
FogQN: An Analytic Model for Fog/Cloud Computing

Uma Tadakamalla
Computer Science Department

George Mason University
Fairfax, VA, USA

utadakam@gmu.edu

Daniel A. Menascé
Computer Science Department

George Mason University
Fairfax, VA, USA

menasce@gmu.edu

Abstract—Several tradeoffs need to be considered when
determining the optimal fraction f of data processing executed
at the cloud versus at fog servers. The processing capacity of
fog servers is typically smaller than that of cloud servers. On
the other hand, it may be more expensive to use cloud resources
as opposed to fog servers. As f increases, more data has to
be sent and received from the cloud. On the other hand, if
too much processing is left for the fog servers, they may not
have enough capacity to handle requests from sensors and
other IoT devices and may become a bottleneck. This paper
presents an analytic model and a publicly available tool, called
FogQN, based on open multi-class Queuing Networks (QN) for
fog and cloud computing. FogQN was validated with the JMT
simulation tool using both distribution-based arrival rates and
inputs from real IoT applications.

Keywords-fog computing; cloud computing; queuing theory;
queuing networks; IoT applications

I. INTRODUCTION

A key resource management issue when analyzing and
optimizing fog computing systems is the determination of
the impact of the fraction f of data processing executed
at the cloud versus at fog servers. Several tradeoffs need
to be considered. The processing capacity of fog servers
is typically smaller than that of cloud servers because the
latter have ample capacity, which can be increased in an
elastic way. On the other hand, it may be more expensive
to use cloud resources than fog servers, which are typically
owned by the people in charge of the application. As f
increases, more data has to be sent and received from the
cloud. Given that fog servers communicate with the cloud
over the Internet, more roundtrip times and transmission
times add up to the cloud processing time. On the other hand,
fog servers may not have enough capacity to handle requests
from sensors and other IoT devices and may become a
bottleneck. Figure 1 illustrates this tradeoff by indicating
the variation of the average response time of requests as a
function of f when the average arrival rate is 8 requests/sec.
The figure indicates that for lower values of f (i.e., 0.2 to
0.4), the average response time decreases as more processing
is shifted to the cloud. However, for f > 0.4, the response
time starts to increase due to excessive use of cloud services
and data transmission over the Internet. Thus, there is an

optimal value of f , fopt, that minimizes the average response
time for a given set of parameters.

Figure 1. Average response time (in sec) vs. fraction of cloud processing
for an arrival rate of 8 request/sec.

The work in [11] discusses the challenges of modeling
the Internet of Things. We address some of these challenges
here. Specifically, the contributions of this paper are: (1) an
analytic model and corresponding tool, called FogQN, based
on open multi-class Queuing Networks (QN) for fog and
cloud computing; FogQN is publicly available at [18]. (2)
A validation of FogQN with the simulation modules of the
Java Modeling Tool (JMT) [2] using probability distribution-
based inputs and inputs from real applications.

II. BACKGROUND

Fog computing extends cloud computing capabilities to
the edge of the network [14]. Fog resources reside closer
to end-user devices and consist of routers, servers, and
switches. In this paper, we reference all fog resources
holistically as fog servers. Fog servers act as an intermediate
layer between cloud datacenters and end-user devices and
provide compute, storage, and networking services between
these devices and traditional clouds [4].

Unlike cloud computing, which is more centralized, fog
computing is more distributed as it uses both fog and cloud
resources. Fog servers are generally not as robust as cloud
servers; at peak loads, the data that cannot be processed
by fog servers is processed by cloud servers. The data that
need to be processed by the cloud is sent over a wide



area network (WAN). Therefore, only a fraction of the
total data sent and received by end-user devices needs to
travel through the WAN as compared with a pure cloud
computing paradigm. Additionally, the fog/cloud computing
paradigm reduces the cloud processing load when compared
with the pure cloud computing model. Thus, fog computing
can perform efficiently in terms of service latency, power
consumption, network traffic and operational expenses [7],
[14] and improve response times. This paradigm is more
suitable for applications with low latency requirements such
as Internet of Things (IoT) services, including eHealth,
autonomous cars, and smart cities. The work in [4] demon-
strated the role of fog computing in connected vehicles,
smart grids, wireless sensor and actuator networks (WSAN),
smart building controls, and software-defined networking
(SDN).

