
MUTATION TESTING FOR ANDROID APPLICATIONS

by

Lin Deng
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial Fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Information Technology

Committee:

Dr. Je↵ O↵utt, Dissertation Director

Dr. Paul Ammann, Committee Member

Dr. Thomas LaToza, Committee Member

Dr. Ioulia Rytikova, Committee Member

Dr. Stephen Nash, Senior Associate Dean

Dr. Kenneth Ball, Dean, The Volgenau School
of Engineering

Date: Fall Semester 2017
George Mason University
Fairfax, VA

Mutation Testing for Android Applications

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Lin Deng
Master of Science

Gannon University, 2011
Bachelor of Engineering

Renmin University of China, 2005

Director: Dr. Je↵ O↵utt, Professor
Department of Computer Science

Fall Semester 2017
George Mason University

Fairfax, VA

Copyright c� 2017 by Lin Deng
All Rights Reserved

ii

Dedication

I dedicate this dissertation to my wife Qing Guan, my parents Kunmei Deng and Yuqiu Su,
my parents in law Kuiqi Guan and Chonghua Gao, my dear advisor Dr. Je↵ O↵utt and my
other teachers and friends.

iii

Acknowledgments

I would like to thank Dr. Je↵ O↵utt for advising me, supporting me, enlightening me to
conduct world-class research in software engineering, showing me and teaching me how to be
a great teacher, mentor, and leader. I want to thank Dr. Paul Ammann for giving me great
help for my research and TA work throughout my entire Ph.D. study. I really enjoy working
with you. I also thank my Ph.D. dissertation committee members Dr. Thomas LaToza and
Dr. Ioulia Rytikova for giving me great suggestions for my proposal and dissertation, and
spending your time on helping me reach every important milestone. I also would like to
thank brothers and sisters in our research lab, Dr. Nan Li, Dr. Upsorn Praphamontripong,
Dr. Nariman Mirzaei, and David Samudio. Discussing research ideas, finishing course works,
writing research papers, conducting experiments, and chatting about any interesting topics
with you will always be the unforgettable moments in my life. Especially, I would like to
thank my wife, Qing Guan, and my parents, Kunmei Deng and Yuqiu Su. Completing a
Ph.D. is a long, di�cult, and bittersweet journey. Without your selfless love and support,
I will never be able to finish it.

iv

Table of Contents

Page

List of Tables . viii

List of Figures . x

Abstract . xii

1 Introduction . 1

1.1 Introduction . 1

1.2 Challenges in Testing Android Apps . 3

1.3 Problem Statement and Motivation . 19

1.4 Hypothesis . 21

1.5 Structure of This Ph.D. Dissertation . 23

2 Background . 25

2.1 Mutation Analysis . 25

2.2 Android Applications . 30

3 Related Work . 32

3.1 Mutation Testing . 32

3.1.1 Application of Mutation Testing . 32

3.1.2 Mutation Testing for eXtensible Markup Language (XML) 32

3.1.3 Reducing the High Cost of Mutation Testing 33

3.1.4 Minimal mutation analysis and dominator mutation score 34

3.2 Testing Android Applications . 36

3.3 Android Permissions and Security Issues . 39

3.4 GUI Testing and Graphical Test Oracles . 40

3.5 Mining Source Code Repositories and Bug Reports 42

3.6 Crowdsourcing in Software Engineering . 43

4 Mutation Testing for Android Applications . 45

4.1 Mutating Android Applications . 45

4.2 Android Mutation Operators . 48

4.2.1 Event-based Mutation Operators . 50

4.2.2 Component Lifecycle Mutation Operators 56

v

4.2.3 XML-related Mutation Operators . 59

4.2.4 Common Faults Mutation Operators 64

4.2.5 Context-Aware Mutation Operator 70

4.2.6 Energy-Related Mutation Operator 72

4.2.7 Network-related Mutation Operator 76

4.2.8 Summary . 77

5 Experiments . 79

5.1 Android Mutation Analysis Tool . 79

5.1.1 Functionality . 80

5.1.2 Architecture of muDroid . 87

5.2 Empirical Evaluation of Android Mutation Testing 91

5.2.1 Empirical Subjects . 92

5.2.2 Test Data Generation . 96

5.2.3 Mutant Generation . 97

5.2.4 Empirical Results and Discussion . 98

5.2.5 Threats to Validity . 103

5.3 Experimental Evaluation of Fault Detection E↵ectiveness 104

5.3.1 Experimental Subjects . 106

5.3.2 Experimental Procedure . 109

5.3.3 Collecting Naturally Occurring Faults 110

5.3.4 Collecting Crowdsourced Faults . 111

5.3.5 Other Android App Testing Techniques 116

5.3.6 Experimental Results . 117

5.3.7 Statistical Analysis . 119

5.3.8 Analysis of Undetected Faults . 122

5.3.9 An Additional Common Fault . 126

5.3.10 Threats to Validity . 127

5.4 Experimental Evaluation of Redundancy in Android Mutation Testing . . . 130

5.4.1 Experimental Subjects . 131

5.4.2 Redundancy Scores . 133

5.4.3 Experimental Procedure . 134

5.4.4 Experiment Results and Discussion 136

5.4.5 Re-evaluate the E↵ectiveness . 154

5.4.6 Threats to Validity . 155

6 Conclusions and Future Work . 156

vi

6.1 Conclusions . 156

6.2 Intellectual Merits . 160

6.2.1 Research Contributions . 160

6.2.2 Impacts . 162

6.2.3 Papers . 163

6.3 Future Research Directions . 164

6.4 Industrial Application . 167

A Acronyms . 169

Bibliography . 173

vii

List of Tables

Table Page

4.1 Android Mutation Operators . 49

4.2 IPR Default Values . 52

5.1 Details of Empirical Subjects . 94

5.2 Mutants Generated . 97

5.3 Empirical Results . 99

5.4 Empirical Results for Each Mutation Operator 101

5.5 An Example of FON Mutant . 103

5.6 Details of Experimental Subjects . 107

5.6 Details of Experimental Subjects . 108

5.7 Numbers of Naturally Occurring Faults Collected for Each Subject App . . 112

5.8 Numbers of Hand-seeded Faults for Each App before Removing Mutants . . 113

5.9 Numbers of Hand-seeded Faults for Each App after Removing Mutants . . 114

5.10 Numbers and Percentages of Naturally Occurring Faults Detected by Android

Mutation Testing . 117

5.11 Numbers and Percentages of Crowdsourced Faults Detected by Android Mu-

tation Testing . 118

5.12 Numbers and Percentages of Naturally Occurring Faults Detected by Other

Tools . 120

5.13 Numbers and Percentages of Hand-seeded Faults Detected by Other Tools . 121

5.14 Details of Experimental Subjects . 132

5.15 Average Redundancy Scores . 137

5.16 Average Redundancy Scores of Fail on Back (FOB) 139

5.17 Average Redundancy Scores of TextView Deletion (TVD) 140

5.18 Average Redundancy Scores of Orientation Lock (ORL) 142

5.19 Average Redundancy Scores of Activity Lifecycle Method Deletion (MDL) . 143

5.20 Average Redundancy Scores of Unary Arithmetic Operator Deletion (AODU) 146

5.21 An Example AODU Mutant . 148

viii

5.22 Average Redundancy Scores of Button Widget Deletion (BWD) and Button

Widget Switch (BWS) . 149

5.23 Average Redundancy Scores of Constant Deletion (CDL), Conditional Op-

erator Deletion (COD), Operator Deletion (ODL), and Variable Deletion

(VDL) . 150

5.24 Example ODL Mutants . 151

5.25 An Example CDL and VDL Mutant . 151

5.26 An Example COD Mutant . 151

5.27 Average Redundancy Scores of Unary Arithmetic Operator Insertion (AOIU)

and Logical Operator Insertion (LOI) . 152

ix

List of Figures

Figure Page

1.1 An Example Activity . 5

1.2 An Example Broadcast Receiver . 6

1.3 An Example Content Provider . 7

1.4 An Example Failure of Inappropriately Handling Activity Lifecycle 8

1.5 Lifecycle of Activity in Android apps . 9

1.6 Lifecycle of Service in Android Apps . 10

1.7 XML Layout File . 11

1.8 An Example Context-aware Input . 13

1.9 An Example of Android Apps Adapting to Orientation Change 14

1.10 Android App Requests Permissions . 14

1.11 An Example of Installing Android Apps with Permissions 15

1.12 Three Android System Buttons . 16

1.13 Discussions on the Issue of Crashes after Back Button Is Clicked 17

1.14 An Example Energy Bug . 19

2.1 General Mutation Testing Process . 26

2.2 Relational Operator Replacement Example 27

2.3 An Example of Killing a Mutant . 28

4.1 Performing Mutation Analysis on Android Apps 46

4.2 Intent Payload Replacement Mutation Operator 51

4.3 Intent Target Replacement Mutation Operator 53

4.4 OnClick Event Replacement Mutation Operator 54

4.5 OnTouch Event Replacement Mutation Operator 55

4.6 An Example MDL Mutant . 57

4.7 An Example SMDL Mutant . 58

4.8 An Example BWD Mutant . 60

4.9 Button Widget Deletion (BWD) and EditText Widget Deletion (TWD) Ex-

ample . 61

x

4.10 APD Mutation Operator . 62

4.11 Button Widget Switch Example . 64

4.12 An Example BWS Mutant . 65

4.13 An Example of TextView Widgets and TVD Mutant 66

4.14 Fail on Null Mutation Operator . 67

4.15 Fault in Landscape Orientation . 68

4.16 Two Example ORL Mutants . 69

4.17 An Example FOB Mutant . 71

4.18 Four Example LCM Mutants . 73

4.19 An Example Energy Bug . 74

4.20 An Example WRD Mutants . 75

4.21 Identifying Wake Locks in the Android System 76

4.22 An Example WCD Mutant . 78

5.1 An Example of Generating Mutants . 82

5.2 Observing Mutants . 83

5.3 An Example Test Case . 84

5.4 An Example Command of Executing Tests 86

5.5 An Example Partial Result File . 87

5.6 The Architecture of muDroid . 88

5.7 An Example Mutation Log File . 90

5.8 Three Activities for TippyTipper . 96

5.9 A Comparison of Before and After Removing Mutant-Faults 115

5.10 A Comparison of Fault Detection E↵ectiveness with Naturally Occurring Faults123

5.11 A Comparison of Fault Detection E↵ectiveness with Crowdsourced Faults . 124

5.12 Two Undetected Image Faults . 125

5.13 An Example Undetected Fault . 126

5.14 Testing Randomness in Games . 127

5.15 An Example Inter-App Event . 128

5.16 An Additional Common Fault . 129

5.17 Experimental Procedure . 135

5.18 A Trivial MDL Mutant . 144

5.19 Recommended Implementation of MDL . 147

5.20 BWS and BWD Mutants . 148

5.21 AOIU and LOI Examples . 153

5.22 AOIU Changes Android Resource ID . 153

xi

Abstract

MUTATION TESTING FOR ANDROID APPLICATIONS

Lin Deng, Ph.D.

George Mason University, 2017

Dissertation Director: Dr. Je↵ O↵utt

Along with the significantly widespread of Android devices, Android applications (apps)

also dominate the global market, in terms of the users, developers, app releases, and down-

loads. However, the quality of Android apps is a growing and significant problem. Many

apps are released to the market with severe software faults that result in crashes, incorrect

behaviors, and security vulnerabilities. Testing Android apps di↵ers from testing traditional

software programs because Android apps include new programming features and structures

never used before. New types of software faults may be introduced into Android apps by

these unique characteristics, but existing software testing techniques and simple testing

coverage criteria cannot detect these new software faults, or help developers deliver high

quality Android apps.

This research investigated the new development frameworks, unique programming fea-

tures, common programming faults, and novel characteristics of Android apps, and de-

signed Android mutation testing, a more sophisticated testing strategy for Android apps

than current practice. An Android mutation analysis tool, muDroid, was designed and

implemented, which includes 17 novel Android mutation operators and extends 19 Java

traditional method-level mutation operators.

Using three experimental studies, this research shows that Android mutation testing ca-

n design test cases that are very e↵ective at detecting both naturally occurring faults and

crowdsourced faults for Android apps. Also, Android mutation testing can provide an ef-

fective evaluation criterion for assessing other Android apps testing techniques. Redundant

or ine↵ective Android test cases can be filtered out with Android mutation testing, and

ultimately, our ability to deliver high quality Android apps can be improved.

Chapter 1: Introduction

1.1 Introduction

Mobile applications (mobile apps) are software programs that are installed and executed

on mobile devices, such as smartphones, tablets, smart TVs, and smart watches. Because

the prices of mobile devices are gradually becoming cheaper, and the mobile networks are

rapidly expanding to almost every country, more people around the world are acquiring

mobile devices. Sometimes, one person may possess multiple mobile devices: he or she

may use a smartphone for calling family members and friends, may have a smart TV

for watching news and movies, and may wear a smart watch for tracking movements and

physical activities.

Cisco recently reported that, in 2016, the total number of global mobile devices reached

8.0 billion, exceeding the world population (7.4 billion) in the same year [56]. Not surpris-

ingly, people have already started to use mobile devices more frequently than desktops and

laptops. Since 2008, KPCB, an American venture capital firm, has tracked the time that

American people spend on mobile devices, desktops, and laptops. Its report shows that in

2015, on average, US adults spend 2.8 hours every day on their mobile devices, compared

to only 0.4 hours daily in 2010, and 2.4 hours devoted to PCs in both 2010 and 2015 [92].

Mobile devices have evolved from slow devices with a tiny, low-resolution, and black and

white screens that are only capable of voice calling, texting, and browsing news without

any pictures or animations, to powerful portable computers and entertainment terminals.

