main =
putStrLn "what is your name?"
>>= (\ _ ->

getLine
>>= (\ name ->
putStrLn "how old are you?"
>>= (\ _ ->
getLine
>>= (\ ageStr ->
let age = read ageStr::Int
in putStr (map toUpper name)
>>= (\ _ ->
putStrLn $ ": you're nearly "++(show (age+l))
)))))

file: IOStuff hs

Sample 10 program

(using >>= directly — with layout mimicking the do-notation)

main :: IO ()

main =
putStrLn "what is your name?" >>= (\ _ ->
getLine >>= (\ name ->
putStrLn "how old are you?" >>= (\ _ ->
getLine >>= (\ ageStr ->

let age = read ageStr::Int in
putStr (map toUpper name) >>= (\ _ ->
putStrLn $ ": you're nearly "++(show (age+l))

)))))

file: IOStuff.hs

Performing 10 in Haskell

« Write any pure functions as before, without the |O monad.

« try to write as much of the program as you can in pure style

« write one main::10() function (plus helpers) that deals with the user/files/world.

* sequence your pure calculations with IO actions

* imperative code often has the same pattern — objects hide their

implementations internally, and there's probably only one main() method that
interacts with the outside world

« Any side-effectful function will have 10 in its (return) type.

Finding Definitions

Looking for specific functions? Hoogle is your friend:

https://hoogle.haskell.orqg/

Hoog\e

Guess the type.

search for example "String -> 10 ()" |-
we found the putStrLn function! e

We also realize we'll need to
import System.IO

= MissingH +
=l extra +

|string -> 10 ()

set:stackage

:: String > 10 ()

putStr :: String -> 10 ()

base Prelude System.lO, hspec Test.Hspec.Discover, Cabal Distribution.Compat.Prelude.Internal,
hedgehog Hedgehog.Internal.Prelude, base-compat Prelude.Compat
(@ Write a string to the standard output device (same as hPutStr stdout)

putStrLn :: String -> 10 ()

base Prelude System.lO, hspec Test.Hspec.Discover, Cabal Distribution.Compat.Prelude.Internal,
hedgehog Hedgehog.Internal.Prelude, base-compat Prelude.Compat
[#] The same as putStr, but adds a newline character.

tracelO :: String -> 10 ()

base Debug.Trace
@ The tracelO function outputs the trace message from the 10 monad. This sequences the output with respect to

https://hoogle.haskell.org/

Monads Behind the Scenes

chain multiple operations together to compose more complex operations.
- with "bind", >>=, or preferably with do-notation
The chosen monad defines what chain operations mean.
the implementation of >>= is the crucial bit that defines the special features
present. It accepts two arguments to build a larger computation:
* aninitial computation (: : m a)

« function from one value (result of "running" that initial computation) to
define a new computation that could be run (a -> m b)

A bind of both arguments is just some computation (: : m b)
do-syntax and syntactic sugar hides most >>= operators (nice!)

class Monad m where
(>>=) ::ma->(a->mb) ->mb
return :: a ->m a

Impetus for the Maybe Monad:

multiple failworthy actions

« Consecutive calculations that each may fail can
require multiple case-exprs over a Maybe value.

 helper functions might not be sufficient/desirable to
avoid this linear indentation.

writing this code (without the fail-response notion) is annoying

smallerMaxCasey :: ([Int],[Int]) -> Maybe Int
smallerMaxCasey (Xxs,ys) =
case maybeMax xs of

Nothing -> Nothing
Just xsMax -> case maybeMax ys of
Nothing -> Nothing

Just ysMax -> Just (min xsMax ysMax)

file: MaybeMonad.hs

class Monad m where

(>>=) :ma->(a->mb) ->mb
Maybe, as a Monad e 12 ne
instance Monad Maybe where hiding in the Prelude somewhere...

return x = Just X

Nothing »>>= _ = Nothing

(Just x) >>= f = f x

* have the value we want to return? Just return it.
« want to chain two operations together?
- if the first one gave us Nothing, we don't care what the second operation
was — the whole process failed, and the answer is Nothing.
« if the first one gave us Just the value x, we can feed it to the second
operation to find out the overall answer.

» chances are, the "second operation" is itself a long chain of operations.
* As long as it results in some Maybe a type, it'll work.

MaybeMonad.hs

Using >>= versus using return

(equivalent definitions, using different syntax styles)

smallerMaxBind :: ([Int],[Int]) -> Maybe Int
smallerMaxBind (xs,ys) =
maybeMax xs >>= (\ maxX ->
maybeMax ys >>= (\ maxy ->
Just (min maxX maxy)
)
)

smallerMax :: ([Int],[Int]) -> Maybe Int
smallerMax (xs,ys) = do

xsMax <- maybeMax xs

ysMax <- maybeMax ys

return (min xsMax ysMax)

file: MaybeMonad.hs

Same functionality

 The cases, »>>=, and do-notation versions all performed the same
calculations.