Figure 2 illustrates a hierarchical structure of a simple fog
computing environment. From the bottom, the first layer is
called Edge and consists of devices such as mobile phones,
sensors, autonomous cars, and cameras. The second layer,
the fog layer, is closer to the edge devices and consists of
fog servers. The top layer represents the cloud consisting of
cloud servers. The devices in the edge layer send data via
WiFi or a Local Area Network (LAN) to the fog servers,
which store and process a fraction of the data and send the
data that could not be processed locally to the cloud via a
WAN, for further processing. The cloud servers process the
data and send responses back to the fog servers.

Fog computing requires an effective and efficient resource
management of fog and cloud resources to improve quality
of service (QoS). This paper proposes an analytical model
to analyze the cost and performance of requests submitted
to a fog/cloud infrastructure.

III. FogQN : A QUEUING MODEL FOR FOG COMPUTING

FogQN is an analytic model and corresponding tool
based on multi-class open Queuing Networks (QN) [16]
to analyze the performance and cost of requests processed
by a fog/cloud computing environment. This model can

Figure 2. A Fog/Could Environment

be used in the design of an autonomic controller that
dynamically determines the best partition between fog and
cloud processing.

A. The QN Model

Multiclass open QN models have been well studied (see
e.g., [16]). A QN is a network of K queues where a queue
consists of a single waiting line and one or more servers. For
instance, a queue can represent a server, a network, a pro-
cessor, or an I/O device. In open QNs, arriving requests visit
various queues, some more than once, until they complete
processing and leave the system. Requests are grouped into
clusters, aka classes in the QN literature, of requests that
have similar demands on the various queues. The average
total service time spent by a class r (r = 1, · · · , R) request
at a queue k (k = 1, · · · ,K) is called the service demand
and is denoted by Dk,r.

The input parameters of an open multiclass QN are (1)
the matrix of service demands D =[Dk,r] and (2) the vector
~λ = (λ1, · · · , λr, · · · , λR) where λr is the average arrival
rate of class r requests.

The average response time Rr of class r requests is simply
the sum of all residence times R

′

r,k, i.e., the time spent by a
class r request at queue k, receiving service or waiting for
it, over all visits to the queue. Thus,

Rr =

K∑
k=1

R
′

k,r. (1)

The residence time R
′

k,r is given by

R
′

k,r =
Dk,r

1 −
∑R

s=1 λsDk,s

(2)

if queue k is load independent queue, i.e., it has a finite
capacity of work and its processing rate does not depend
on the queue size. The term

∑R
s=1 λsDk,s in Eq. (2) is the

utilization Uk of queue k due to all classes and must be
less than 1. If queue k has an ample processing capacity
(aka delay queue), its residence time is simply the service
demand Dk,r.

Figure 3 shows an open QN that models the Fog/Cloud
environment shown in Fig. 2. The QN shows an arrival
stream of requests that can be generated for example from
IoT devices. These requests go through a local area network
(LAN) and reach a fog server (FS), of which there may
be more than one, even though only one is shown in the
figure for simplicity. Each FS consists of various queues
including one or more CPUs and disk queues. Requests
may cycle through the devices of a FS and may complete
processing after using only FS devices or may require
additional processing by the cloud. In the latter case, such
cloud requests have to go through the WAN and be processed
by the devices (CPU and disks) of a cloud service. For
simplicity, only one cloud server is shown in the figure.



Readers familiar with QN theory will recognize that any
number of queues can be easily modeled by an open QN
(see [16]).

