
Subprograms
CS463@GMU

What can be used for arguments?

what is allowed as a parameter? Whatever we allow, they are called
first class values. Examples:
• primitive values (int, float, bool, etc)
• arrays, other structured values
• addresses, references, pointers
• types
• function values

Subprograms

• Any time we have a block of code that we can invoke from elsewhere,
we have various names to describe this.
• subprogram: older name (and very broad). Just a block of code we can enter

and return from, nothing explicit about arguments/return values.
• subroutine: clearer intention to solve part of our overall task, but still just a

chunk of code that can be executed, and then we return.
• function: accepts parameters, returns a value.
• method: like a function but somehow tied to an object or some more complex

structure that is assumed available/present/involved.

We might try to use the specific name some language uses, but can just be
more general and call everything a subprogram.

parameter modes

How is data transmitted between the code that performs a function call
and the function that is called? Similarly, how is data sent back?
• in: send in a value, but the subprogram can't affect the source's

verison.
• out: let subprogram send a value to the caller (like a named return

value)
• in-out: both in and out through the same parameter.

passing approaches: in

• pass by value: copy the actual value, send to subprogram.
• recipient won't or can't affect the original.
• it takes time/space to copy the value over.

example: Java primitives are passed by value.

public void noEffect (int x, int y){
// only local variables (params) modified.
x++;
y = x*100;

}

passing approaches: in and out

• pass by reference: copy the address of the value, send that to
subprogram ("pass by sharing")
• in-out mode (via access paths)
• recipient can affect the addressed value (but not the original address-copy)
• constant time to copy the address
• aliasing (between the caller/callee; also could be between multiple

parameters)

Examples
• C language: pointer parameters are effectively p.b.r.
• Java: all non-primitive types (reference types) are p.b.r.

passing approaches: in and out

pass by name: expression-argument is evaluated at each usage in the
executing the subprogram.
• thus re-evaluated each time the parameter is used!
• allows for creating your own control structures. (Jensen's device)
• very odd to reason about; introduced in Algol 60, but largely not

available to programmers now
• implementation: a closure (or thunk)

Haskell and pass-by-name

Haskell uses a version of pass by name called
pass by need.
• we have referential transparency (= isn't

reassignment, it's true Leibniz equality, and we can
logically interchange each side of these equations)
• There's no need to re-calculate the result each

time we see the variable, so we can cache the
answer and reuse it.
• This "memoized call by name" evaluates each

parameter at most once

f a b = if a
 then (b,b,b,b,b,b)
 else (0,0,0,0,0,0)

-- never evals fib
example1 = f False (fib 10000)

-- only evals fib once.
example2 = f True (fib 10000)

Closures as Haskell functions

Haskell's call by need semantics means that each sub-expression is
effectively a closure/thunk.
• thunk: an entity that can be run to generate an output; when created,

all needed references are figured out, and it will determine what
current locals need to be saved for later calculation.
• Haskell: everything's a thunk.
• every function call
• every sub-expression
• nothing is computed until needed, and even then, only as deeply as necessary

to get an answer. Laziness in action!

subprograms as parameters

• does it bring its own referencing environment?
• what would a (non-local) variable named x mean when the subprogram is

called in this new location?

• shallow binding: use the local environment when sub is executed
(dynamic scoping)
• deep binding: use the env. from subprogram's original definition

(static scoping)

examples of various bindings

#Python-ish code
s = "glob"

def f1(other):
 s = "first"
 other()
def f2():
 print(s)
def main():
 s = "main"
 f1(f2)

Notes
• shallow: f2 prints "first"
• closest definition of s when f2 was called.

• deep: f2 prints "glob"
• based on f2's original static scope

Other subprogram-as-parameter approaches

• C langs: function pointers
• Haskell, Python: functions are first-class. static scoping.

Haskell

ghci> filter even [1..10]
[2,4,6,8,10]

ghci> map (+1) [1..5]
[2,3,4,5,6]

Python
def inc(x):
 return x+1
def main():
 xs = [1,2,3]
 ys = map(inc,xs)
 print(list(ys))

Various kinds of polymorphism

• subtype polymorphism:
• derived/extended types can behave the same as the parent/base type.
• example: OOP, subclasses

• parametric polymorphism:
• any type may be used for a parameter, because its value is never directly utilized
• example: Haskell type params, e.g. map :: forall a b.(a⟶b)⟶[a]⟶[b]
• example: C++ Templates
• example: Java Generics (but must be Class types, no primitives)

• ad hoc polymorphism:
• some method definitions are individually implemented at various types
• example: implementing Java interfaces
• example: placing bounds

Implementing Subprogram Calls

First Scenario: old languages with no stack

• in early languages, all function variables were static (permanent address)
• example: early Fortran
• example: C's static local variables/ (not stored on stack)

• general recursion is not available
• one permanently afforded frame for the function (no memory for second call)
• but tail call optimization is still a possibility!

• each method is then just its code segment and its statically-sized frame.
• linker/loader can just stitch all these blocks together.

First Scenario: activation records

frame:

return address

parameters

local variables

• return address: stores a code address.
• this is the instruction to run after this function call is done.
• a helper function may be called from multiple places; need

to know which caller/which instruction to run after we
return.

• parameters/local variables: all known at compile time
• pre-reserve their space in the frame.

• all frame sizes are known at compile time.

• no dynamically sized items possible in the frame.

Second Scenario: X86_64 style languages

Language Assumptions/choices:
• has a stack. (thus multiple frames of one function are allowed)

• general recursion is possible. (each frame has its own locals)
• stack-dynamic locals (store locals in frame)
• we'll disallow nested subprogram definitions (only have locals or globals)

Stack maintenance:
• for calling/returning, need to maintain dynamic links

• a pointer to the start of the previous frame, saved for later
• at return, we need to give back all used stack space

• dying frame can reset the frame pointer (%rbp) to beginning of previous frame
• sequence of these dynamic links is the dynamic chain.

Second Scenario:

all frame content sizes known at compile time.

• return address: pointer to code
• dynamic link: pointer to stack frame
• params/locals: data.

frame:

return address

dynamic link

parameters

local variables

Scenario Two: Scoping Issues

• with static scoping: can only see locals or globals; all permanent addresses.
known at compile time.
• frame offsets for locals
• actual address for globals/statics

• with dynamic scoping: must be able to trace through the dynamic chain
until we find the correctly-named variable
• must keep track of names during runtime…
• keep stepping down dynamic chain, searching name/value pairs, until we find a

match.

Third Scenario: nested subprograms

example: Python

Language assumptions/choices:
• use a stack
• stack-dynamic locals
• subprogram definitions may be nested

• thus globals, nonlocals, and locals are possible
Stack Maintenance:
• same as before: use the dynamic chain (series of old frame pointers)
• new: static links. pointer to parent scope's most-recent frame.

def add3(x,y,z):
 temp = x+y
 def add_more(n):
 nonlocal temp;
 temp +=n
 add_more(z)
 return temp

Scenario Three: stack maintenance
• static links:

• each frame keeps a reference to the parent scope's most recent frame
• statically known how many scope levels outward any variable is (and its frame

offset)
• using a non-local: follow the static links outwards enough, then lookup

variable within that frame. (see chaining examples)

• alternative implementations:
• for every unique variable name in the entire program, keep a stack of values.

• each declaration pushes a definition onto the name's stack; popped when going out of
scope

• always use top of name's stack as the access/store location
• space-intensive, a bit faster

• use a table with one entry per name
• use caller-save style backups whenever a shadowing variable is introduced/dies

frame:

return address

dynamic link

static link

parameters

local variables

