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Algebraic Data Types (ADTs)
(quick review)



Definition
An algebraic data type declares a new type, and provides one or more ways to 
create a value in the type.
• The datatype can have type parameters. (Example: Tree a)

• these are parametric polymorphism, like Java’s generics.
• Each shape of value has a constructor and 0+ arguments (listed by type)

• A constructor is really a function, e.g. RBG :: Int ⟶ Int ⟶ Int ⟶ Color
• instances provide the implementations of a type class for a specific type.

data Bool = True | False

data Coin = Quarter | Dime | Nickel | Penny
data Color = Green | Gold | RBG Int Int Int
data IntList  = ILCons Int IntList | EmptyIL
data MyList a = Cons a (MyList a)  | EmptyList
data Tree a = Leaf | Branch (Tree a) a (Tree a)



datatype usage
• We write functions over the new datatype.

• We use pattern matching to cover all expected shapes of values

data IntTree = Leaf | Br IntTree Int IntTree

sumIT :: IntTree ⟶ Int
sumIT Leaf = 0
sumIT (Br left v right) = (sumIT left) + v + (sumIT right)

See: adts in ClassCode2.hs



Type Classes



Definition
A type class declares a group of methods that can be provided at 
specific types.

instances provide the implementations of a type class for a specific type.

class Show a where
    show :: a ⟶ String

data IntPair = IP Int Int

instance Show IntPair where
    show (IP x y) = "("++(show x)++","++(show y)++")"

→ These are quite similar in purpose to Java's interfaces: 
both are ad-hoc polymorphism



Example
Given a datatype that represents ordering, we can create a type 
class, Ord, that understands how to order anything given an 
instance:

data Ordering = LT | GT | EQ

class Ord a where
    compare :: a -> a -> Ordering

instance Ord Int where
    compare a b | a<b  = LT
                | a==b = EQ
                | otherwise = GT

The real Ord has many more methods, not just compare.



More Instances
We can provide instances for any specific types we want, 
whether it's a type we created or a type that is already 
available (as with Int). We can also rely upon other 
instances of the typeclass in the process.

data Color = RGB Int Int Int

instance Ord Color where
  compare (RGB a b c) (RGB x y z)
      | (a+b+c)<(x+y+z)  = LT
      | (a+b+c)==(x+y+z) = EQ
      | otherwise        = GT



Class Constraints
If you expect something to be usable via a typeclass instance 
as part of some other code, that can be added as a class 
constraint on a type variable (before the =>).

Example: pairs can be ordered by each successive element, 
but we need to know the elements are themselves orderable:

instance (Ord a, Ord b) => Ord (a,b) where
    compare (a,b) (c,d) = case compare a c of
            EQ -> compare b d
            LT -> LT
            GT -> GT



Deriving Instances
Some built-in type classes have obvious instances that could be 
provided automatically.
• Show and Eq are two such candidates. But we can't "override" 

(redefine) an instance, so by default they aren't provided.
• To request the defaults, we add those deriving clauses:

data IntPair = IP Int Int     deriving (Show, Eq)

data RoseTree = R Int | B Int [RoseTree]     deriving (Show, Eq)

data Option3 a b c = One a | Two b | Three c deriving (Show, Eq)



Available deriving classes
• Eq: provides (==) and (/=).

• Ord: comparisons. (<) (<=) (>) (>=) compare

• Show: convert things to strings via show::a→String
• Read: parses String to target type. (you need ascriptions to tell it what to 

expect).  read::String → a
• Enum, Bounded: deals with enumerations and [a..b] syntax

• others: Sometimes you can add a language pragma (such as
{-# LANGUAGE DeriveDataTypable #-} ) in order to derive specific extra class 
instances, like Data.Data or Data.Typeable.

• reach goal: write your own! Explore Data.Derive, allowing you to replace 
what default instance is used or to add more self-defined patterns of default 
instances.



More Type Classes
• http://learnyouahaskell.com/types-and-typeclasses#typeclasses-101

• http://learnyouahaskell.com/making-our-own-types-and-typeclasses

• https://wiki.haskell.org/Typeclassopedia

• https://en.wikibooks.org/wiki/Haskell/Classes_and_types

• https://www.haskell.org/onlinereport/basic.html

https://wiki.haskell.org/Typeclassopedia
https://wiki.haskell.org/Typeclassopedia
https://wiki.haskell.org/Typeclassopedia
https://en.wikibooks.org/wiki/Haskell/Classes_and_types
https://www.haskell.org/onlinereport/basic.html


More Prelude type classes
Num: represents numeric things. Definition:

class Num a where
    (+), (*), (-) :: a -> a -> a
    negate, abs, signum :: a -> a
    fromInteger :: Integer -> a

class (Num a) => Fractional a where
    quot, rem, div, mod :: a -> a -> a
    quotRem, divMod :: a -> a -> (a,a)
    toInteger :: a -> Integer
http://hackage.haskell.org/package/base-4.7.0.2/docs/Prelude.html#t:Num

http://hackage.haskell.org/package/base-4.7.0.2/docs/Prelude.html


Functor
the map function is specifically for lists:

   map :: (a→b) → [a] → [b]
It navigates the list structure, applying the function to each spot.