Mobile devices are improving people’s life, including the way we shop, entertain, travel,

communicate, and make friends. They are becoming critical to humans’ daily lives. A survey

conducted by TechRepublic in 2016 shows that 94% of the respondents use mobile devices

in their work [148]. Another survey from Boston Consulting Group (BCG) demonstrates

1

that people are increasingly unwilling to live without mobile devices, even at the expense

of losing traditional needs. More than 55% of the participants would forgo dining out for

12 months rather than lose their smartphones, and 45% would put o↵ going on vacation.

More than three in 10 would stop seeing their friends in person, and 46% would give up a

day o↵ per week [1].

Android, iOS, and Windows Mobile are three major operating systems designed for mo-

bile devices. According to International Data Corporation (IDC), Android devices dominate

the global market, due to the diversity of brands and devices, and a wider range of prices

compared to other products. In the third quarter of 2016, the worldwide unit shipments

of Android devices reached 86.8% of the market, while iOS and Windows Mobile only had

12.5% and 0.3% [84].

Android apps are software programs that execute on the Android operating system.

Due to the popularity of Android devices, Android apps also grew tremendously, in terms

of the numbers of the users, developers, and apps. In September 2015, Google reported that

more than one billion users had used Google Play store within 30 days [49, 77, 126]. Evans

Data Corporation (EDC) reported that the total number of software developers developing

Android apps reached 5.9 million in 2016 [70]. In March 2017, the total number of Android

apps on the Google Play store exceeds 2.8 million [4].

Due to the exceptional convenience of mobile devices, people can use mobile apps at

anytime, day and night, from anywhere, whether sitting on a train or flying on a plane. The

increasing popularity of mobile devices, greatly enhanced hardware specification, and the

new generation of mobile networks, inevitably attracts IT companies to invest in developing

mobile apps for earning more profits from mobile users.

However, due to the sheer volume of Android apps, quality becomes a growing and

significant problem. Research of Gómez et al. reveals that many Android apps released

in the Google Play Store contain severe software faults, resulting in failures during use,

including runtime crashes, incorrect behaviors, and security vulnerabilities [76]. Similar to

other types of software, the inferior quality results in numerous undesirable outcomes. A

2

professional Android analysis website [4] labeled 13% of all the Android apps on the market

as “low-quality apps.” Although an exact number is unknown, the percentage of Android

apps with significant faults appears to be higher. In 2014, 20% of apps were launched only

once before uninstalled, and 61% were used less than ten times [112]. Considering the huge

amount of apps available online, the total number of apps discarded by users is tremendous.

Even though a user can delete an app for all kinds of reasons, such as poor usability and

lack of expected features, software failure is definitely an essential factor that makes users

decide to remove the app from their mobile devices.

Usually, if an app keeps crashing on users’ devices, most users would decide to uninstall

it. Gradually, it will disappear from the market. From the perspective of software reliability,

any downtime is a threat to enterprise revenue. The apps of eBay introduced $28 billion

in total sales in the year of 2014 [142], which means that, in one year, even 0.1% of apps

downtime will incur a loss of $28 million. For another example, mobile banking apps have

become increasingly popular year by year. Transferring balance, depositing checks, and

paying bills can all be done with a couple of seconds on apps. However, their quality is

also critical to everyone. In the year of 2013, the mobile app of Royal Bank of Scotland

had 34 times of massive failure events, which a↵ected millions of its customers [53, 155].

There was no report about the financial loss of the bank. It is di�cult to quantify the cost

of the failures, but the costs are certainly high. Thus, quality of mobile apps is critical to

developers, vendors, and customers.

1.2 Challenges in Testing Android Apps

Most Android apps are written in Java, but Android apps have unique characteristics

and additional features beyond traditional software, including the way they are developed,

tested, distributed, and installed [122]. In particular, these new characteristics and features

make the entire testing process for Android apps di↵erent, and bring several challenges

to developers and testers when testing Android apps. This section introduces the unique

characteristics and associated challenges identified during the research into Android apps,

3

which need to be appropriately addressed when developing and testing Android apps.

1. Four types of components

Android apps contain four types of components: Activities, Services, Broadcast Re-

ceivers, and Content Providers. For example, in the manifest file of an app, the app

designates an Activity to work as the “main class” along with security permissions and

subscriptions to intent broadcasts. These components are written in Java, and pro-

vided by the Android Software Development Kit (SDK). Developers can extend these

super classes (components) and provide their own implementation based on software

requirements.

An Activity presents a screen, Graphical User Interface (GUI), to the user based on one

or more layout designs. The GUI may include widgets such as buttons, textviews, and

other advanced artifacts. Figure 1.1 shows an example Activity. Developers populate

the GUI by overriding the Activity lifecycle methods, and can add programming logic

for the GUI. Additionally, developers separate the visual structure from the behavior

by using eXtensible Markup Language (XML) to declare the app’s layout.

Services do not have a GUI, and run in the background. They do not interact with

the screen. Thus, they are usually used to perform long-term running tasks, such

as playing music or triggering alarm clocks. A Service can be started by other com-

ponents, including Activities and Broadcast Receivers. Services also have a di↵erent

lifecycle from an Activity, which is addressed in Section 2.

A Broadcast Receiver is used to subscribe the app to Intents broadcast by the Android

system or other apps, such as low battery. Figure 1.2 gives an example Broadcast

Receiver.

A Content Provider supplies and manages structured data for other apps. These data

are stored in file systems or databases, including calendars, photographs, contacts, and

stored music. For example, Figure 1.3 shows an example of using Content Provider to

access files stored in the device. The figure on the left is a Facebook screenshot [17].

4

Figure 1.1: An Example Activity

When the user clicks the Photo button, the Content Provider is called and provides

all the photographs saved in the device. Then, the user can pick one and upload it to

Facebook.

Some research, such as MobiGUITAR [41], considers Android apps the same as GUI

software, and applies GUI testing techniques to test Android apps. These approaches

might be suitable for testing Activities, as it is displayed on a screen. However, they

cannot test other components comprehensively.

2. Unique lifecycles of Android components

Unlike other types of software, the Android operating system requires major compo-

nents of Android apps to behave according to a pre-defined lifecycle [6]. If a com-

ponent’s lifecycle is not appropriately handled, it is very likely to cause unexpected

5

Figure 1.2: An Example Broadcast Receiver

issues when users swap between di↵erent apps, pause then resume an app, or turn on

the mobile device from sleep mode [51]. Particularly, the flow of continuity in some

Android apps is critical to users, such as games. For example, Figure 1.4 illustrates

a gaming app that incorrectly handles the lifecycle of Activity. The picture on the

left shows the game progress, where the user is going to win the card game. However,

when the user finishes the call and returns to the game, the app is not able to prop-

erly handle the lifecycle by calling the correct methods to restore the game progress

from where it is interrupted. Instead, it restarts from the beginning, as shown in the

picture on the right.

Figure 1.5 shows the lifecycle of an Activity in the form of states and event transitions.

An Activity has three states connected by di↵erent conditions: Running, Paused, and

Stopped. After an Activity is launched, three methods, onCreate(), onStart(), and

onResume(), need to be sequentially called before the Running state is reached, i.e.,

6

Figure 1.3: An Example Content Provider

the user can see the Activity on the screen. The onPause() method sends the Activity

to the Paused state, where it can return to the Running state with onResume(), or

goes to the Stopped state with onStop(). When the user wants to switch back to the

stopped Activity, three methods, onRestart(), onStart(), and onResume(), need to be

sequentially called to bring the Activity back to the screen. Or, when the Activity will

not be used anymore, it can exit with an onDestroy() method.

Unlike an Activity, which displays a screen to the user, Services are invisible and

perform long-term running tasks in the background, such as playing music. Services

also behave according to pre-defined lifecycle, but it is not the same as the lifecycle of

Activity. Figure 1.6 shows the lifecycle of two di↵erent types of Services as a collection

of event methods and states.

7

Figure 1.4: An Example Failure of Inappropriately Handling Activity Lifecycle

Services come in two types: unbounded and bounded. An unbounded Service is

launched after the Android system executes the onCreate() and onStartCommand()

methods of the Service, usually when other client components of the app request the

Service. Then, the Service stays in the background and performs its job. Once the

Service finishes its task, it can stop itself or be stopped by its client. The Android

system calls the onDestroy() method to terminate the Service. A bounded Service

is started once a client component asks to bind to it. The Android system calls its

onCreate() and onBind() methods to launch the Service. The Service can accept

binding requests from multiple clients at the same time. If the Service is purely

a bounded Service, i.e., launched with a client’s binding request, after all clients

8

Figure 1.5: Lifecycle of Activity in Android apps

unbind from the Service, the Android system calls the onUnbind() and the onDestroy()

methods to stop the Service.

In addition, the two forms of Services are not mutually exclusive. A bounded Service

can also be started with the onStartCommand() method. Then, a client can bind to

the Service again after the onUnbind() method is called as long as the Service is still

active. The Android system will call either the onRebind() or the onBind() method

to rebind the Service. However, if this Service is no longer needed, it needs to either

stop itself or be stopped by its client, but not by the Android system.

Since the communication between Service and other components is critical to the

smooth execution of Android apps, particularly for apps that require the correct

running of Services, such as music players, email clients, and alarm clocks, developers

9

Figure 1.6: Lifecycle of Service in Android Apps

must appropriately implement Services according to the Service lifecycles. The study

into an alarm clock app identified software faults in its Services that caused the app

to sound at a wrong time, and some leading to runtime crashes.

3. Intensive use of eXtensible Markup Language (XML) files

Even though most Android apps’ source code is written in Java, XML files are also

intensively employed by Android apps for program configuration, user interface (lay-

out) specification, and temporary data storage. For example, Figure 1.7 shows an

example XML layout file in an Android app. This XML file defines the general layout

structure of current Activity as RelativeLayout, then creates a TableLayout inside it.

Several Button and TextView widgets with di↵erent sizes and fonts are also defined

in the Activity.

Depending on the design of di↵erent projects, it is possible for an Android app to

include even more XML files than Java source files. However, using XML files for these

purposes is relatively new. For example, programs with Graphical User Interfaces

10

<?xml version=“1.0” encoding=“utf-8”?>
<RelativeLayout xmlns:android=“http://schemas.android.com/apk/res/android”

android:orientation=“vertical”
android:layout width=“fill parent”
android:layout height=“fill parent”>

<TableLayout
android:id=“@+id/level table”
android:layout width=“fill parent”
android:layout height=“wrap content”
android:stretchColumns=“0,1”>
<TableRow>

<Button android:id=“@+id/up button”
android:layout marginTop=“5px”
android:text=“@string/up level”/>
<Button android:id=“@+id/up gear button”
android:layout marginTop=“5px”
android:text=“@string/up gear level”/>

</TableRow>
<TableRow>

<TextView android:id=“@+id/current level”
android:layout width=“wrap content”
android:layout gravity=“center”
android:textSize=“70sp”
android:textStyle=“bold”
android:text=“1”/>

<TextView android:id=“@+id/current gear level”
android:layout width=“wrap content”
android:layout gravity=“center”
android:textSize=“70sp”
android:textStyle=“bold”
android:text=“0”/>

</TableRow>
<TableRow>

<Button android:id=“@+id/down button”
android:text=“@string/down level”/>
<Button android:id=“@+id/down gear button”
android:text=“@string/down gear level”/>

</TableRow>
</TableLayout>
<TextView android:id=“@+id/total level”
android:layout width=“fill parent”
android:layout height=“fill parent”
android:gravity=“center”
android:layout below=“@id/level table”
android:textSize=“140sp”
android:textStyle=“bold”
android:text=“1”/>

</RelativeLayout>

Figure 1.7: XML Layout File

11

(GUIs) implemented with Java or C# rarely use or include XML files. Consequently,

no testing techniques designed for testing traditional Java programs consider source

code other than Java within the same project. Additionally, there is no test coverage

criterion to measure the coverage information for XML files used in Android apps. For

a given test, we can easily observe whether a statement or a logical branch is executed

or not. However, for an XML file in the same project, we do not have techniques to

evaluate coverage of it. Indeed, not testing XML files of Android apps may result in

unexpected failures.

4. Context-aware characteristics

Another important distinct characteristic of Android apps is that they are context-

aware. Apps receive a variety of input data from its physical environment through

di↵erent sensors, such as the linear acceleration, Global Positioning System (GPS)

location, and rotation. For example, context-aware apps behave di↵erently when the

phone is moving in a vehicle versus sitting at a desk. Figure 1.8 shows another real

example with a widely used Android app, Yelp [36]. Given the exactly same test input,

selecting Restaurants, choosing Current Location, then Search, standing at di↵erent

locations leads to entirely di↵erent results. Undoubtedly, the location input received

from the device directly impacts the results. And these types of data are not fed by

users, rather from sensors in the device itself. Moreover, this di↵erence in behavior

is not reflected directly in the app’s source code; rather the di↵erence is in how often

the app receives an event notification. In a sense, these event notifications are inputs

as well, and must be modeled as part of a test. However, existing test techniques do

not consider these types of inputs.

5. Two types of screen orientation

The ability to change orientation is a key distinct characteristic of mobile devices. Al-

most every device has two types of screen orientation, landscape and portrait. Screen

orientation is switched automatically when a device detects a change in the way it is

held by the user, unless it is manually locked by the user. Many Android apps are

12

Figure 1.8: An Example Context-aware Input

designed to have di↵erent user interfaces to adapt to the orientation change event.

For example, Figure 1.9 shows that a simple calculator (left) with portrait orientation

becomes a scientific calculator (right) with landscape orientation. Unlike traditional

software, which does not take orientation into account, testing Android apps must

consider this unique feature of orientation changing. This is because it is highly likely

to cause di↵erent types of failures, such as immediately crashing after switching the

orientation [78].

6. Android apps’ permissions

For protecting Android operating system’s security and users’ privacy, every Android

app is executed in a separate sandbox with limited permissions. If an app needs to

13

Figure 1.9: An Example of Android Apps Adapting to Orientation Change

access system resources or user data, it must explicitly declare the requested per-

missions in its AndroidManifest.xml file. For example, Figure 1.10 shows a part of

an app’s AndroidManifest.xml file that requests three permissions: WAKE LOCK,

MODIFY AUDIO SETTINGS, and VIBRATE . Usually, when an app is installed on

an Android device, the Android system will ask the user to decide whether to grant

the permissions.