LAN	LAN	

fog	server	 cloud	server	

WAN	

requests	that	need	addi3onal	processing	by	a	fog	server	

requests	completed	
at	the	fog	server	 requests	completed	

at	a	cloud	server	

incoming	
	requests	

CPU	 CPU	
dsk	

dsk	

dsk	

dsk	

Figure 3. Queuing model for fog computing

For the purpose of this paper and without loss of gener-
ality we abstract the fog and cloud servers as single queues
each. Thus, the queues considered by FogQN are: (a) LAN:
represents the time (i.e., latency plus transmission time)
spent by a request in the local area network that connects
sources of requests (e.g., IoT devices) to a fog server; (b)
Fog Server: represents the waiting and processing time at
a fog server. Note that a request may have to visit a fog
server more than once and wait in line each time; (c) WAN:
represents the time (i.e., latency plus transmission time)
spent at the Wide Area Network to send requests from a
fog server to the cloud and receive replies; and (d) Cloud
Server: represents the time spent by a request waiting and
being processed by a cloud server; As the figure illustrates,
a request may perform several cycles in which it visits a
fog server, the WAN, and a cloud server, until it completes.
A request may complete at the fog server or at the cloud
server.

B. Notation and Parameters

The notation and parameters used in our model are divided
into application-level and infrastructure-level parameters.

1) Application-level Parameters:
• R: number of classes of requests
• λr: average arrival rate of class r requests (req/sec)
• Lr: amount of data to be processed by class r requests

at either a fog server or cloud server (MB)
• fr: fraction of the data Lr processed at the cloud
• ~f = (f1, · · · , fR)
• dr: average size of a data packet sent from the cloud

to the fog server for class r requests (MB)
• Imax

r : maximum number of cloud service invocations
per class r request.

• Ir: average number of cloud service invocations per
class r request. We assume that Ir = fr × Imax

r .
• γfcr : total amount of data transmitted by class r requests

from the fog server to the cloud (MB); we assume that
γfcr = fr × Lr.

• γcfr : total amount of data transmitted by class r requests
from the cloud to the fog server (MB); we assume that
γcfr = Ir × dr = fr × Imax

r × dr.
The following computed application-level parameters are

obtained in subsection III-D from the basic parameters listed
above and from the parameters listed in subsection III-B2:

• Df,r: average service demand of class r requests at a
fog server (sec)

• Dc,r: average service demand of class r requests at a
cloud server (sec)

• DLAN,r: average service demand of class r requests at
the LAN (sec)

• DWAN,r: average service demand of class r requests
on the WAN (sec)

2) Infrastructure-level Parameters:
• BLAN: bandwidth of the LAN connecting an IOT

device and the fog server (MB/sec)
• BWAN: bandwidth of the WAN connection between a

fog server and the cloud (MB/sec)
• LATLAN: round-trip latency of the LAN connecting an

edge device to the fog server (sec)
• LATWAN: round-trip latency of the WAN connection

between a fog server and the cloud (sec)
• δ: scaling factor used to multiply any portion of a

request’s processing time that has to be processed at
the cloud

• CLAN: cost of sending data through the LAN connect-
ing edge devices to a fog server ($/MB)

• CWAN: cost of sending data through the WAN connect-
ing a fog server to the cloud ($/MB)

• Cf : Processing cost per unit time at the fog server
($/sec)

• Cc: Processing cost per unit time at the cloud ($/sec)

C. Model Outputs

The outputs of FogQN are denoted as:
• R‘

LAN,r: residence time of class r requests at the LAN
(sec)

• R‘
f,r: residence time of class r requests at a fog server

(sec)
• R‘

WAN,r: residence time of class r requests at the WAN
(sec)

• R‘
c,r: residence time of class r requests at the cloud

(sec)
• Rr: average response time of class r requests (sec)
• Cr: average processing cost of class r requests ($)

D. Computing Service Demands

The service demand per class r request at the LAN is the
sum of the LAN’s latency and the transmission time. Thus,

DLAN,r =
Lr

BLAN
+ LATLAN. (3)



We assume that the average total processing time of class
r requests (sec) at a fog server or at the cloud is equal
to the sum of two terms: a constant term K1 (in sec) and
another proportional to the amount of data processed. The
proportionality factor is denoted as K2 (in sec/MB).