Functors are any structure that has "spots" akin to the items in a list. 
Some examples: values in tree structures; values in Maybe types.

class Functor f where
    fmap :: (a→b) → f a → f b

More typeclass examples:
typeclasses/TypeClasses*.hs



Monads



TODO:

• Read to/through the LYAHFGG materials on 
monads (chapters 12, 13)

• Read the RWH materials on monads
(CH 7, 14, and more)

• Play with IO
• Play with Maybe



Idea (Not the Definition)
• Monads are used to represent a computation.

• we compose pieces of represented computation together into larger 
computation

• We want to have a more direct way to simulate other kinds of computation. 
We will use monads to model extra computational features not directly 
implemented in Haskell.
• Ultimately, uses >>= and return operations
• but do-notation makes it prettier

• Example of representing a computational style: our lambda calculus 
implementations in Haskell provided a model of computation via eval.
 eval :: Tm → Val



Monad Examples
• IO Monad: implements side effects: file I/O, user interaction, updatable 

variables, and more. This one is special – you can't peek under the hood of this one!

• Maybe Monad: simulates chains of steps that might not generate a value

• Error Monad: simulates failures (like explicit exception handling)
• List Monad: simulates non-determinism.

• State Monad: simulates having an updatable variable and sequential operations.
• Reader Monad: simulates having an environment of info (like Γ in λ⟶)

• Writer Monad: simulates having a "logger"/console to emit values to while 
evaluating.



Monad Implementations: 
a peek

• Generally will use datatype values to represent that monad's computations

• Your code can use these values to build up expressions.

• Provides instance of class Monad
• Allows chaining expressions together
• Allows do-notation (convenient syntax)

• Probably provides a typeclass that embodies common operations for that monad. 
Often this is used more than the ADT directly!

• Needs a "run-" method that lets us take an expression representing a computation 
in that monad, plus any other needed starting info, and simulates the computation 
described.
• Think of our eval function over Tm in our lambda calculus implementation.

class Monad m where
  (>>=)  :: m a -> (a -> m b) -> m b
  return :: a   -> m a

We explore some example usage first; then we'll peek at some implementations.



Running Monads    (crib sheet)
State Monad: simulate having an updatable variable and sequential operations.
runState  :: (State  s a) → s → (a,s)

• Given a State computation and a starting state, run the computation based on that initial state. Give 
back the resulting answer and updated state. 

Reader Monad: simulate having an environment of info (like Γ in λ⟶)
runReader :: (Reader r a) → r → a

• Given a Reader computation and a starting environment, what is the resulting value from the represented 
expression?

Writer Monad: simulates having a "logger"/console to emit values to while evaluating.
runWriter :: (Writer w a) →  (a,w)

• Given a Writer computation, evaluate the answer as well as what , what is the resulting value from the 
represented expression?

Maybe Monad: simulates chains of fail-possible steps.
(no runMaybe::(Maybe a)⟶ a . Maybes are already in the language!)

IO Monad: implements side effects: file I/O, user interaction, updatable variables, and more.
(no runIO::IO a → a. Why is that unsafe? We'll learn…)



Monad: the Idea
• We build programs out of pieces of computation, and 

selectively run the computation when the program is fully 
constructed.
→ it's like an embedded language
⟶ or like our lambda calculi, for extra features

• Example: statefulness (having variables to read/write)
→ e.g. access to a [(String,Value)] list throughout a 
function

• Multiple statements are often sequenced by semi-colon in 
imperative languages; we similarly chain operations 
together (via "bind", >>= )



Special Case: The IO Monad
• all side effects* are relegated to the IO monad – 

to operations such as:
• getLine :: IO String
• putStr, putStrLn :: String -> IO ()
• readFile :: FilePath -> IO String

• You can tell, just by the type, which functions 
will lead to side-effects, because they'll have IO 
in the return-type.