<manifest xmlns:android=“http://schemas.android.com/apk/res/android”

<uses-permission android:name=“android.permission.WAKE LOCK” />

<uses-permission android:name=“android.permission.MODIFY AUDIO SETTINGS” />

<uses-permission android:name=“android.permission.VIBRATE”>

</uses-permission>

</manifest>

Figure 1.10: Android App Requests Permissions

The screenshot on the left of Figure 1.11 lists the permissions requested by Facebook

[17], including Calendar, Contacts, Location, Files, Camera, etc. As the top Android

14

app for social networking, it is reasonable for Facebook to access these system re-

sources and user data. However, the screenshot on the right of Figure 1.11 shows that

UNO [34] wants to access users’ Identify, Location, and Files, which are not necessary

to a card game.

Figure 1.11: An Example of Installing Android Apps with Permissions

This mechanism, however, usually doesn’t ensure Android’s security as expected.

Many users simply accept every request. Undoubtedly, this mechanism results in

several testing issues and security vulnerabilities that can be used to exploit Android

devices. Johnson et al. conducted an analysis of 141,372 Android apps, and concluded

that the majority of apps do not come with an appropriate set of permissions. More

than 54% of the apps analyzed requested extra permissions that were unnecessary to

the execution [86]. The permission mechanism is supposed to deliver security to users,

whereas some developers take advantage of it to perform malicious activities, which

15

are not usually found by traditional testing techniques.

7. Event-based programs, Intent, and Back button

Android apps can be considered as event-based programs, because their execution

flows rely heavily on events initiated by di↵erent user actions, such as clicking, tap-

ping, and dragging. Event handlers are implemented to react to these user events,

so improperly designed event handlers could lead to incorrect software behaviors.

Moreover, Android apps use Intent objects to facilitate the communication between

components, e.g., initiating another Activity from a component. Usually, an Intent

object carries the data demanded by the target component. It is evident that Intent

objects play a critical role in Android apps, and need to be tested e↵ectively.

In addition, as shown in Figure 1.12, every Android device is equipped with three

system buttons: Back (left), Home (middle), and Recents (right).

Figure 1.12: Three Android System Buttons

The Home button lets users return to the main home screen. The Recents button

displays a scrollable screen containing recently suspended or closed apps in reverse

chronological order. Users can switch between di↵erent apps by tapping on them, or

terminate a suspended app by swiping it away. The Back button enables users to move

to previous screens, similar to the back button on web browsers. A particular stack

of Activities managed by the Android operating system facilitates this Back action.

Because the Back button interrupts the usual execution flow and is usually not on

a happy path (the default scenario that should happen under normal use without

exceptions) from the perspective of software design, many testers might overlook its

impact. A common Android fault is for an app to crash when the Back button

16

is clicked. Figure 1.13 shows that on StackOverflow [31], a leading website where

professional and enthusiast programmers all over the world discuss technical issues

and look for solutions, there are nearly 500 discussion threads about how to solve the

crash after the Back button is clicked in Android apps.

Figure 1.13: Discussions on the Issue of Crashes after Back Button Is Clicked

8. Varied Network Connections

Usually, an Android smartphone is equipped with several forms of network connec-

tions, most commonly cellular data and WiFi. By default, whenever a WiFi con-

nection is available, the Android system will first attempt to transmit data through

WiFi, as WiFi connections use relatively less energy, work at a higher download and

17

upload speeds, and cost less. If WiFi is not available, unless the cellular data is

disabled manually, the Android system will automatically switch to a cellular data

connection, which has a high network speed, is more expensive, and uses more energy.

This switching may cause problems in di↵erent scenarios. For example, Internet Pro-

tocol (IP) addresses are di↵erent when the device is connected to di↵erent networks.

It is very common that the network a smartphone switches to has di�culty resuming

the connection and fails to continue the previous unfinished tasks. Interrupted in-

stallations, leading to partial and unstable installations, and incomplete or duplicate

mobile shopping orders, are very common. Many developers and testers overlook this

situation, which results in the fact that users have to remember to stay connected to

one network without moving or switching before an important app finishes its tasks.

9. Limited battery life

Unlike PCs, which have a constant power supply, mobile devices have to rely on limited

battery power. No execution can happen when the battery is out of power. Therefore,

developers have to take battery usage into account when implementing their apps.

However, many developers overlook the battery usage. Several researchers found that

certain inappropriate programming practices could increase the energy consumption

of Android apps [107]. Some research projects label them as energy bugs [48,139,153].

Even though energy bugs do not downgrade the functionality of an app, they can

severely impact the Android system, and shorten the availability of the entire system.

Figure 4.19 compares two energy consumption diagrams captured from the same app.

Initially, the app has an energy bug (top), so that after it transits from an active

state to an idle state, it does not release system resources it requested, and keeps

consuming battery energy. Ideally, an app is expected to obtain system resources

when active, and release them when idle. These states di↵er from background and

foreground states of Android components because an app can be active while also in

the background, e.g., Services. The diagram at the bottom of Figure 4.19 shows the

expected energy consumption after fixing the energy bug.

18

Figure 1.14: An Example Energy Bug

1.3 Problem Statement and Motivation

Android apps employ new programming features that have never been used by traditional

software before. These unique characteristics of Android apps lead to new types of faults,

which are usually not revealed by existing software testing techniques or simple testing cov-

erage criteria. Consequently, software testing techniques targeting traditional software are

not su�cient to test Android apps, and we do not have su�cient knowledge and experience

for how to thoroughly test them. This results in weak and ine↵ective testing.

Recently, the software engineering community has shown significant interest in inventing

software testing approaches specific for Android apps. Some techniques have been proposed

19

to address one or several challenges described in section 1.2, such as energy bugs and the

event-driven nature of Android apps. However, there is still a lack of e↵ective and usable

techniques to evaluate their proposed test selection strategies, or to ensure a reasonable

number of e↵ective tests.

Problem Statement:

Currently, traditional software testing techniques are insu�cient for test-

ing Android apps due to the novel characteristics of Android apps.

Random value generation is still state-of-the-art in testing Android apps. Android

Monkey [8], a random event generation tool released by Google, is one of the most widely

used methods to test Android apps and evaluate new approaches, in both the industry and

research communities [39, 40, 83]. However, the e↵ectiveness of random testing is always

questionable. Additionally, as the test inputs are randomly generated, then sent to the app

under test, it is almost impossible to set and check any expected values with random testing.

Therefore, random testing can usually only detect crashes and exceptions. However, Li and

O↵utt found that only about 30% failures are runtime crashes [105].

Model-based approaches have been extended to test Android apps as well, such as using

state machines [147] and GUI models [41,46,160]. However, one precondition of model-based

approaches is the availability of models. If the models are not available or insu�cient, it

is very hard to carry out model-based testing. In addition, it is very likely that di↵erent

people would abstract di↵erent models for the same app.

Some papers extend symbolic execution into testing Android apps. Mirzaei et al. [124]

created stubs and mock classes to make Android apps run on Java PathFinder (JPF) [20].

Merwe et al. [151, 152] developed JPF-Android by extending JPF to verify Android apps.

But the state explosion problem limited its ability to generate complex tests inputs. Details

about related work are discussed in Section 3.2. Right now, few of the proposed approaches

are actively maintained or used by industry in actual Android apps testing.

The motivations of this research are:

20

1. To develop a new approach to testing Android apps by investigating the programming

framework, unique features, and novel characteristics of Android apps

2. To provide more sophisticated testing than current practice

3. To supply an evaluation criterion for assessing other Android app testing techniques

4. To filter redundant and ine�cient Android test cases

5. To ultimately improve our ability to deliver quality Android apps through stronger

testing

1.4 Hypothesis

This research investigates the following hypothesis:

Research Hypothesis:

Mutation testing of Android apps can reveal more faults than existing

testing techniques can.

In other software domains, mutation analysis has been found to excel at designing test

cases, as well as evaluating other testing techniques. For example, the empirical results of

Mathur and Wong [121, 158] showed that all the 120 randomly generated mutation ade-

quate test sets satisfied all-uses criterion, while none of the 120 randomly generated all-uses

adequate test sets was mutation adequate. Also, their empirical study found that mutation

testing detected more faults than all-uses testing criterion did. Similarly, O↵utt et al. [129]

found that mutation adequate test sets detected 16% more faults than all-use test sets did.

If the hypothesis is true, mutation testing could guide developers and testers to design

more e↵ective tests than before, and to improve the quality of Android apps. Also, Android

mutation coverage could be used as a testing criterion to evaluate and trim redundant tests

generated by other testing techniques.

21

This research conducted three experimental evaluations to verify the hypothesis and to

investigate Android mutation testing from di↵erent perspectives. Chapter 5 provided the

detail of each experimental study.

The first experimental study investigated the feasibility of applying mutation analysis

to testing Android apps. Particularly, it focused on verifying whether Android mutation

testing can be used to evaluate test cases designed with other testing criteria. It addressed

the following research questions:

• RQ1: Is it feasible to test real-world Android apps with mutation analysis?

• RQ2: How e↵ective can test cases designed with traditional testing criteria be at

killing mutants generated by Android mutation testing?

After exploring the applicability of Android mutation testing, the second experimen-

tal evaluation investigated the e↵ectiveness of Android mutation testing. Specifically, the

second evaluation includes two empirical studies on fault detection e↵ectiveness using open-

source Android applications: one for Android mutation testing, and another for four existing

Android testing techniques. In addition, to make the studies more comprehensive, this eval-

uation used a combination of naturally occurring faults and crowdsourced faults created by

experienced Android developers. This evaluation answers the following research questions:

• RQ3: How e↵ective is Android mutation analysis at testing Android apps? Specifi-

cally, how many faults can be detected by mutation-generated tests?

• RQ4: How e↵ectively do four other Android testing techniques test Android apps?

Specifically, with the same set of faults, how many of them can be detected by four

other Android testing techniques?

• RQ5: Is there any di↵erence between using naturally occurring faults and using

crowdsourced faults in empirical evaluations?

After evaluating the e↵ectiveness of Android mutation testing, the third evaluation in-

vestigated the possibility of reducing the high cost of Android mutation testing by searching

22

for and excluding redundant mutation operators. “Cost” in mutation analysis can be in

di↵erent forms. Chapter 3 discusses the cost of mutation testing and related research work

on reducing the cost. This study considers the computational time and e↵ort as the ma-

jor cost of Android mutation testing for executing tests against mutants. This evaluation

answers the following research questions:

• RQ6: How many mutants of one particular type can be killed by tests created to kill

another type of mutants?

• RQ7: Which types of mutants are less likely to be killed by tests created to kill other

types of mutants?

• RQ8: Are any Android mutation operators redundant enough to be excluded, or

can any be improved? In particular, can the mutants generated from this mutation

operator always be killed by tests created to kill another type of mutant?

1.5 Structure of This Ph.D. Dissertation

The rest of this dissertation is organized as follows. Chapter 2 provides background on mu-

tation analysis and Android apps. Mutation analysis is the key foundation of this research,

and the major idea of this research is built upon the mutation analysis. Android apps are

the research subjects and the research domain of this dissertation. Chapter 3 discusses the

related research work in mutation testing, testing Android apps, Android permissions and

security issues, testing GUI software, mining source code repositories, and crowdsourcing

in software engineering. Chapter 4 introduces the approach of Android mutation testing,

presents the design of novel Android mutation operators, and describes the system con-

structed for Android mutation testing. Chapter 5 presents a set of empirical studies of

Android mutation testing. The first evaluation explores the feasibility of Android mutation

testing. The second study evaluates the fault detection e↵ectiveness of Android mutation

testing and other four existing Android testing techniques with two types of faults: natu-

rally occurring faults and crowdsourced faults. The third study investigates the redundant

23

mutation operators in Android mutation testing. Finally, Chapter 8 concludes this disserta-

tion with a summary of the major contributions of this research, and finishes by suggesting

future research work.

24

Chapter 2: Background

This research applies an existing technique, mutation testing, to a new type of software, An-

droid mobile apps, to design e↵ective tests. This chapter presents background on mutation

testing and Android apps.

2.1 Mutation Analysis

Software testing is a set of activities that are used to validate and verify that a software

system is developed in accordance with its requirements. In the field of software testing,

mutation testing, first proposed in the paper by DeMillo et al. in 1978 [64], is one of

the most e↵ective testing techniques. It is a syntax-based testing technique, that has been

empirically found to be exceptionally e↵ective at helping testers generate high-quality tests,

and at evaluating pre-existing tests designed by other testing techniques [43].

Mutation testing modifies a software artifact such as a program, requirement specifi-

cation, or a configuration file to create new versions, called mutants. One single change

made in the software artifact creates a first-order mutant, whereas multiple changes create

a higher-order mutant. This research only focuses on first-order mutation testing.

Figure 2.1 illustrates a general mutation testing process. First, the original program

under test P is modified to create mutants, denoted as P 0 in Figure 2.1. The mutants P 0

are usually intended to be faulty versions and are created by applying rules that specify how

the changes can be made on the software artifact. These rules are called mutation operators.

For example, Figure 2.2 shows an example Relational Operator Replacement (ROR) mutant

for Java. ROR replaces each instance of a relational operator (for example, <) with all

other relational operators (<=, ==, >, >=, ! =) plus trueOp and falseOp, which set the

condition to true and false [43]. Mutation operators sometimes create changes that mimic

25

Figure 2.1: General Mutation Testing Process

typical programming mistakes, and sometimes introduce changes that encourage common

test heuristics by challenging testers to design test inputs that are likely to find faults. Well

designed mutation operators can lead to very powerful test cases.