The service demand at the fog server per class r requests
can be written as

Df,r = K1 +K2(1 − fr)Lr. (4)

The second term in Eq. (4) is the processing time at a fog
server that is proportional to the amount of data (1− fr)Lr

processed at the fog server.
The service demand at the WAN for class r requests is

the sum of the latency Ir × LATWAN and the transmission
time between the fog server and the cloud and vice-versa.
Each interaction with the cloud incurs in a latency. Hence,

DWAN,r = fr I
max
r LATWAN +

γfcr + γcf

BWAN

= fr

[
Imax
r LATWAN +

Lr + Imax
r dr

BWAN

]
(5)

Finally, the service demand for class r requests at the cloud
can be written as

Dc,r = δ(K1 +K2frLr) (6)

because δ is the scaling factor for processing time at the
cloud and frLr is the portion of the data processed at the
cloud.

E. Response Time Calculation

The residence time equations for the LAN, fog server,
WAN, and the cloud are computed based on Eq. (2) and on
the service demands computed above.

R
′

LAN,r = DLAN,r; R
′

WAN,r = DWAN,r (7)

R
′

f,r =
Df,r

1 −
∑R

s=1 λsDf,s

(8)

R
′

c,r =
Dc,r

1 −
∑R

s=1 λsDc,s

(9)

Finally, the response time of class r requests is given by
the sum of the residence times at the LAN, fog server, WAN,
and the cloud. So,

Rr = R
′

LAN,r +R
′

f,r +R
′

WAN,r +R
′

c,r. (10)

Because Rr is a function of the service demands of all
classes at the fog server and at the cloud (see Eqs. (8)
and (9)) and these service demands depend on all values
of fr for r = 1, · · · , R, we will use the notation Rr(~f) to
make that dependence explicit.

F. Cost Calculation

The total cost Cr of processing a class r request is the
sum of the costs of transmitting data through the LAN and
the WAN plus the processing costs at the fog server and
the cloud. The transmission cost at the LAN is obtained
by multiplying the total amount of data transmitted over the
LAN by the cost per MB. Thus, this cost is Lr×CLAN. The
cost of data transmission over the WAN is (γfcr + γcfr ) ×
CWAN following the same approach as for the LAN. The
processing cost at the fog server is obtained by multiplying
the residence time at the fog server by the cost per unit
time Cf at the fog server. Thus, this cost is R

′

f,r × Cf .
Using a similar reasoning, the processing cost at the cloud
is R

′

c,r ×Cc. Therefore, the average cost of class r requests
is

Cr = Lr × CLAN + (γfcr + γcfr ) × CWAN +

R
′

f,r × Cf +R
′

c,r × Cc (11)

As above, we denote Cr as Cr(~f).

G. Sensitivity to f

This section analyzes the sensitivity of the response time
Rr and cost Cr as a function of the proportion of cloud
processing f . We consider in this subsection the case of a
single class (i.e., R = 1) since the purpose here is to analyze
the sensitivity of the response time and cost with respect to
f . We drop all subscripts relative to class to simplify the
notation. We start by considering the partial derivative of R
with respect to f .

∂R

∂f
=

∂R
′

LAN

∂f
+
∂R

′

f

∂f
+
∂R

′

WAN

∂f
+
∂R

′

c

∂f

=
∂DLAN

∂f
+
∂Df

∂f

1

(1 − λDf )2
+

∂DWAN

∂f
+
∂Dc

∂f

1

(1 − λDc)2
(12)

The partial derivatives of the service demands are:

∂DLAN

∂f
= 0;

∂Df

∂f
= −K2L

∂Dc

∂f
= δK2L

∂DWAN

∂f
= LATWAN Imax +

L+ Imax d

BWAN
(13)

As the equations in (13) show, the service demand at the
LAN does not vary with f , the service demand at the WAN
and at the cloud grow with f and the service demand at
the fog server decreases with f . So, the bottleneck (i.e., the
queue with the largest service demand [16]) changes with
f . Therefore, there is an optimal value of f that minimizes
the response time as illustrated in Fig. 1. Using Eqs. (13)



in (12) we get
∂R

∂f
=

−K2L

(1 − λDf )2
+

δK2L

(1 − λDc)2
+

LATWAN Imax +
L+ Imax d

BWAN
. (14)

Equation (14) shows that, except for its first term, all its
terms are positive . So, the derivative of the response time
can start as negative, reach zero, and become positive as f
increases. This explains the behavior seen in Fig. 1.