Sample IO program
(preferred do-notation)

main :: IO ()

main = do

  putStrLn "what is your name?"

  name <- getLine

  putStrLn "how old are you?"

  ageStr <- getLine

  let age = read ageStr::Int

  putStr $ (map toUpper name)

  putStrLn $ ": you're nearly "++(show (age+1))

file: IOStuff.hs



Sample IO program
(using >>= directly, "normal" layout)

main :: IO ()
main = 
  putStrLn "what is your name?"
  >>= (\ _ ->
      getLine
      >>= (\ name ->
        putStrLn "how old are you?"
        >>= (\ _ ->
          getLine
          >>= (\ ageStr -> 
            let age = read ageStr::Int
            in putStr (map toUpper name)
                >>= (\ _ ->
                  putStrLn $ ": you're nearly "++(show (age+1))
      )   ) ) )     )

file: IOStuff.hs



Sample IO program
(using >>= directly – with layout mimicking the do-notation)

main :: IO ()

main = 

  putStrLn "what is your name?" >>= (\ _    ->

  getLine                       >>= (\ name   -> 

  putStrLn "how old are you?"   >>= (\ _     ->

  getLine                       >>= (\ ageStr -> 

  let age = read ageStr::Int in

  putStr (map toUpper name)     >>= (\ _     ->

  putStrLn $ ": you're nearly "++(show (age+1))

 )))))

file: IOStuff.hs



Performing IO in Haskell
• Write any pure functions as before, without the IO monad.

• try to write as much of the program as you can in pure style

• write one main::IO() function (plus helpers) that deals with the user/files/world.

• sequence your pure calculations with IO actions
• imperative code often has the same pattern – objects hide their 

implementations internally, and there's probably only one main() method that 
interacts with the outside world

• Any side-effectful function will have IO in its (return) type.



Finding Definitions
• Looking for specific functions? Hoogle is your friend:

https://hoogle.haskell.org/

• Guess the type.

• search for example "String -> IO ()"
• we found the putStrLn function!

• We also realize we'll need to
import System.IO

https://hoogle.haskell.org/


Monads Behind the Scenes

• chain multiple operations together to compose more complex operations.
• with "bind", >>=, or preferably with do-notation

• The chosen monad defines what chain operations mean.
• the implementation of >>= is the crucial bit that defines the special features 

present. It accepts two arguments to build a larger computation:
• an initial computation (:: m a)
• function from one value (result of "running" that initial computation) to 

define a new computation that could be run (a -> m b)
• A bind of both arguments is just some computation (:: m b)
• do-syntax and syntactic sugar hides most >>= operators (nice!)

class Monad m where
  (>>=)  :: m a -> (a -> m b) -> m b
  return :: a   -> m a



Impetus for the Maybe Monad:
multiple failworthy actions

• Consecutive calculations that each may fail can 
require multiple case-exprs over a Maybe value. 

• helper functions might not be sufficient/desirable to 
avoid this linear indentation.

smallerMaxCasey :: ([Int],[Int]) -> Maybe Int
smallerMaxCasey (xs,ys) =
    case maybeMax xs of
        Nothing   -> Nothing
        Just xsMax -> case maybeMax ys of
                          Nothing    -> Nothing
                          Just ysMax -> Just (min xsMax ysMax)

writing this code (without the fail-response notion) is annoying

file: MaybeMonad.hs



Maybe, as a Monad
instance Monad Maybe where
    return:: a ⟶ Maybe a
    return x = Just x
    (>>=):: Maybe a ⟶ (a ⟶ Maybe b) ⟶ Maybe b
    Nothing  >>= _ = Nothing
    (Just x) >>= f = f x

M
ay

be
M
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• have the value we want to return? Just return it.
• want to chain two operations together?

• if the first one gave us Nothing, we don't care what the second operation 
was – the whole process failed, and the answer is Nothing.

• if the first one gave us Just the value x, we can feed it to the second 
operation to find out the overall answer.

• chances are, the "second operation" is itself a long chain of operations.
• As long as it results in some Maybe a type, it'll work.

hiding in the Prelude somewhere…
https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-Maybe.html#t:Maybe

class Monad m where
  (>>=)  :: m a -> (a -> m b) -> m b
  return :: a   -> m a



Using >>= versus using return 

smallerMaxBind :: ([Int],[Int]) -> Maybe Int
smallerMaxBind (xs,ys) = 
  maybeMax xs >>= (\ maxX ->
                  maybeMax ys >>= (\ maxY ->
     Just (min maxX maxY)
         )
         )

smallerMax :: ([Int],[Int]) -> Maybe Int
smallerMax (xs,ys) = do
    xsMax  <- maybeMax xs
    ysMax  <- maybeMax ys
    return (min xsMax ysMax)

(equivalent definitions, using different syntax styles)

file:  MaybeMonad.hs



Same functionality
• The cases, >>=, and do-notation versions all performed the same 

calculations.
• we explicitly indicate how to handle failures and continued calculations 

with cases/>>=, but the do-notation separates "how to perform 
chaining" code from the steps we're chaining.