Then, testers design and execute test cases T against both the original program P and

the mutated versions P 0. If a test t in the test set T causes di↵erent outputs on the original

P and a mutant p in P 0, the test t is said to kill p. Figure 2.3 provides a program example

about designing a test to kill a mutant. This program looks for the last index of zero in

the array x. ROR replaces the condition statement i >= 0 in the for-loop with i > 0,

which makes the program fail to check whether the first element in the array x is zero. The

ine↵ective test in Figure 2.3 defines the array x to be [1, 1, 2], which results in the same

output (-1) for the original program and the mutant. Obviously, even though the mutant

skips the first element in the array x, this ine↵ective test is not able to reveal the fault. The

second test assigns the array x to be [0, 1, 2], which kills the mutant as the original output

is 0, while the mutant output is -1. This killing test is very e↵ective because it helps the

tester to explore the boundary case.

Specifically, in this research a test t must satisfy four conditions to kill a mutant, which

is called the RIPR model [43, 105]:

26

public int Min (int A, int B)
{

int minVal = A;
if (B < A)
minVal = B;

return minVal;
}

Original

public int Min (int A, int B)
{

int minVal = A;
if (B > A) // ROR mutant
minVal = B;

return minVal;
}

Mutant

Figure 2.2: Relational Operator Replacement Example

1. Reachability : the test must reach the location where the mutant locates

2. Infection: after executing the location of the mutant, the state of the program must

be incorrect

3. Propagation: the infected state must cause some output or final state of the program

to be incorrect

4. Revealed : the test must observe at least part of the incorrect portion of the final

program state

Particularly, in this research, the Revealed condition is required to kill a mutant.

The more mutants a test set can kill, the more e↵ective the test set is. Some mutants

always produce the same output as the original program, so that they cannot be killed by

any tests. These mutants are called equivalent mutants. The percentage of non-equivalent

mutants killed by the test cases T is called the mutation score. The mutation score ranges

from 0% to 100%, which is a direct quantitative indicator about the e↵ectiveness of a test

27

int lastZero (int [] x)
{

for (int i = x.length-1; i >= 0; i–)
{
if (x [i] == 0)

return i;
}
return -1;

}
Original

int lastZero (int [] x)
{

for (int i = x.length-1; i > 0; i–) // ROR mutant
{
if (x [i] == 0)

return i;
}
return -1;

}
Mutant

Input: x = [1, 1, 2]
Original output: -1
Mutant output: -1

Ine↵ective Test

Input: x = [0, 1, 2]
Original output: 0
Mutant output: -1

Killing Test

Figure 2.3: An Example of Killing a Mutant

set. From another perspective, mutants can be considered as test requirements that need to

be covered or satisfied (killed, in mutation testing) by the test cases designed by developers

and testers.

Some mutants behave exactly the same as the original program on every possible input

so that no test cases can kill them. These mutants are called equivalent. Identifying and

28

eliminating equivalent mutants from consideration is a major cost of mutation testing. Some

mutants do not compile because the change makes the program syntactically incorrect.

While these stillborn mutants can usually be avoided if the mutation operators are well

designed and appropriately implemented, some do occur. A mutation system must be

prepared to recognize stillborn mutants and remove them from consideration. Some tests

cannot kill any mutants, or can only kill mutants that have been already killed by other

tests in the same test set T. These tests are called ine↵ective. Equivalent mutants and

ine↵ective tests should be eliminated.

Next, if any mutants are still alive, the tester needs to design additional test cases to kill

them. Otherwise, if all the mutants P 0 are dead, the test set T is called mutation adequate,

i.e., the mutation adequacy score is 100%. The mutation adequate test set T can be further

used to verify the original program P and identify any possible faults.

Mutation testing has been measured to be stronger than other test criteria. One source

of that strength is that it does more than just apply local requirements, such as reaching a

statement or touring a subpath in the control flow graph (reachability), but it also requires

that the mutated statement result in an error in the program’s execution state (infection),

and that erroneous state propagate to incorrect external behavior of the mutated program

(propagation) [43, 65, 125].

Mutation operators have been created for many di↵erent languages, including C, Java,

and Fortran [38, 89, 91, 113]. More details of related work about mutation testing are dis-

cussed in section 3.1. In this research, new mutation operators for Android apps are designed

by investigating the novel features and unique characteristics of Android apps.

29

2.2 Android Applications

The Android operating system is developed based on the Linux kernel, and includes mid-

dleware, system libraries, Application Programming Interfaces (APIs), and several pre-

installed applications. It is now the leading mobile operating system installed on smart-

phones, tablets, smart TVs, wearable devices, and automobiles [3]. The latest version of

the Android operating system is 7.0 (Nougat). Android apps are commonly written in Java,

and compiled into bytecode that can execute on the Java Virtual Machine (VM). There

are two versions of Java Virtual Machines used by the Android operating system. Before

version 4.4 (KitKat), Android used the Dalvik Virtual Machine. After that, version 5.0

(Lollipop) uses Android Runtime (ART) to replace Dalvik [13]. However, Google confirms

that most apps developed for Dalvik should work without any changes under ART [13].

The change does not a↵ect the general structure or programming methodology of Android

apps. Android apps can also publish their features for other apps to use, subject to certain

constraints.

Android provides developers a rich Software Development Kit (SDK) with a set of

tools to compile Java based source code, resource files (e.g., pictures, audios, and videos),

and data, and install on Android devices. Android apps have four types of components:

Activities, Services, Broadcast Receivers, and Content Providers. An Activity presents a

screen to the user based on one or more layout designs. These layouts can include di↵erent

configurations for di↵erent sized screens. The layouts define view widgets, which are GUI

controls. A configuration file in XML is used to describe the controls and how they are

laid out with a unique identifier for each widget. Service components run on the device

in the background. They perform tasks that do not require interaction with the user such

as counting steps, monitoring set alarms, and playing music. Services do not interact

with the screen, although they may interact with an Activity, which in turn interacts with

the screen. A Content Provider stores and provides access to structured data stored in

the file system, including calendars, photographs, contacts, and stored music. Finally, a

30

Broadcast Receiver handles messages that are announced system-wide such as low battery.

An Android component is activated by using an Intent message, which includes an action

that the component should carry out, and data that the component needs. Android supports

run-time binding Intent messages. This is enabled by having calls go through the Android

messaging service, rather than being explicitly present in the app. Android apps are built

according to a novel structure with a mandatory manifest file and four types of components.

Manifest files are written in XML and provide relevant information about the app, including

permissions, configurations, and descriptions of the apps’ components.

31

Chapter 3: Related Work

3.1 Mutation Testing

Mutation testing is a syntax-based testing technique, and has been studied, evaluated, and

extended by many researchers for more than three decades. This section introduces papers

in mutation testing that are related to Android mutation testing.

3.1.1 Application of Mutation Testing

Mutation testing has been applied to many programming languages, including Fortran 77

[65, 91], C [62], Java [90, 114], JavaScript [123], AspectJ [103], and web applications [141].

Several papers also extend mutation analysis to models, such as Finite State Machines

[71,82], statecharts [149], Petri nets [72], timed automata [128], and Aspect-oriented models

[108]. A new application of mutation testing is to fix software faults automatically [101].

Beyond the domain of software, mutation testing also has been applied to access control

policies [120] and spreadsheets [37]. In addition, Oliveira et al. designed a specific set of

mutation operators for GUI-based applications [136]. However, this research is the first

attempt to apply mutation testing to mobile apps [66].

3.1.2 Mutation Testing for eXtensible Markup Language (XML)

Android applications use the eXtensible Markup Language (XML) intensively, from defining

layouts, storing data, to configuring the system. The Android mutation technique in this

research not only mutates an Android app’s Java source code, but also mutates its XML

files. Several papers also studied mutation testing for XML.

To test messages transmitted between di↵erent web components, Lee and O↵utt applied

mutation analysis to XML data by defining web component Interaction Mutation Operators

32

to mutate the interaction recorded in XML files [102]. Then, test cases are designed to detect

the changes made to XML messages. The technique proposed by Lee and O↵utt focuses on

checking the semantic correctness of the interactions between web components. From the

perspective of web applications, the web component interaction mutation operators do not

modify original source code or structure of web applications, but create mutants of XML

messages.

Similarly, O↵utt and Xu approached the problem of input data validation for web ser-

vices by designing mutation operators that modified XML schema [135]. The approach

was verified through experiments on web service applications. The paper used the term

perturbation instead of mutation to emphasize that the mutation operators were perturbing

the input space. This research is slightly di↵erent in that, instead of defining input data,

the mutated XML files are used to define GUI layouts and to configure the app. They are

considered indispensable to the source code.

3.1.3 Reducing the High Cost of Mutation Testing

“Cost” in mutation analysis can be in di↵erent forms. According to Kurtz et al. [95],

for software engineers and testers, they care more about how far away from obtaining a

mutation adequate test set. When an engineer uses mutation testing to test his program,

he usually first uses a mutation analysis tool to generate a set of mutants. Then, he

chooses a mutant and designs a test to kill it. After that, he removes all mutants killed

by this test. Alternatively, he may find that the mutant is not killable, i.e., an equivalent

mutant, then removes it. When the engineer designs a test set that kills all the non-

equivalent mutants, he obtains a mutation adequate test set. Therefore, from software

engineers and testers’ perspective, the cost consists of the time and e↵orts used in designing

tests and identifying equivalent mutants. Also, the paper of Kurtz et al. [95] defines test

completeness as the ratio of tests designed to the total number of tests required to kill all

non-equivalent mutants. Moreover, Kurtz et al. [94] identified that some mutants subsume

others. This redundancy among mutants made test design and execution very expensive,

33

because engineers and testers must consider excessively more test requirements than actually

necessary. The experiment in Section 5.4 also investigates the redundancy in Android

mutation testing, but considers the redundancy among mutation operators instead of the

redundancy among mutants.

From researchers’ perspective, computational time and e↵orts are the major cost, such

as how much time is required to generate and kill all mutants. This study considers the

computational time and e↵ort as the major cost of Android mutation testing for executing

tests against mutants. In addition, conducting mutation testing for Android apps has some

extra cost that traditional mutation testing does not have. For example, because most

Android emulators and mobile devices work much slower than personal computers, the

computation time of killing mutants has to be inevitably prolonged. It is imperative to

address the cost issue of mutation testing. Several papers have investigated saving the

expensive cost of mutation testing.

Generally, traditional mutation testing uses three types of approaches to reduce the

cost: do-fewer, do-smarter, and do-faster [134, 150]. As a do-fewer approach, selective

mutation was introduced byWong and Mathur to choose only a subset of mutation operators

[157,159]. The muJava tool selects 15 operators to preserve almost the same test coverage as

non-selective mutation [114]. Additionally, empirical studies in both Java and C show that

the Statement DeLetion (SDL) is able to result in very e↵ective tests with much cheaper

cost [63, 67]. Deletion operators are also included in the empirical study of this research.

3.1.4 Minimal mutation analysis and dominator mutation score

Ammann et al. [42] started by exploring the subsumption relationship among mutants.

Subsumption is used to theoretically compare test criteria: a criterion C1 subsumes another

criterion C2, if every test that satisfies C1 is guaranteed to satisfy C2 [43]. Kurtz et al. [96]

defined subsumption relationship in mutation testing as: a mutant m1 subsumes another

mutant m2 if a test that kills m1 is guaranteed to kill m2. Apparently, when designing and

executing tests, m2 becomes redundant since it does not contribute to the quality of the

34

tests. Therefore, Ammann et al. [42] defined a minimal set of mutants that does not have

any redundant mutants. Minimal mutants are further renamed as dominator mutants in

the paper of Kurtz et al. [94].

Since the presence of redundant mutants, Kurtz et al. [95] found a critical problem

regarding mutation score, which is the ratio of killed mutants to the total killable mutants

and the most widely used measurement in assessing the e↵ectiveness of tests in mutation

testing. A majority of researchers and engineers use mutation score as the indicator of

how far away from obtaining a mutation adequate test set. Kurtz et al. [95] found that

during the process of mutation analysis, the first few tests may kill a large portion of non-

equivalent mutants, which makes the mutation score grow rapidly at the beginning. For

example, a mutation score of 70% after first seven tests certainly does not indicate the

engineer needs only three tests to achieve mutation adequacy. In contrary, killing these

30% unkilled non-equivalent mutants usually requires a significant amount of work. In

other words, mutation score is inflated and is not linear. Thus, mutation score is not able

to indicate test completeness.

After that, Kurtz et al. [95] defined the dominator mutation score as the ratio of the

number of killed dominator mutants to the total number of dominator mutants. Their

evaluation results showed that dominator mutation score is a better indicator in measuring

test completeness than traditional mutation score. Furthermore, using dominator mutation

score, Kurtz et al. [97] found that traditional selective mutation approaches were not suitable

for all kinds of programs. Di↵erent sets of mutation operators should be selected for di↵erent

programs. They recommended that a more specialized mutation operator selection strategy

towards di↵erent programs should be designed. Along with this idea, recent research of René

et al. [88] designed an approach of using a program’s abstract syntax tree to model program

context information, and then predicting the usefulness of mutants towards the program.

However, a significant number of robust tests are necessary to conduct minimal mutation

analysis and calculate dominator mutation score. Consequently, in this research, despite

the flaw of mutation score, we have to continue using mutation score as the measurement

35

in the evaluations, due to the expensive cost of Android mutation testing, in terms of

computational time and e↵ort. A major future work of this research is to apply minimal

mutation analysis and dominator mutation score in Android mutation testing.

3.2 Testing Android Applications

Android’s development environment includes its own test framework [10], which extends

the ubiquitous JUnit. Additionally, several testing automation frameworks are available

to testers. Many testers use Robotium [29] in unit testing, system testing, as well as user

acceptance testing. It is also compatible with other code coverage measurement tools,

such as Emma and Cobertura. Thanks to its APIs that directly interact with Android

GUI components through run-time binding, people with little knowledge of implementation

details can also write tests with Robotium. It is possible to test an app with Robotium

even if only its Android Application Package (APK) file is available. However, to maintain

a stable test execution on emulators and mobile devices, Robotium is set to run tests at a

relatively low speed. The preliminary work partly employed evoDroid [117], a Robotium

test generation tool using evolutionary algorithms, to generate experimental test cases.