The partial derivative of C with respect to f is

∂C

∂f
=

∂[(γfc + γcf )CWAN]

∂f
+

Cf
∂Df

∂f

1

(1 − λDf )2
+

Cc
∂Dc

∂f

1

(1 − λDc)2

= CWAN(Imaxd+ L) +
−K2LCf

(1 − λDf )2
+

CcδK2L

(1 − λDc)2
. (15)

The same observations we made with respect to ∂R/∂f
can be made with respect ∂C/∂f . Thus, depending on the
values of the parameters, there is an optimal value of f for
the response time and cost. The optimal value may not be
the same for each metric.

IV. VALIDATION

We validated the equations of the FogQN model presented
in the previous section with two types of simulations using
JSIMwiz and JSIMgraph [2] from Java Modeling Tools
(JMT) [2]. In the first type of validation we used Poisson ar-
rivals and in the other we used interarrival time distributions
obtained from traces of a smart city application.

A. Validation with Poisson Arrivals
The parameters used for the validation of a two-class

model are shown in Table I and the validation results are
shown in Table II. The arrival process is assumed to be
Poisson, i.e., the interarrival time of requests is assumed
to be exponentially distributed. Note from the top of Ta-
ble II that we kept λ2 constant at 3.0 req/sec through the
experiments reported in that table and increased λ1 from
1.0 req/sec to 3.0 req/sec. The percent absolute error, ε,
between the analytical and simulation models is computed
as abs(100× (simulation− analytical)/simulation). As
Table II clearly shows, the absolute percent error is very
small in most cases and ranges from 1.3% to 11.9% but
stays below 10% in the vast majority of cases. The absolute
average errors are approximately 10.0% and 2.8% for classes
1 and 2, respectively. The overall average absolute error is
approximately 6.4%, which is very low. Therefore, we con-
sider the analytic expressions used by FogQN as validated
using Poisson arrivals.

Table I
MODEL PARAMETERS UTILIZED AND COMPUTED SERVICE DEMANDS

[A] Application-level Parameters
R 2
~λ [varies, 3 req/sec] req/sec
~L [4.0, 7.0] MB/req
~f [0.30, 0.40]
~d [0.05120, 0.1024] MB/req
~Imax [1, 1]
K1 0.015 sec/req
K2 0.032 sec/MB

[B] Infrastructure-level Parameters
BLAN 1250 MB/sec
BWAN 5.00 MB/sec
LATLAN 0.0008 sec/req
LATWAN 0.04 sec/req
δ 0.4

[C] Computed values
~Ir = fr × Imax

r
= [0.30, 0.40]

~γcf = Ir × dr
= [0.01536, 0.04096] MB/req

~γfc = fr × Lr

= [1.200, 2.800] MB/req
[D] Computed Service Demands

~DLAN [0.0040, 0.0064] sec/req
~Df [0.1046, 0.1494] sec/req
~DWAN [0.2551, 0.5842] sec/req
~Dc [0.0214, 0.0418] sec/req

Table II
MEAN AND 95% CONFIDENCE INTERVALS OF AVERAGE RESPONSE

TIMES USING FogQN AND SIMULATION (JMT)

λ1= varies; λ2= 3.0 req/sec
R1 (sec) R2 (sec)