« we explicitly indicate how to handle failures and continued calculations
with cases/>>=, but the do-notation separates "how to perform
chaining" code from the steps we're chaining.

— see MaybeMonad.hs for more examples from the Maybe Monad.

— here is a nice longform discussion on this "failure path” mentality:

https://fsharpforfunandprofit.com/rop/
see the slides or video on "Railway Oriented Programming”

https://fsharpforfunandprofit.com/rop/

Motivation:
The State Monad

Writing a (helper) function that threads through some background "state",
which is sometimes used, sometimes updated for further calls, is a common
pattern (see sumlter, maxH). This can be annoying.

this version has to manually thread through its 'state' (extra parameters)

sum Xs = sumIter O xs

sumIter :: Int -> [Int] -> Int
sumIter n [] =n
sumIter n (x:xs) = sumIter (n+x) xs

maxL :: [Int] -> Maybe Int
maxL [] = Nothing
maxL (x:xs) = Just (maxH xs x)

maxH :: [Int] -> Int -> Int
maxH [] m=m
maxH (x:xs) m = if x > m then (maxH xs x) else (maxH xs m)

(don't get caught up on this — using

S [[t han full
State, as a Monad e e

for now)

data State s a = State (s -> (a,s))

to run something that needs a state input, give it its input.
runState :: (State s a) -> s -> (a,s)
runState (State f) s = f s

instance Monad (State s) where
when given a state, just pass it through.
return a = State (\s -> (a,s))
feed state to the first part; get the output state and feed to second part.
(State f) >>= gm = State $ \s -> case (f s) of
(val, s') -> runState (gm val) s'

Goals:
 identify how the input-state is abstracted out, and applied later.
» look for the chaining of multiple 'stateful' actions

Adding "non-proper morphisms™

Some data/state/value is being threaded through our calc.
« we want to get the current state (read it)
« we want to put a new current state (assign to it/replace it)

 already possible with bind, but we want convenient
shorthand methods. We use a typeclass.

class MonadState s m | m -> s where
get :: ms
put :: s ->m ()

instance MonadState s (State s) where
get State $ \s -> (s,s)
put s = State $ _ -> ((),s)

m ->s ! This is a functional dependency."knowing type m dictates the type s.”

Common Usage: State

« Using get and put, in do-notation, describe some computations that
you'd like to do that are stateful. They'll have types like this:

compM :: argl — .. — argN — State s a

« "run" the simulation at the top level (like a driver function), via
runState, evalState, or execState, e.g.:

go :: args — a
go args = evalState (compM args) Si.cw

go2 :: args — a
go2 args = case runState (compM args) S..u. Of
(lastval,laststate) -> lastval

Using get/put
to create state-simulations

fibM :: Int -> State (Int,Int) Int

fibM @ = do
(a, b) <- get # get current state (it's a pair of ints)
return a # answer is a.

fibM n = do

(a, b) <- get # get current state pair
put (b, a+b) # change stored state pair
fibM (n-1) # recurse, knowing state changed

fib :: Int -> Int
fib n = case runState (fibM n) (1,1) of

1ignore our (a,b) state since we're done
(ans, (a,b)) -> ans

Larger Example:
Stack Machine

« See StateExamples.hs for an example that builds a stack machine

 first, without using State

« we'll have many functions that will mirror aspects of the actual state
monad

 finally, we'll draw the parallels between the two representations, and
view our work in the state monad.

« if you squint, you could view it as something familiar:

>>= version do-notation imperative analog
expr>>=\n — ... name «— expr name = expr;
expry >> expry expr stmt, ; stmt,

expr

List Monad
trying all possibilities (non-determinism)

List comprehensions can be written in do-notation.

* generators are separate binding lines

« guards (filtering out unworthy values) use guard :: Bool -> [()]
« return value is the piece-wise result

list comprehension version do-notation version

rightTri n = rightTri _do n = do
[(a,b,c) a <- [1..n]
| a <- [1..n] b <- [a..n]
, b <- [a..n] c <- [b..n]
, € <- [b..n], guard $ a*a+b*b==c*c
, a‘*a+b*b==c*c return (a,b,c)
]

More Monads!

« Reader — for maintaining an environment (like IN)
« Writer — for sending values (messages) to a log
« Error — for representing error cases

Multiple monads at once: you need monad
transformers or other entirely different approaches
(beyond the scope of this presentation...)