However, the Android mutation technique in this research is available to accommodate all

kinds of Android tests. Another framework for Android apps is Robolectric [28], which runs

on the Java VM, instead of Dalvik or ART. It splits tests from the emulator, making it

possible to run tests by directly referencing the Android library files. In testing Android

apps, one challenge is the variety of hardware specifications, e.g., di↵erent screen sizes and

resolutions. To address this, Selendroid [30] enables testers to distribute their tests across

multiple emulators with di↵erent configurations. All these frameworks automate execution,

but none supports test value generation, test criteria, or any other aspect of test design.

Several research papers focus on random test value creation. Considering an Android

app as an event-driven system, Amalfitano et al. [39, 40] presented an approach that con-

structs a GUI model of the app under test by a code-crawling algorithm, and then randomly

36

fires events to generate test cases. As this technique is designed for crash testing and regres-

sion testing, it may be appropriate for detecting run-time crashes or exceptions. However,

many faults do not propagate to crashes or exceptions. Li and O↵utt [105] found that,

in Java programs, only about 30% of software failures are runtime crashes. Even though

there are no similar research findings for Android apps, only detecting crashes inevitably

misses many faults. Moreover, some Android apps include Services or only execute at the

background without a GUI. Constructing test cases based on GUI models may potentially

overlook certain faults residing in Service or other components.

Hu and Neamtiu [83] conducted a fault study based on ten open source Android apps,

and categorized Android faults into eight types: activity error, event error, dynamic type

error, unhandled exceptions, API error, I/O error, concurrency error, and others. Assuming

each type of fault should share a particular pattern in its log entries, they generate random

GUI test inputs with the help of Android Monkey, and then collect execution logs from

an instrumented Dalvik VM, which are further used to identify faults through di↵erent

patterns. However, one premise of this approach is that the fault patterns in terms of log

traces must be well-defined prior to the process. Without the patterns, people cannot locate

potential faults in a huge pile of log traces. Moreover, elaborating all the possible patterns

requires extensive analysis on a large number of apps, and is very less likely to be exhausted.

Also viewing Android apps as event-driven programs, Dynodroid [115] uses an approach

called observe-select-execute to generate test inputs. After executing an event, it observes

the new state of the app, and selects a relevant event for the next execution. Unlike

other techniques, Dynodroid considers system events in addition to UI events to generate

both human and machine inputs. To compute relevant events for test inputs, the Dyn-

odroid paper also describes three event selection strategies: Frequency, UniformRandom,

and BiasedRandom. An empirical study is conducted in this research to evaluate the fault

detection e↵ectiveness of Dynodroid.

Some researchers use model-based approaches to generate tests for Android apps. By

37

employing Android Monkey, TEMA [147] uses state machines (labeled state transition sys-

tems) to generate test sequences. However, two levels of state machines (action machine

and refinement machine) need to be created by hand. MobiGUITAR [41] automates GUI-

driven testing of Android apps by extracting run-time states of GUI widgets, and generates

tests with the abstraction of models. Compared with Android Monkey and Dynodroid,

MobiGUITAR was reported to detect more faults. ORBIT [160] creates a GUI model of

the app and then generates tests. A3E [46] uses static taint analysis algorithms to build

a model of the app, which is then used to explore the Activities in the app automatically.

These papers focus on constructing models from which tests can be designed, as opposed

to applying a test criterion such as mutation.

Some papers extend symbolic execution to test Android apps. Mirzaei et al. [124] created

stubs and mock classes to make Android apps run on Java PathFinder (JPF) [20]. Merwe et

al. [151, 152] developed JPF-Android by extending JPF to verify Android apps. However,

the state explosion problem limited its ability to generate complex test inputs. Jensen

et al. [85] combined symbolic execution with test sequence generation to support system

testing. Their goal was to find valid sequences and inputs that would reach locations in the

code. The Android mutation testing in this research tries to maximize test case e↵ectiveness

through mutation testing, an exceptionally strong coverage criterion. Anand et al. [44] used

dynamic symbolic execution [93,132] in the form of concolic testing [74] to test an Android

library. Their testing used pixel coordinates to identify valid GUI events.

Several papers applied evolutionary algorithms [116, 117], or multi-objective search-

based software testing techniques [119] to test Android apps. These techniques focused

on generating e↵ective test inputs for GUI testing of Android apps, instead of using test

criteria.

Choudhary et al. [55] evaluated seven automated Android test input generation tools

with 68 open source Android apps. The evaluation assessed the tools from four perspectives:

code coverage, fault detection e↵ectiveness, compatibility, and usability. All 69 subjects

were obtained from the evaluation of at least one tool, with the same version number as

38

in their original evaluation. This research uses a di↵erent approach to evaluating the fault

detection e↵ectiveness of di↵erent Android testing techniques. Naturally occurring faults

and crowdsourced faults are used as the benchmarks. Since the benchmarks used in this

research are significantly larger than Choudhary et al. used, with di↵erent natures of faults,

our results are also di↵erent.

3.3 Android Permissions and Security Issues

Security of Android apps has been drawing much attention, one possible reason of which is

the unique mechanism of Android permissions. The following papers investigated the usage

of Android permissions.

Davi et al. [61] illustrated the privilege escalation attacks in Android apps with real

examples, indicating that the existing model used by Android to enforce security policies is

ine↵ective, and cannot withstand malicious attacks.

Felt et al. [73] introduced Stowaway to detect overprivileged Android apps via test-

ing. By applying Stowaway to 940 Android apps, they found that one-third of Android

apps requested extra unnecessary privileges. Apparently, many developers do not follow

the principle of least privilege. When users casually accept dangerous permissions during

installation, they drastically increase the risk of privacy leakage and security exploitation.

Pandita et al. developed Whyper [137], which uses Natural Language Processing (NLP)

techniques to identify permissions required by Android apps according to their description.

It not only helps users understand why an Android app requires a specific permission, but

also provides developers feedback for modifying their programs.

Vidas et al. [154] presented a Permission Check Tool that can scan the source code of

a given Android app, and provide the least permissions required by the app. Their results

also show that, in addition to requesting extraneous permissions, some Android apps also

specify fictitious permissions that have been obsolete for a very long time or do not exist

at all.

All the techniques above are specifically designed to address the security of Android

39

apps. However, a security vulnerability is also one kind of software fault, and should not

be separated from other faults when testing. To enforce the principle of least privilege and

provide comprehensive testing, this research designs an explicit, novel, mutation operator

that is able to guide testers to explore whether the app under test has requested unnecessary

privileges.

3.4 GUI Testing and Graphical Test Oracles

Many researchers consider Android apps to be event-driven systems, and test them in similar

ways as traditional GUI applications. This is not enough because Android apps contain

four types of components: Activity, Service, Content Provider, and Broadcast Receiver.

Only Activity presents GUI on screen. Testing Android apps as GUI applications leaves the

other three components insu�ciently tested. Understanding commonly used technologies

in testing GUI applications will help the tester design more e↵ective approaches in testing

Android apps.

Capture-replay tools are widely used to test GUIs. Testers record and capture event

sequences in scripts that can be used to reproduce the same events to mimic human actions

in subsequent testing activities, e.g., after adding new features or updating source code.

Many research papers [52, 69, 146] proposed approaches like this. Specifically for testing

Android apps, Android Capture and Replay Testing Tool (ACRT) [109] and REcord and

Replay for ANdroid (RERAN) [75] are based on the capture-replay process. Di↵erent from

other GUI capture-replay testing tools, which cannot solve the problem of sophisticated

hand input events such as tapping, zooming, and swiping, RERAN addresses the challenge

by directly capturing and replaying low-level events on an Android device. Moreover, it

is able to record inputs at the system level from multiple sensors in the device, such as

accelerometers and compasses.

Another type of GUI testing approach is model-based test generation. This approach

first constructs models of GUI components and interactions. Then, tests are generated based

40

on models by applying di↵erent algorithms. GUITAR [127] is a typical automated model-

based framework that provides comprehensive GUI test generation. To expand GUITAR

to the domain of mobile applications and address the challenges in testing Android apps,

Amalfitano et al. proposed MobiGUITAR [41]. It models Android apps’ GUI widgets into

state machines, and generates tests by applying graph testing coverage criteria. Results

showed that MobiGUITAR detected more faults than Android Monkey and Dynodroid can.

However, when the model of the apps under test grows rapidly, there might be di�culties

in handling a large number of tests. Also, GUI widgets are not the only types of inputs

in Android apps. An app may also accept user or system events, such as GPS locations,

environment temperature, and screen orientation, etc. Test cases derived from GUI models

might not provide these inputs.

Most techniques generate test inputs, but not test oracles. This means that many

approaches can only detect crashes or exceptions, which has been called the Null Test Oracle

Strategy (NOS). Li and O↵utt [104] analyzed di↵erent test oracle strategies and found that

NOS can only detect around 30% of faults, indicating that more than two-thirds of the faults

did not lead to crashes thus remained undetected. Instead of focusing on generating test

inputs, some researchers propose to address the issue of test oracles. Employing computer

vision techniques, Lin et al. [106] introduced the SmartPhone Automated GUI Testing

tool with Camera (SPAG-C) to improve the e�ciency and reusability of test oracles for

Android apps. Generally, it is still a capture-replay process. However, in the capture

phase, SPAG-C records screenshots from an external camera; while in the replay phase,

SPAG-C conducts image comparison on the captured screenshots with computer vision

algorithms including Speeded Up Robust Features (SURF) [50], template matching [32],

and histogram [138]. Experimental results show that it provides e�ciency and reusability

by significantly shortening the time to re-design tests. However, using external cameras to

capture screenshots inevitably downgrades the accuracy of data.

41

3.5 Mining Source Code Repositories and Bug Reports

Mutation testing is called a fault-based technique because most mutants mimic faults that

occur during software development, to challenge testers to design e↵ective test cases. Thus,

to design e↵ective mutation operators, this research analyzed change history logs of Android

source code in open-source project repositories to discover fault fixing activities and to

categorize common faults in Android projects. In addition, to evaluate the fault detection

e↵ectiveness, this research collects naturally occurring faults by mining open source Android

apps’ repositories. Several papers also investigated source code repositories, as well as their

corresponding bug reports.

Instead of finding bug patterns, Coelho et al. [57] mined repositories of Android open

source projects to identify bug hazards, which were defined as circumstances that may lead

to faults. They analyzed more than 6,000 exception stack traces from 639 Android projects

hosted on Github and Google Code. Their results showed that Null Pointer Exception

(NPE) is the most reported exception thrown by Android apps, and around 52% of mined

projects have at least one failure with NPE thrown. Their results conform to the findings

of this research.

Bug reports often describe what failure has happened without giving specific details on

where and what the fault is. Developers have to spend a lot of their time to reproduce

the scenario and locate the fault. Zhou et al. [161] introduced BugLocator, a tool that

can retrieve relevant files from bug reports. It searches the source code repository, finds

past similar bug fixes, and ranks source code files based on their relevance. For each fault,

BugLocator predicts several possible faulty files. An experiment showed that more than

60% of faulty files were successfully identified in the top ten possible faulty files predicted

by BugLocator.

Gyimesi et al. [80] proposed to generalize characteristics from old faults to predict pos-

sible future faults. To look for faults, the authors designed a tool to analyze thirteen

Java projects on GitHub and collect code change history associated with their bug reports.

However, the paper does not describe faults located with the method.

42

Dallmeier and Zimmermann [58] created a repository called iBUGS that extracts bug

reports, faulty versions and their fixes, and associated tests from software repositories. With

their experiment on project ASPECTJ, one critical finding was that more than 54% of all

faults were fixed within a single method, and there were a large number of one-line faults.

In mutation testing, a fault-based testing technique, mutation operators apply a single

syntactical change to the program under test. The results of iBUGS provide experimental

evidence to support the methodology of mutation testing.

3.6 Crowdsourcing in Software Engineering

Crowdsourcing is the act of using an open call to recruit an undefined group of professionals

and assign them tasks [118]. This research introduced a crowdsourcing approach to collect

software faults in Android apps to evaluate the fault detection e↵ectiveness of Android

testing techniques.

LaToza and van der Hoek[99] categorized three crowdsourcing models in software engi-

neering:

1. Peer production, where contributors perform tasks that are controlled in a decentral-

ized manner

2. Competitions, where contestants perform tasks but are only rewarded if they end up

within a success threshold

3. Microtasking, where participants perform tasks that are intended to be quick, small

and self-contained to achieve scalability

Because creating a fault in software programs is a microtask for software developers, this

research employs the Microtasking model to collect crowdsourced faults. Crowdsourcing in

software engineering is becoming more commonly used in di↵erent areas, such as testing

programs and fixing faults. However, as far as we know, this research is the first attempt

to use crowdsourcing to create software faults in software testing empirical studies.

43

LaToza et al. [98] introduced a new software development process, called crowd de-

velopment, which organizes software development tasks based on microtasks. It has the

potential to reduce the costs of software development, as well as increase the productivity

of programmers. In another paper, LaToza et al. [100] developed a novel approach that

applied microtask crowdsourcing in software development by decomposing programming

work into microtasks. Moreover, the empirical study showed that it is very feasible to apply

crowdsourcing in developing software.

Liu et al. [110] applied crowdsourcing to usability testing, and compared their crowd-

sourcing approach with a lab usability test. They found that crowdsourcing was faster,

cheaper, and easier to conduct than standard lab-based usability testing. However, due

to the diverse background of participants, careful task design and background review are

necessary to the success of crowdsourcing approaches.