λ1 FogQN Simulation ε(%) FogQN Simulation ε(%)
1.0 0.518 0.559 ± 0.017 7.4 0.974 0.955 ± 0.027 2.0
1.2 0.530 0.580 ± 0.012 8.7 0.990 0.971 ± 0.018 2.0
1.4 0.542 0.595 ± 0.013 8.8 1.009 0.996 ± 0.029 1.3
1.6 0.557 0.613 ± 0.017 9.2 1.029 1.005 ± 0.015 2.4
1.8 0.572 0.634 ± 0.011 9.8 1.052 1.009 ± 0.022 4.2
2.0 0.590 0.652 ± 0.017 9.5 1.077 1.054 ± 0.027 2.2
2.2 0.610 0.686 ± 0.020 11.0 1.106 1.087 ± 0.025 1.7
2.4 0.633 0.711 ± 0.021 11.0 1.138 1.103 ± 0.020 3.2
2.6 0.659 0.748 ± 0.020 11.9 1.176 1.134 ± 0.029 3.7
2.8 0.689 0.781 ± 0.022 11.7 1.219 1.183 ± 0.032 3.0
3.0 0.725 0.819 ± 0.021 11.5 1.270 1.207 ± 0.034 5.2
Avg 10.0 2.8

B. Validation with Real Traces

We wanted to explore the robustness of FogQN for
interrarrival time distributions obtained from real IoT ap-
plications. The City of Seattle Open Data portal releases
several datasets that are generated by IoT devices in Seattle.
We used the “NW 58th St Greenway at 22nd Ave NW Bike
Counter” dataset [8] for the second FogQN model validation.
The dataset is generated by two IoT devices, called tube
sensors, which are installed across the street. These tubes
count the number of bicyclists and sends the information to
an eco-counter server. The dataset has records that contain
the number of bikes that traverse the east and west directions



of the street at every hour, which will be referred as classes
1 and 2, respectively, heretofore.

We first analyzed the dataset by grouping the data by hour
of the day for 1,644 days while ignoring invalid data (both
nulls and zero counts) as shown in Table III. The table shows
for each hour of the day for each direction and for all days
the total number #Rec of records, the total number Σ(cnt)
of bikes counted in the #Rec records. For each hour, we built
a randomized list of interarrival times using the bike counts
cnt for each hour and computed the average interarrival time
IAT for that hour. We then computed the average rate λ as
1/IAT and computed the COV of the interarrival times. The
numbers in Table III reflect the arrival of requests at the fog
server from one sensor in each direction, i.e., east and west.
However, for the purpose of this analysis we considered that
the arrival rate is the aggregate of 3,600 similar sensors.

The table shows that the hour of 5:00pm-6:00pm had
the maximum bike counts (i.e., the highest load) for both
East and West. Therefore, we used that hour for validation
purposes. Because the COV of the interarrival times for both
directions is greater than 1, we fitted a Coxian distribution to
the data in each direction and used these Coxian distributions
in the JMT simulation. The other input parameters are the
same as those in Table I [A] and Table I [B], except for the
vector ~L, which is [1.0, 1.0] MB/req and the vector λ which
is [12.192, 9.205] req/sec.

The response times from the JMT simulation are com-
pared with those computed using FogQN and the results are
shown in Table IV. The errors are very small (around 10%)
for both classes of requests, which indicates the robustness
of the equations derived here under more realistic arrival
processes.

Table III
STATISTICS OF THE SEATTLE “NW 58TH ST GREENWAY AT 22ND AVE

NW BIKE COUNTER” DATASET BY THE HOUR OF THE DAY

East West
Hour #Rec Σ(cnt1) IAT1 λ1 COV1 #Rec Σ(cnt2) IAT2 λ2 COV2

(hr) (cnt/hr) (hr) (cnt/hr)
0:00 580 1,479 0.392 2.550 0.756 527 945 0.558 1.793 0.590
1:00 400 968 0.413 2.420 0.733 415 687 0.604 1.655 0.545
2:00 298 624 0.478 2.094 0.640 337 545 0.618 1.617 0.541
3:00 232 404 0.574 1.741 0.490 274 394 0.695 1.438 0.440
4:00 252 415 0.607 1.647 0.484 297 394 0.754 1.327 0.395
5:00 482 1,080 0.446 2.241 0.639 654 1,044 0.626 1.596 0.514
6:00 852 3,251 0.262 3.816 1.007 1,031 2,589 0.398 2.511 0.713
7:00 1,248 8,601 0.145 6.892 1.269 1,217 4,945 0.246 4.063 0.883
8:00 1,341 10,901 0.123 8.129 1.342 1,354 8,181 0.166 6.042 0.968
9:00 1,411 12,523 0.113 8.875 1.367 1,408 8,903 0.158 6.323 0.974