→ see MaybeMonad.hs for more examples from the Maybe Monad.

⟶  here is a nice longform discussion on this "failure path" mentality:
 https://fsharpforfunandprofit.com/rop/
 see the slides or video on "Railway Oriented Programming"

https://fsharpforfunandprofit.com/rop/


Motivation:
The State Monad

Writing a (helper) function that threads through some background "state", 
which is sometimes used, sometimes updated for further calls, is a common 
pattern (see sumIter, maxH). This can be annoying.

sum xs = sumIter 0 xs
 

sumIter :: Int -> [Int] -> Int
sumIter n []     = n
sumIter n (x:xs) = sumIter (n+x) xs

maxL :: [Int] -> Maybe Int
maxL [] = Nothing
maxL (x:xs) = Just (maxH xs x)
 

maxH :: [Int] -> Int -> Int
maxH []    m = m
maxH (x:xs) m = if x > m  then (maxH xs x)  else (maxH xs m)

this version has to manually thread through its 'state' (extra parameters)



State, as a Monad
data State s a = State (s -> (a,s))
# to run something that needs a state input, give it its input.
runState :: (State s a) -> s -> (a,s)
runState (State f) s = f s

instance Monad (State s) where
  # when given a state, just pass it through.
 return a = State (\s -> (a,s))
  # feed state to the first part; get the output state and feed to second part.
  (State f) >>= gm = State $ \s -> case (f s) of
                                   (val, s') -> runState (gm val) s' 

Goals:
• identify how the input-state is abstracted out, and applied later.
• look for the chaining of multiple 'stateful' actions

(don't get caught up on this – using
State is more important than fully
understanding its implementation
for now)



Adding "non-proper morphisms"

class MonadState s m | m -> s  where
  get :: m s
  put :: s -> m ()

instance MonadState s (State s) where
  get   = State $ \s -> (s,s)
  put s = State $ \_ -> ((),s)

Some data/state/value is being threaded through our calc.
• we want to get the current state (read it)
• we want to put a new current state (assign to it/replace it)
• already possible with bind, but we want convenient 

shorthand methods. We use a typeclass.

m -> s  :  This is a functional dependency."knowing type m dictates the type s."



Common Usage: State
• Using get and put, in do-notation, describe some computations that 

you'd like to do that are stateful. They'll have types like this:
compM :: arg1 ⟶ … ⟶ argN ⟶ State s a

• "run" the simulation at the top level (like a driver function), via 
runState, evalState, or execState, e.g.:
go :: args ⟶ a
go args = evalState (compM args) sinitial

go2 :: args ⟶ a
go2  args = case runState (compM args) sinitial of
                 (lastval,laststate) -> lastval



Using get/put
to create state-simulations
fibM :: Int -> State (Int,Int) Int
fibM 0 = do
    (a,b) <- get   # get current state (it's a pair of ints)
    return a       # answer is a.
fibM n = do
    (a, b) <- get  # get current state pair
    put (b, a+b)   # change stored state pair
    fibM (n-1)     # recurse, knowing state changed

fib :: Int -> Int
fib n = case runState (fibM n) (1,1) of
             # ignore our (a,b) state since we're done
          (ans, (a,b)) -> ans



Larger Example:
Stack Machine

• See StateExamples.hs for an example that builds a stack machine
• first, without using State
• we'll have many functions that will mirror aspects of the actual state 

monad
• finally, we'll draw the parallels between the two representations, and 

view our work in the state monad.

• if you squint, you could view it as something familiar:

>>= version do-notation imperative analog

expr >>= \n → … name ← expr name = expr;

expr1 >> expr2 expr
expr

stmt1 ; stmt2



List Monad
trying all possibilities (non-determinism)

rightTri n =
   [(a,b,c)
   | a <- [1..n]
   , b <- [a..n]
   , c <- [b..n], 
   , a*a+b*b==c*c
   ]

rightTri_do n = do
   a <- [1..n]
   b <- [a..n]
   c <- [b..n]
   guard $ a*a+b*b==c*c
   return (a,b,c)

List comprehensions can be written in do-notation. 
• generators are separate binding lines
• guards (filtering out unworthy values) use  guard :: Bool -> [()]
• return value is the piece-wise result

list comprehension version                 do-notation version



More Monads!
• Reader – for maintaining an environment (like Γ)
• Writer – for sending values (messages) to a log
• Error – for representing error cases
• ...

• Multiple monads at once: you need monad 
transformers or other entirely different approaches 
(beyond the scope of this presentation…)