Dolstra et al. [68] introduced a crowdsourcing approach to performing GUI tests through

the Internet. They created a website that enabled testers to access the virtual machines that

contain the GUI software under test, so that these testers can test the software using their

own web browsers. Their experiment showed that it was very feasible to apply crowdsourcing

approach in GUI testing over the Internet, even though some participants su↵ered from

network connection issues.

44

Chapter 4: Mutation Testing for Android Applications

This chapter introduces and describes Android mutation testing, including the novel An-

droid mutation operators designed in this research.

4.1 Mutating Android Applications

Mutation analysis cannot be directly applied to Android apps the same way it is on tra-

ditional Java programs, because Android apps have di↵erent programming structure and

are developed, installed, and tested in di↵erent ways. Traditionally, Java mutation analysis

tools either mutate the Java source code and compile to bytecode class files, or first compile

to bytecode, then change the bytecode. After that, the Java bytecode files are dynamically

linked by the language system during execution. However, Android apps have an additional

requirement that each Android mutant must be compiled as an Android application package

(APK) file so that it can be installed and executed on mobile devices and emulators. More-

over, since Android apps intensively employ XML files for program configuration, layout

design and specification, this research designs Android mutation operators to mutate XML

files as well. These factors significantly change the process, design, and implementation of

Android mutation testing tools.

Figure 4.1 illustrates how the Android mutation analysis engine works. Below are the

steps for conducting mutation analysis on Android apps. Note that steps 3, 4, 6, and 7 are

di↵erent from traditional Java mutation testing processes.

1. The user first selects which mutation operators to use. This research designed and

built an Android mutation analysis tool, called muDroid, which includes seventeen

new Android mutation operators, fifteen traditional Java mutation operators from

muJava [114], and four deletion operators [63, 67]. The Android mutation analysis

45

Figure 4.1: Performing Mutation Analysis on Android Apps

tool extends part of the muJava [114] mutant generation engine to implement these

mutation operators.

2. For the traditional Java mutation operators, the Android mutation analysis tool

changes the original Java files according to defined mutation rules, and compiles them

to bytecode.

46

3. (New to Android mutation.) XML mutation operators are applied directly to XML

files, creating new copies of each file as XML mutants. Then, the Android mutation

analysis tool swaps the mutated file into place to prepare it for dynamic binding when

building APK files.

4. (New to Android mutation.) The mutation system selects a mutated Java bytecode

class file or XML file, incorporates other project files, and generates a mutated APK

file as a mutant of the Android app under test. Some mutants might cause compilation

errors, i.e., stillborn mutants, while generating APK files. These stillborn mutants

are discarded immediately and not used in the final results.

5. The Android testing framework extends JUnit [21] to support the testing of Android

apps [10]. In addition, several external Android testing automation frameworks, such

as Robotium [29], Espresso [15], and Selendroid [30], are frequently used by testers

to provide automated testing for Android apps. The Android mutation analysis tool

accommodates all these Android testing automation frameworks. Test cases can be

designed by testers with Android testing automation frameworks to kill mutants, or a

set of externally created test cases, such as tests from other automated test generation

tools, can be used.

6. (New to Android mutation.) After generating mutants and compiling them to APK

files, the system loads the original (non-mutated) version of the app under test into

an emulator or onto a mobile device. Then the system executes all test cases on the

original app and records the outputs as expected results. The results of the mutant

executions are compared with the results of the original app to determine which

mutants are killed.

7. (New to Android mutation.) Then, each APK mutant file is loaded into an emulator

or onto a mobile device. The mutation system executes all the test cases against the

mutants and stores the outputs as the actual results. To save the expensive execution

cost, the Android mutation analysis tool can connect to an unlimited number of

47

Android emulators and mobile devices, and perform execution in parallel.

8. After collecting all the results, the Android mutation analysis tool compares the ex-

pected results with the actual results. If the actual result on a test di↵ers from the

expected result on the same test, that mutant is marked as having been killed by that

test.

9. Finally, the Android mutation analysis tool computes the mutation adequate score,

i.e., the ratio of the number of the mutants killed by the tests to the total number of

non-equivalent mutants. The tool does not implement any heuristics to help identify

equivalent mutants, so the tester needs to eliminate equivalent mutants manually.

4.2 Android Mutation Operators

After describing the process of performing mutation analysis on Android apps, this section

introduces the Android mutation operators designed in this research. Mutation operators

are rules that specify how to make changes to program source code or software artifact.

Well-designed mutation operators lead to very powerful tests, but poorly-designed operators

sometimes may result in ine↵ective tests. Mutation operators are designed in one of the

two ways:

1. If pre-defined fault models are available, each type of the fault in the fault models

can be used to define a mutation operator that can create instances of the fault.

For example, the class-level mutation operators in muJava [114, 133] were designed

according to the fault model created by O↵utt et al. [130].

2. An alternative approach is to analyze every syntactic element of the language being

mutated, and design mutants to modify the syntax in ways that typical programmers

might make mistakes.

Since a pre-defined fault model does not exist, this research first conducted a fault study

to identify common faults in Android app development. Some Android mutation operators

48

Table 4.1: Android Mutation Operators
Category Android Mutation Operator Acronym

Event-based

Intent Payload Replacement IPR
Intent Target Replacement ITR
OnClick Event Replacement ECR
OnTouch Event Replacement ETR

Component Activity Lifecycle Method Deletion MDL
Lifecycle Service Lifecycle Method Deletion SMDL

XML-related

Button Widget Deletion BWD
EditText Widget Deletion TWD
Activity Permission Deletion APD
Button Widget Switch BWS
TextView Deletion TVD

Common Faults
Fail on Null FON
Orientation Lock ORL
Fail on Back FOB

Context-aware Location Modification LCM
Energy-related WakeLock Release Deletion WRD
Network-related Wi-Fi Connection Disabling WCD

were designed according to these common faults. This research then analyzed unique char-

acteristics and features of Android apps, and identified challenges in testing Android apps.

Additional Android mutation operators were designed to address these characteristics and

challenges. Consequently, this research used both ways to design Android mutation opera-

tors.

Table 4.1 lists the seventeen Android mutation operators designed in this research. The

goal of these Android mutation operators is to provide a sophisticated testing technique

that can provide comprehensive testing for Android apps and address the unique test-

ing challenges identified in Section 1.2. These Android mutation operators fall into seven

categories: event-based, component lifecycle, XML-related, common faults, context-aware,

energy-related, and network-related.

49

4.2.1 Event-based Mutation Operators

Android apps are event-based programs that implement event handlers to recognize and

respond to various events that are initiated by di↵erent user actions. Usually, clicking and

touching are the most common actions when people use mobile devices. Intent objects are

used to facilitate the communication between Android components. They are abstractions of

di↵erent operations to be performed by Android components. Usually, Intent objects carry

data and other information that are required by the target component, and considered as

the key to event-driven programs, i.e., Android apps.

Thus, this section introduces two Android mutation operators for event handlers, OnClick

Event Replacement (ECR) operator and the OnTouch Event Replacement (ETR) operator,

and two for Intent objects, Intent Payload Replacement (IPR) and Intent Target Replace-

ment (ITR).

1) Intent Payload Replacement (IPR)

Definition:

Each payload of an Intent object is replaced by a pre-defined default value (Table 4.2)

according to the data type of the payload. Each primitive type payload is replaced by the

value zero. Each boolean payload is replaced by both true and false. Each String payload

is replaced by empty strings and null values. Each Array payload or other type of payload

is replaced by null values cast into the appropriate type.

Restriction:

1. IPR is not applied to implicit Intent objects.

An Intent object can carry di↵erent types of data (called payload) in the form of key-

value pairs. For example, in Figure 4.2 the original method has an Intent object that

is initialized to send to DisplayMessageActivity.class. It also carries the String value of

message with a key as EXTRA MESSAGE. The putExtra() method takes the key name

as the first parameter, and the value as the second parameter. When the target Activity

DisplayMessageActivity.class receives the Intent, it is able to load the data with the same

50

key EXTRA MESSAGE.

public void test (View view)
{
Intent intent = new Intent (this, DisplayMessageActivity.class);
EditText editText = (EditText) findViewById (R.id.edit message);
String message = editText.getText().toString();
intent.putExtra (EXTRA MESSAGE, message);
startActivity (intent);

}
A. Original

public void test (View view)
{
Intent intent = new Intent (this, DisplayMessageActivity.class);
EditText editText = (EditText) findViewById (R.id.edit message);
String message = editText.getText().toString();
intent.putExtra (EXTRA MESSAGE, “”);
startActivity (intent);

}
B. Mutant

Figure 4.2: Intent Payload Replacement Mutation Operator

The IPR operator mutates the second parameter to the default value of the underlying

data type, as listed in Table 4.2. Objects with primitive numeric types, including int,

short, long, float, double, and char, are replaced by the value zero, and boolean variables

are replaced by both true and false. String objects are replaced by empty strings and

null values. Arrays and other types of objects are replaced by null values cast into the

appropriate types.

Figure 4.2 shows how IPR works. The payload of the Intent object, the String object

message, is replaced with an empty String. An IPR mutant can only be killed by a test

that verifies the value received through an Intent object is correct.

2) Intent Target Replacement (ITR)

Definition:

The target of an Intent object is replaced by each of the other compatible classes in the

51

Table 4.2: IPR Default Values
Original Type Default Value

int, short, long, float, double, char 0
boolean true / false
String “” / (String) null
Array (Array) null
Others (Others) null

same package.

Restrictions:

1. ITR is not applied to implicit Intent objects.

2. An Intent target is not replaced by itself.

There are two di↵erent ways of using Intent objects in Android apps: implicit Intent

and explicit Intent [7]. An implicit Intent declares a general event to perform without

indicating a specific target, and allows other apps to handle the event. Because this research

does not consider inter-app communication, implicit Intents are out of the scope of this

research. Conversely, an explicit Intent needs to specify which component should be started

by declaring the Intent with the target component’s name within an app.

Figure 4.3 shows an Intent object that is declared with ActivityB.class as the target.

The ITR operator first looks up all the classes within the same package of the current class,

and then replaces the target of each Intent with all compatible classes. ITR forces the tester

to design test cases that check that the target activity or service is launched successfully

after the Intent is executed.

3) OnClick Event Replacement (ECR)

Definition:

Each OnClick event handler is replaced by each of the other compatible OnClick event

handlers in the same class.

Restrictions:

52

public void startActivityB (View v)
{
Intent intent = new Intent (ActivityA.this, ActivityB.class);
startActivity (intent);

}
A. Original

public void startActivityB (View v)
{
Intent intent = new Intent (ActivityA.this, ActivityC.class);
startActivity (intent);

}
B. Mutant

Figure 4.3: Intent Target Replacement Mutation Operator

1. ECR does not replace anything if there is only one OnClick event handler in the class,

i.e., no other compatible OnClick event handler exists.

2. A OnClick event handler is not replaced by itself.

Events in Android apps are usually used to respond external user actions, such as

interactions (e.g., clicking, touching, and dragging) with touch screens, particularly for

smartphones and tablets. The Android operating system places every event into a first-

in-first-out queue. Android apps must implement event handlers to respond to particular

events and fulfill the required functionality.

ECR first searches and stores all the event handlers that respond to OnClick events in the

current class. Then, it replaces each handler with every other compatible handler collected

previously. Figure 4.4 shows an example ECR mutant. The original program has two event

handlers: incrementPrepTime() for the button mPrepUp, and decrementPrepTime() for the

button mPrepDown. In the mutant, ECR replaces the event handler incrementPrepTime()

with decrementPrepTime(). To kill ECR mutants, each widget’s OnClick event has to be

executed by at least one test. Also, the expected action of the event needs to be verified by

the test oracle.

4) OnTouch Event Replacement (ETR)

53

mPrepUp.setOnClickListener (new OnClickListener()
{
public void onClick (View v) {

incrementPrepTime();
}

});
mPrepDown.setOnClickListener (new OnClickListener()
{
public void onClick (View v) {

decrementPrepTime();
}

});
A. Original

mPrepUp.setOnClickListener (new OnClickListener()
{
public void onClick (View v) {

decrementPrepTime();
}

});
mPrepDown.setOnClickListener (new OnClickListener()
{
public void onClick (View v) {

decrementPrepTime();
}

});
B. Mutant

Figure 4.4: OnClick Event Replacement Mutation Operator

Definition:

Each OnTouch event handler is replaced by each of the other compatible OnTouch event

handlers in the same class.

Restrictions:

1. ETR does not replace anything if there is only one OnTouch event handler in the

class, i.e., no other compatible OnTouch event handler exists.

2. A OnTouch event handler is not replaced by itself.

Touch actions happen when the user places one or more fingers on the screen of mobile

devices. Once the last finger leaves the screen, the Android app interprets the entire finger

54

movement pattern into a particular gesture, such as tapping, swiping, and zooming in or

out. Figure 4.5 shows an example ETR mutant. The original program responds to touch

actions on myLayout by capturing the vertical and horizontal coordinates on the screen

and processes based on the coordinates. Similarily, ETR replaces the event handlers for

each OnTouch event with other collected available event handlers. In Figure 4.5, the event

handler in myLayout is replaced by another event handler in yourLayout.

myLayout.setOnTouchListener (new OnTouchListener()
{
public void onTouch (View v, MotionEvent event) {

int x = (int)event.getX();
int y = (int)event.getY();
handleTouch(x, y);

}
});
yourLayout.setOnTouchListener (new OnTouchListener()
{
public void onTouch (View v, MotionEvent event) {

handleTouch(event);
}

});
A. Original

myLayout.setOnTouchListener (new OnTouchListener()
{
public void onTouch (View v, MotionEvent event) {

handleTouch(event);
}

});
yourLayout.setOnTouchListener (new OnTouchListener()
{
public void onTouch (View v, MotionEvent event) {

handleTouch(event);
}

});
B. Mutant

Figure 4.5: OnTouch Event Replacement Mutation Operator

55

4.2.2 Component Lifecycle Mutation Operators

Section 1.2 describes the unique testing challenge brought by the pre-specified lifecycle of

Android components. Inappropriately handling the unique lifecycles of Android compo-

nents is a common mistake in Android app development. For example, Figure 1.5 showed

the lifecycle of Activity components. Seven methods are used to fulfill transitions among

di↵erent states in the Activity lifecycle. Figure 1.6 illustrated the lifecycles of Service com-

ponents. Fewer methods are used to facilitate the transitions in the Service lifecycles than

the Activity lifecycle, but Service components have two types: unbounded and bounded.