10:00 1,378 11,758 0.117 8.533 1.399 1,406 9,415 0.149 6.696 1.039
11:00 1,420 13,959 0.102 9.83 1.474 1,438 10,974 0.131 7.631 1.144
12:00 1,456 16,381 0.089 11.251 1.521 1,440 11,870 0.121 8.243 1.172
13:00 1,455 16,518 0.088 11.353 1.526 1,441 11,757 0.123 8.159 1.106
14:00 1,467 16,347 0.090 11.143 1.506 1,436 11,283 0.127 7.857 1.113
15:00 1,478 15,381 0.096 10.407 1.397 1,434 11,116 0.129 7.752 1.049
16:00 1,487 17,124 0.087 11.516 1.382 1,437 11,692 0.123 8.136 0.994
17:00 1,486 18,118 0.082 12.192 1.364 1,446 13,310 0.109 9.205 1.033
18:00 1,467 16,544 0.089 11.277 1.424 1,427 12,482 0.114 8.747 1.054
19:00 1,397 12,901 0.108 9.235 1.371 1,372 9,183 0.149 6.693 1.041
20:00 1,307 9,050 0.144 6.924 1.284 1,263 5,658 0.223 4.480 0.937
21:00 1,211 6,796 0.178 5.612 1.220 1,074 3,752 0.286 3.493 0.830
22:00 974 4,113 0.237 4.223 1.040 924 2,401 0.385 2.598 0.779
23:00 841 2,697 0.312 3.207 0.912 744 1,639 0.454 2.203 0.710

Table IV
MEAN AND 95% CI OF RESPONSE TIMES USING FogQN AND

SIMULATION (JMT) FOR THE SEATTLE “NW 58TH ST GREENWAY AT
22ND AVE NW BIKE COUNTER” DATASET

λ1 (East) = 12.192 req/sec; COV1 (East) = 1.364
λ2 (West) = 9.205 req/sec; COV2 (West) = 1.033
R1 (sec) R2 (sec)

FogQN Simulation ε(%) FogQN Simulation ε(%)
0.234 0.259 ± 0.007 9.7 0.268 0.299 ± 0.007 10.4

V. RELATED WORK

The goal of fog computing is to address cloud comput-
ing’s problem of high latency and network congestion. This
is achieved by extending the cloud computing paradigm
to the edge of the network [4], [14], [15]. Bittencourt et
al. presented a general architecture that supports virtual
machine migration in fog computing [3]. The work in [6]
presented decentralized design patterns on elasticity in IoT
and cloud-based systems. [9] presents a simulation-based
toolkit for fog computing.

The authors of [13] proposed resource management strate-
gies at each fog node to improve quality of service (QoS).
The authors of [1] presented fog resource management
techniques based on user characteristics. An approach to
optimize web page performance within a fog computing
architecture combined with knowledge available at the fog
nodes is discussed in [20].

The authors of [5], [10], [17], [19] used queuing theory
models to study service performance in cloud computing.
The work in [10] used an M/G/1 queue to model energy
consumption and response time tradeoffs for an edge device
powered by solar energy that sends messages to cloud
services.

VI. CONCLUDING REMARKS AND ONGOING WORK

This paper introduced a multi-class open queuing net-
work model for fog computing environments. The model
equations were incorporated into our publicly available
FogQN tool [18]. Analytic models are orders of magnitude
faster than simulation models and therefore can be used
by autonomic controllers [12]. We are now working on
an autonomic controller that uses FogQN to dynamically
control how much processing is done at the fog servers vs.
at the cloud. The controller optimizes a utility function of
the average response time and cost.

ACKNOWLEDGEMENT

The work of Daniel A. Menascé was partially supported
by the AFOSR grant FA9550-16-1-0030.