Additionally, these two types are not mutually exclusive. For example, a bounded Service

can also be started with the onStartCommand() method. Thus, this research designs two

Android mutation operators to modify the methods in the lifecycles of di↵erent Android

components.

5) Lifecycle Method Deletion (MDL)

Definition:

Each Activity lifecycle method is deleted.

Restriction:

1. MDL ignores the method that only has one statement that calls the overridden method

in its super class.

When implementing an Activity, developers need to override the methods in the Activity

lifecycle to define di↵erent states and transitive operations among the states. As the example

in Section 1.2 illustrates, correctly implementing these methods is critical to the smooth

execution flow of the Activity. MDL deletes each overriding method to force Android to call

the version in the super class. This requires the tester to design tests that ensure the app

is in the correct expected state. The MDL operator is similar to the Overriding Method

Deletion mutation operator (IOD) in muJava [114], but only considers the methods related

to the Activity lifecycle. Figure 4.6 shows an example MDL mutant. MDL removes the

implementation inside the original onPause() method. Then, the Android system needs to

56

call the onPause() method in the super class. To kill this MDL mutant, the tester needs

to design tests to force the Activity switch among di↵erent states through the mutated

transition methods.

@Override
public void onPause()
{

super.onPause();
SharedPreferences settings = getSharedPreferences(PREFS NAME, 0);
SharedPreferences.Editor editor = settings.edit();
editor.putLong(PREP SECONDS, getPrepTime());
editor.putLong(MEDITATION MINUTES, getMeditateTime());
editor.commit();
... ...

}
A. Original

@Override
public void onPause()
{

super.onPause();
}

B. Mutant

Figure 4.6: An Example MDL Mutant

6) Service Lifecycle Method Deletion (SMDL)

Definition:

Each Service lifecycle method is deleted.

Restrictions:

1. If the method calls the overridden method in its super class, SMDL will keep the

statement of this call.

2. If the lifecycle method returns boolean values, SMDL will force the method to return

true and false.

Service components are invisible to the user and always stay in the background for a

longer period of the time than Activity components, to perform long-term running tasks.

57

As illustrated in Figure 1.6, the lifecycle of Service components are also di↵erent from the

lifecycle of Activity components. The implementation of Service components also requires

accommodating the lifecycles appropriately. Otherwise, the Android app that uses the

Service may behave incorrectly.

SMDL deletes each lifecycle method in Service components, including onCreate(), on-

StartCommand(), onBind(), onRebind(), onUnbind(), and onDestroy(), to force the An-

droid operating system to call the version in the super class, or an empty class without

implementation. Figure 4.7 shows an example SMDL, in which SMDL disables the imple-

mentation in the onUnbind() method. When a client requests to unbind the service, the

expected behavior in the service will be skipped. To kill an SMDL mutant, the tester must

design a test that ensures the Service works as expected.

@Override
public boolean onUnbind (Intent intent)
{
if (pendingAlarms.size () == 0) {
stopSelf ();
return false;

}
return true;

}
A. Original

@Override
public boolean onUnbind (Intent intent)
{
return true;

}
B. Mutant

Figure 4.7: An Example SMDL Mutant

58

4.2.3 XML-related Mutation Operators

As mentioned in Section 1.2, Android apps use many XML files, not just the manifest file.

XML files are used to define user interfaces, to store configuration data such as permissions,

to set the default launch activity, and more. XML files form one of the key challenges in

testing Android apps. Other Android testing techniques do not target XML files. However,

visual appearance, usually rendered from XML files, is categorized as a common Android

app fault. This research designs five novel XML-related Android mutation operators. These

operators are unusual in that they do not modify executable code, but static XML.

7) Button Widget Deletion (BWD)

Definition:

Each Button widget is deleted from the UI.

Restriction:

1. None.

The button widget is used by nearly all Android apps in many ways. BWD deletes

buttons one at a time from the XML layout file of the UI. Killing the BWD mutants

requires tests that ensure that every button is successfully displayed. Figure 4.9 shows an

original screen on the left and two mutants on the right. The middle screen is a BWD

mutant where the button “7” is deleted from the UI. This mutation operator forces the

tester to design tests that use each button in a way that a↵ects the output behavior.

Figure 4.8 shows how the example BWD mutant in Figure 4.9 was implemented. Since

removing a button from the XML layout specification file will result in compiling errors,

in this research, BWD inserts an extra XML attribute, android:visibility=“gone”, into the

button declaration, to delete the button without incurring any compiling errors.

8) EditText Widget Deletion (TWD)

Definition:

Each EditText widget is deleted from the UI.

Restriction:

59

<?xml version=“1.0” encoding=“utf-8”?>
<LinearLayout xmlns:android=“http://schemas.android.com/apk/res/android” >

<LinearLayout
android:layout width=“fill parent”
android:layout height=“wrap content”
android:orientation=“horizontal”>
<Button

android:id=“@+id/btn seven”
style=“@style/CalculatorButton”
android:text=“7” />

<Button
android:id=“@+id/btn eight”
style=“@style/CalculatorButton”
android:text=“8” />

<Button
android:id=“@+id/btn nine”
style=“@style/CalculatorButton”
android:text=“9” />

</LinearLayout>
... ...

A. Original
<?xml version=“1.0” encoding=“utf-8”?>
<LinearLayout xmlns:android=“http://schemas.android.com/apk/res/android” >

<LinearLayout
android:layout width=“fill parent”
android:layout height=“wrap content”
android:orientation=“horizontal”>
<Button

android:id=“@+id/btn seven”
style=“@style/CalculatorButton”
android:text=“7”
android:visibility=“gone”/>

<Button
android:id=“@+id/btn eight”
style=“@style/CalculatorButton”
android:text=“8” />

<Button
android:id=“@+id/btn nine”
style=“@style/CalculatorButton”
android:text=“9” />

</LinearLayout>
... ...

B. Mutant

Figure 4.8: An Example BWD Mutant

60

Figure 4.9: Button Widget Deletion (BWD) and EditText Widget Deletion (TWD) Exam-
ple

1. None.

The EditText widget is used to display text to users. The TWD mutation operator

removes each EditText widget, one at a time. The rightmost screen in Figure 4.9 shows an

example TWD mutant where the bill amount cannot be displayed. Similar to the BWD ex-

ample shown in Figure 4.8, TWD inserts an extra XML attribute, android:visibility=“gone”,

into the EditText declaration, to delete the EditText widget. To kill this mutant, a test

must use the bill amount.

9) Activity Permission Deletion (APD):

Definition:

Each permission of the Android app under test is deleted from its manifest file.

Restriction:

1. None.

The Android operating system grants each app a set of permissions, such as the ability

61

<manifest xmlns:android=“http://schemas.android.com/apk/res/android”
... ...

<uses-permission android:name=“android.permission.WRITE SETTINGS”/>
<uses-permission android:name=“android.permission.WAKE LOCK” />
<uses-permission android:name=“android.permission.MODIFY AUDIO SETTINGS” />
<uses-permission android:name=“android.permission.VIBRATE”>
</uses-permission>

</manifest>
A. Original

<manifest xmlns:android=“http://schemas.android.com/apk/res/android”
... ...

<uses-permission android:name=“android.permission.WRITE SETTINGS”/>
<uses-permission android:name=“android.permission.WAKE LOCK” />
<uses-permission android:name=“android.permission.MODIFY AUDIO SETTINGS” />

<!- -
<uses-permission android:name=“android.permission.VIBRATE”>

- ->
</uses-permission>

</manifest>
B. Mutant

Figure 4.10: APD Mutation Operator

to access cameras or load location data from GPS sensors. These permissions are requested

from the user when an app is first installed, and stored in the app’s manifest file (Android-

Manifest.xml). Some apps aggressively request unnecessary, even irrelevant, permissions,

and many users simply click “OK” without paying attention to the details of these re-

quested permissions when installing an app. This may create security vulnerabilities to

Android systems.

APD mutants delete an app’s permissions from its AndroidManifest.xml file, one at a

time. If this mutant cannot be killed by any test, it means that the app asked for a per-

mission it did not need. For example, in Figure 4.10, the original program requests four

permissions: WRITE SETTINGS, WAKE LOCK, MODIFY AUDIO SETTINGS, and VI-

BRATE. APD deletes the VIBRATE permission in the example mutant. Then, the app is

not allowed to use the device’s vibrator. A killing test for this mutant must lead the app

to attempt to access the vibrator of the Android system.

62

10) Button Widget Switch (BWS)

Definition:

The locations of each pair of button widgets on the same screen are switched.

Restriction:

1. A button widget is not switched with itself.

It is common for testers to design test cases to ensure an app works as expected with

respect to its functional requirements, and evaluate the GUI structure as a secondary issue.

However, Android apps are event-based, which means it is essential to display the GUI

structure appropriately, as well as handle user events. Unlike BWD, BWS does not remove

a button widget, but switches the locations of two buttons on the same screen. In this way,

the function of a button is una↵ected, but the GUI layout looks di↵erent from the original

version. BWS requires the tester to design tests that deliberately check the location (either

relative or absolute) of a button widget. Figure 4.11 illustrates an example BWS mutant.

The mutant on the right side switches the locations of button “7” and “OK.” Figure 4.12

shows how BWS switches the buttons in the XML layout specification file.

11) TextView Deletion (TVD)

Definition:

Each TextView widget is deleted from the UI.

Restriction:

1. None.

Android apps use TextView widgets to display text to users. Unlike EditText widgets,

TextView widgets usually cannot be edited by users. The left screenshot in Figure 4.13

is from an Android app. “Subtotal,” “Tip (15.0%),” “Total,” and their numbers are all

TextView widgets. As can be seen, unlike the Button and EditText widgets, TextView

widgets usually do not associate with any user events, nor require any event handlers from

the implementation of the app. However, TextView widgets are widely used by developers

to present essential information.

63

Figure 4.11: Button Widget Switch Example

TVD deletes TextView widgets from screens one at a time. Killing the TVD mutants

needs tests to ensure that every TextView widget displays the correct information. The

right side of Figure 4.13 shows an example TVD mutant in which the TextView widget of

the total amount is deleted. Similar to BWD and TWD, TVD also inserts an extra XML

attribute, android:visibility=“gone”, to remove a TextView widget from the screen. To kill

a TVD mutant, the tester needs to design a test to check whether the total amount is

correctly displayed.

4.2.4 Common Faults Mutation Operators

Two mutation operators are designed based on common faults found in GitHub repositories.

12) Fail on Null (FON)

64

<?xml version=“1.0” encoding=“utf-8”?>
<LinearLayout xmlns:android=“http://schemas.android.com/apk/res/android” >

<LinearLayout
android:layout width=“fill parent”
android:layout height=“wrap content”
android:orientation=“horizontal”>
<Button

android:id=“@+id/btn seven”
style=“@style/CalculatorButton”
android:text=“7” />

<Button
android:id=“@+id/btn eight”
style=“@style/CalculatorButton”
android:text=“8” />

<Button
android:id=“@+id/btn OK”
style=“@style/CalculatorButton”
android:text=“OK” />

</LinearLayout>
... ...

A. Original
<?xml version=“1.0” encoding=“utf-8”?>
<LinearLayout xmlns:android=“http://schemas.android.com/apk/res/android” >

<LinearLayout
android:layout width=“fill parent”
android:layout height=“wrap content”
android:orientation=“horizontal”>
<Button

android:id=“@+id/btn OK”
style=“@style/CalculatorButton”
android:text=“OK” />

<Button
android:id=“@+id/btn eight”
style=“@style/CalculatorButton”
android:text=“8” />

<Button
android:id=“@+id/btn seven”
style=“@style/CalculatorButton”
android:text=“7” />

</LinearLayout>
... ...

B. Mutant

Figure 4.12: An Example BWS Mutant

65

Figure 4.13: An Example of TextView Widgets and TVD Mutant

Definition:

A special “fail on null” statement is inserted before each object is referenced.

Restriction:

1. None.

According to Arlt et al. [45], NullPointerException is one of the most common exceptions

thrown in programs. A common cause is that developers sometimes forget to check if an

object is null before accessing it. In the initial study on GitHub repositories, within 80

corrections to one app, 52 were patching null-checking statements. FON mutants add a

“fail on null” statement before each object is referenced. For String objects, FON also adds

a “fail on empty” statement before objects are accessed. Figure 5.5 shows an example FON

mutant. The mutated statement is inserted before accessing members. FON mutants are

66

used to seek test cases that can make members null and trigger the “fail on null” statement.

List<ResourceType> res = new LinkedList<> ();
List<Member> members = collection.getMembers ();

for (WebDavResource member : members)
res.add (newResource (member.getName (), member.getETag ()));

return res.toArray (new Resource[0]);
Original

List<ResourceType> res = new LinkedList<> ();
List<Member> members = collection.getMembers ();
failOnNull (members);
for (WebDavResource member : members)
res.add (newResource (member.getName (), member.getETag ()));

return res.toArray (new Resource[0]);
Mutant

Figure 4.14: Fail on Null Mutation Operator

13) Orientation Lock (ORL)

Definition:

A special screen-locking statement is inserted into every Activity to lock the screen

orientation to be in portrait and landscape.

Restriction:

1. ORL is not applied to the Activity that has been implemented with a feature of

freezing the screen orientation according to its design or requirements.