REFERENCES

[1] M. Aazam and E. N. Huh. Dynamic resource provisioning
through fog micro datacenter. In 2015 IEEE Intl. Conf.
Pervasive Computing and Communication Workshops, pages
105–110, March 2015.



[2] M. Bertoli, G. Casale, and G. Serazzi. JMT: performance en-
gineering tools for system modeling. SIGMETRICS Perform.
Eval. Rev., 36(4):10–15, 2009.

[3] L. F. Bittencourt, M. M. Lopes, I. Petri, and O. F. Rana.
Towards virtual machine migration in fog computing. In 0th
Intl. Conf. P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC), pages 1–8, Nov 2015.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog com-
puting and its role in the internet of things. In Proc. MCC
Wkshp. Mobile Cloud Computing, MCC ’12, pages 13–16,
New York, NY, USA, 2012. ACM.

[5] T. Bures, V. Matena, R. Mirandola, L. Pagliari, and C. Tru-
biani. Performance modelling of smart cyber-physical sys-
tems. In 2018 ACM/SPEC Intl. Conf. Performance Engineer-
ing, pages 37–40. ACM, 2018.

[6] V. Cardellini, T. G. Grbac, M. Nardelli, N. Tanković, and
H.-L. Truong. QoS-Based elasticity for service chains in
distributed edge cloud environments. In Autonomous Control
for a Reliable Internet of Services, pages 182–211. Springer,
2018.

[7] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh,
and R. Buyya. Fog computing: Principles, architectures, and
applications. CoRR, abs/1601.02752, 2016.

[8] Dataset. https://data.seattle.gov/browse?category=
Transportation.

[9] H. Gupta, A. Dastjerdi, S. Ghosh, and R. Buyya. iFogSim: A
toolkit for modeling and simulation of resource management
techniques in the internet of things. J. Software Practice and
Experience, 6, 2017.

[10] P. G. Harrison and N. M. Patel. Optimizing energy-
performance trade-offs in solar-powered edge devices. In
Proc. 2018 ACM/SPEC Intl. Conf. Performance Engineering,
New York, NY, USA. ACM.

[11] G. Kecskemeti, G. Casale, D. Jha, J. Lyon, and R. Ranjan.
Modelling and simulation challenges in internet of things.
IEEE Cloud Computing, 4:62–69, 2017.

[12] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, Jan 2003.

[13] J. Li, C. Natalino, D. P. Van, L. Wosinska, and J. Chen.
Resource management in fog-enhanced radio access network
to support real-time vehicular services. In Fog and Edge
Computing (ICFEC), IEEE 1st Intl. Conf., pages 68–74.
IEEE, 2017.

[14] R. Mahmud, R. Kotagiri, and R. Buyya. Fog Computing:
A Taxonomy, Survey and Future Directions, pages 103–130.
Springer, Singapore, 2018.

[15] E. Marin-Tordera, X. Masip, J. Garcia Almiana, A. Jukan,
G.-J. Ren, J. Zhu, and J. Farre. What is a fog node a tutorial
on current concepts towards a common definition. Nov. 2016.

[16] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy. Per-
formance by Design:computer capacity planning by example.
Prentice Hall, 2004.

[17] T. S. Sowjanya, D. Praveen, K. Satish, and A. Rahiman. The
queueing theory in cloud computing to reduce the waiting
time. Intl. J. Computer Science Engineering & Technology,
1(3), 2011.

[18] U. Tadakamalla and D. A. Menascé. FogQN: A tool for
modeling fog computing environments. available at https:
\\www.cs.gmu.edu\∼menasce\fogqn\.

[19] J. Vilaplana, F. Solsona, I. Teixidó, J. Mateo, F. Abella, and
J. Rius. A queuing theory model for cloud computing. J.
Supercomputing, 69(1):492–507, 2014.

[20] J. Zhu, D. S. Chan, M. S. Prabhu, P. Natarajan, H. Hu, and
F. Bonomi. Improving web sites performance using edge
servers in fog computing architecture. In IEEE 7th Intl. Symp.
Service-Oriented System Engineering, March 2013.