Mobile devices such as smartphones and tablets have the unique feature of being able

to change the screen orientation. Thus, many apps change the layout of the GUI when

the orientation changes. For example, YouTube automatically switches to play video in

full screen when the orientation is changed from portrait to landscape. However, Android

devices are manufactured by di↵erent factories with various hardware specifications, using

di↵erent screen sizes and resolutions. This makes switching the orientation di�cult for the

developers, in turn leading to many faults in Android apps.

67

Figure 4.15: Fault in Landscape Orientation

Figure 4.15 shows a correct and a faulty version of TippyTipper with di↵erent orien-

tations. Even though both devices properly display the GUI in portrait orientation, when

switching to landscape orientation, as shown in Figure 4.15, the user is not able to see or

click the button at the bottom or scroll down the screen.

ORL mutants freeze the orientation of an activity to be in portrait or landscape, by in-

serting a locking statement into the source code. This locking statement calls the orientation

API in the Android system. Figure 4.16 shows two examples of ORL mutants, in which

the mutant 1 (Figure 4.16.B) fixes the screen orientation to portrait, and the mutant 2

(Figure 4.16.C) freezes the screen orientation to landscape. Only test cases that explicitly

changes the orientation and checks whether the GUI structure is displayed as expected in

both orientations can kill these mutants.

14) Fail on Back (FOB)

Definition:

A special “Fail on Back” event handler is inserted into every Activity to wait for being

triggered after the user presses on the Back button.

Restriction:

1. FOB is not applied to the Activity that has been implemented with a feature of any

event handlers for the Back button.

Section 1.2 introduced testing challenges caused by the Android system buttons. At the

68

@Override
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

View btn one = findViewById(R.id.btn one);
ButtonOne buttonOne = new ButtonOne();
btn one.setOnClickListener(buttonOne);

View btn two = findViewById(R.id.btn two);
ButtonTwo buttonTwo = new ButtonTwo();
btn two.setOnClickListener(buttonTwo);
... ...

}
A. Original

@Override
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
setRequestedOrientation(ActivityInfo.SCREEN ORIENTATION PORTRAIT);
View btn one = findViewById(R.id.btn one);
ButtonOne buttonOne = new ButtonOne();
btn one.setOnClickListener(buttonOne);

View btn two = findViewById(R.id.btn two);
ButtonTwo buttonTwo = new ButtonTwo();
btn two.setOnClickListener(buttonTwo);
... ...

}
B. Mutant 1

@Override
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
setRequestedOrientation(ActivityInfo.SCREEN ORIENTATION LANDSCAPE);
View btn one = findViewById(R.id.btn one);
ButtonOne buttonOne = new ButtonOne();
btn one.setOnClickListener(buttonOne);

View btn two = findViewById(R.id.btn two);
ButtonTwo buttonTwo = new ButtonTwo();
btn two.setOnClickListener(buttonTwo);
... ...

}
C. Mutant 2

Figure 4.16: Two Example ORL Mutants

69

application level, the Back button is the most impactful of the three system buttons. Unlike

the Home and Recents buttons, which pause and terminate the app, the Back button lets

users move back to previous screens, similar to the back button in web browsers. Many

testers overlook its impact. A common Android failure is an app crashing when the Back

button is clicked. Figure 4.17 shows an example FOB mutant. FOB injects a “Fail on

Back” event handler into every Activity class. To kill FOB mutants, testers need to design

tests that press the Back button at least once at every Activity.

4.2.5 Context-Aware Mutation Operator

15) Location Modification (LCM)

Definition:

The values of latitude and longitude attributes of each location variable are incremented

and decremented by one degree. The value of altitude attribute of each location variable is

elevated and lowered by one meter. The value of speed attribute of each location variable

is accelerated and decelerated by one meter per second.

Restriction:

1. None.

As stated in Section 1.2, Android apps are context-aware, a unique feature of mobile

apps. Location data is the most frequently and widely used context input data. Other

context data are either managed by the Android operating system (such as ambient light and

temperature), or rarely used by Android apps (such as gravity and pressure). Consequently,

we only considered location data when designing mutation operators.

LCM injects code to modify the attribute values of every location variable, in terms of its

latitude, longitude, altitude, and speed, with pre-defined values. Specifically, LCM changes

latitude and longitude values by adding and deducting one degree, which is equivalent to

moving the device roughly 115 kilometers. For altitude values, LCM elevates and lowers

them by adding and deducting one meter. For speed values, LCM accelerates and decelerates

them by adding and deducting one meter per second. Figure 4.18 shows four example LCM

70

public class Total extends Activity
{
@Override
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.total);
... ...

}

@Override
public void onStart()
{
super.onStart();
RefreshBillAmount();
... ...

}
... ...

}
A. Original

public class Total extends Activity
{
@Override
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.total);
... ...

}

@Override
public void onStart()
{
super.onStart();
RefreshBillAmount();
... ...

}
... ...
public void onBackPressed()
{
fail();

}
}

B. Mutant

Figure 4.17: An Example FOB Mutant

71

mutants. To kill an LCM mutant, the tester needs to design tests to ensure the app behaves

as expected at di↵erent locations.

4.2.6 Energy-Related Mutation Operator

Section 1.2 introduced the testing challenge regarding limited battery power of Android

devices, and energy bugs, which are poor programming practices that consume extra energy.

Guo et al. found that several of these bugs were caused by resource leaks, that is, resources

acquired too early or released too late that deplete a device’s battery. One common resource

leak is inappropriately using wake locks [79]. A wake lock is a mechanism used by the

Android system to keep Android devices from going into sleep mode. An app needs to

request appropriate wake locks if it requires certain system resources.

Figure 4.19 compares two energy consumption diagrams from the same app. Initially,

the app has an energy bug (top), which is causing a performance failure. Hence, it is

consuming an unexpectedly large amount of energy after its state transition from active to

idle. An app is expected to be using resources when active, but not when idle. These states

di↵er from background and foreground states of Android components because an app can

be active while also in the background (e.g. any media player or service). After fixing the

bug, the app’s energy consumption drops when entering the Idle state.

16) WakeLock Release Deletion (WRD)

Definition:

Each call to the release() method to release a wake lock is deleted.

Restriction:

1. None.

Android apps request wake locks with the acquire() method. When the wake lock is not

needed, the app should call the release() method to release it. In 2014, Samudio designed

and implemented an automated Android energy inspection tool [145] for detecting and

correcting energy bugs. The tool checks for inappropriately acquired and released wake

locks and other resources, o↵ers to fix them, and also presents visualizations of their energy

72

private String currentLocation(int formatting)
{

Location location = locationManager.getLastKnownLocation(best);

if (location != null) {
double latVal = location.getLatitude();
double longVal = location.getLongitude();

}
... ...

}
A. Original

private String currentLocation(int formatting)
{

Location location = locationManager.getLastKnownLocation(best);
location.setLatitude(location.getLatitude() + 1);
if (location != null) {

double latVal = location.getLatitude();
double longVal = location.getLongitude();

}
... ...

}
B. Mutant 1

private String currentLocation(int formatting)
{

Location location = locationManager.getLastKnownLocation(best);
location.setLongitude(location.getLongitude() + 1);
if (location != null) {

double latVal = location.getLatitude();
double longVal = location.getLongitude();

}
... ...

}
C. Mutant 2

private String currentLocation(int formatting)
{

Location location = locationManager.getLastKnownLocation(best);
location.setAltitude(location.getAltitude() + 1);
if (location != null) {

double latVal = location.getLatitude();
double longVal = location.getLongitude();

}
... ...

}
D. Mutant 3

private String currentLocation(int formatting)
{

Location location = locationManager.getLastKnownLocation(best);
location.setSpeed(location.getSpeed() + 1);
if (location != null) {

double latVal = location.getLatitude();
double longVal = location.getLongitude();

}
... ...

}
E. Mutant 4

Figure 4.18: Four Example LCM Mutants

73

Figure 4.19: An Example Energy Bug

consumption, both statically and dynamically. We used this idea to design the WRD

mutation operator, which deletes each call to the release() method to force the app not to

release the wake lock. It mimics a typical energy bug, which commonly happens when the

app retains a resource during an idle state. Figure 4.20 shows an example WRD mutant,

in which WRD deletes the call to the release() method in the onPause() method. This

example mutant mimics the common fault that developers forget to release the wake lock

after putting the app to the background, resulting the app keeps draining the battery even

at the idle state.

Testers can kill WRD mutants in one of two ways. First, Android SDK has a tool called

74

@Override
protected void onPause()
{
super.onPause();
if(sleepPref == true)
{
wakelock.release();

}
}

A. Original
@Override
protected void onPause()
{
super.onPause();
if(sleepPref == true)
{
// wakelock.release();

}
}

B. Mutant

Figure 4.20: An Example WRD Mutants

75

dumpsys that can capture system information from Android devices. Using this tool, testers

can identify active wake locks after the app under test has been closed. Figure 4.21 shows

part of the output from the dumpsys tool after launching the experiment subject JustSit,

that is, when the app is in its active state. According to the output, JustSit has an active

wake lock in the system. If the wake lock is handled properly, closing the app should release

it successfully, that is, after it transitions to its idle state. If the wake lock is still active

after the app is terminated, the WRD mutant is killed.

Wake Locks: size = 3
PARTIAL WAKE LOCK ’WakeLock.Local’ (uid=10145
SCREEN DIM WAKE LOCK ’JustSit’ ON AFTER RELEASE
PARTIAL WAKE LOCK ’AudioMix’ (uid=1013, pid=0

Figure 4.21: Identifying Wake Locks in the Android System

Alternatively, testers can use external tools to profile and compare the energy con-

sumption of the original app and the mutant apps. If testers can identify irregular battery

drainage, the mutants are killed. For simplicity, we presented coarse active and idle states.

More realistic scenarios would have several transitions between these states. To kill a WRD

mutant, the tester must design tests that evaluate the energy consumption of the app.

4.2.7 Network-related Mutation Operator

The challenge discussed in Section 1.2 urges testers to consider di↵erent network connections

when designing tests for their apps. This section introduces a network-related mutation

operator that specifically helps address this challenge.

17) Wi-Fi Connection Disabling (WCD)

Definition:

Each Activity is inserted a special statement to disable the Wi-Fi connection.

Restriction:

1. None.

76

WCD inserts a special piece of source code into every Activity to disable the Wi-Fi con-

nection when the Activity is launched. Figure 4.22 shows an example WCD mutant, in

which the Wi-Fi connection is disabled by the special piece of source code inserted. WCD

mutants mimic the scenario that the Android device drops Wi-Fi connection and is forced

to switch to another connection. To kill a WCD mutant, the tester must design tests that

test di↵erent network scenarios. Note that many Android apps do not have features that

require network connections, which makes WCD mutants equivalent. However, identifying

this type of equivalent WCD mutants is very straightforward and not time-consuming.

4.2.8 Summary

This chapter introduced 17 Android mutation operators. They are designed to test all

identified unique features and novel characteristics of Android apps in this research, and

to mimic common software programming faults discovered during the fault study. Based

on the results in Chapter 5, these 17 Android mutation operators provide comprehensive

testing for Android apps. Some of these operators are further refined in Chapter 5, to

improve the e↵ectiveness and e�ciency of the initial set of mutation operators.

77

@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

View btn one = findViewById(R.id.btn one);
ButtonOne buttonOne = new ButtonOne();
btn one.setOnClickListener(buttonOne);

View btn two = findViewById(R.id.btn two);
ButtonTwo buttonTwo = new ButtonTwo();
btn two.setOnClickListener(buttonTwo);
... ...

}
A. Original

@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

WifiManager wifiManager = (WifiManager) this.getSystemService
(android.content.Context.WIFI SERVICE);

wifiManager.setWifiEnabled(false);

View btn one = findViewById(R.id.btn one);
ButtonOne buttonOne = new ButtonOne();
btn one.setOnClickListener(buttonOne);

View btn two = findViewById(R.id.btn two);
ButtonTwo buttonTwo = new ButtonTwo();
btn two.setOnClickListener(buttonTwo);
... ...

}
B. Mutant

Figure 4.22: An Example WCD Mutant

78

Chapter 5: Experiments

This chapter first introduces the functionality and design of the Android mutation anal-

ysis tool implemented in this research, and then describes three experiments. First is an

evaluation of the feasibility of using mutation testing on Android apps, second is a study

to evaluate the e↵ectiveness of Android mutation testing, and third is a study to measure

redundancy among Java and Android mutation operators when testing Android apps.

5.1 Android Mutation Analysis Tool

To conduct mutation analysis on any kind of software artifacts, a mutation analysis tool

that is able to generate mutants with selected mutation operators, execute tests against all

the mutants, and compute and output the results of mutation analysis, is indispensable and

critical.

For this research, an automated Android mutation analysis tool, called muDroid, was

implemented. In addition, muDroid includes 17 new Android mutation operators designed

in this research. This tool reuses the 15 traditional Java mutation operators [114] and the

four deletion mutation operators [63, 67] in muJava, and extends the core Java mutation

engine in muJava. Since Android apps have unique programming features, including the

way they are developed, tested, distributed, and installed, this research implements mu-

Droid with all the necessary features to address these unique aspects of Android apps. For

example, muDroid is able to compile the source code and other necessary files to an APK

file, install this APK file to an Android emulator or a mobile device, uninstall the old version

of the Android app from an Android emulator or a mobile device, and control an unlimited

number of Android emulators and mobile devices to execute in parallel. It is also com-

patible with tests developed with JUnit, and other major automated Android app testing

79

frameworks, such as Robotium [29] and Espresso [15]. In 2016, to improve the development

experience for building Android apps, Android completely changed the methodology of de-

veloping Android apps by replacing Eclipse [14], Android Developer Tools (ADT) [5], and

Apache ANT [12], with Android Studio [9] and Gradle [18]. This research also implements

muDroid to be compatible with two versions of the Android development environment.

5.1.1 Functionality

Figure 4.1 illustrated the general process of mutation analysis on Android apps. muDroid

completely facilitates the process of Android mutation testing. Following every step in the

process, this section describes the functionality of muDroid.

The major features of muDroid are controlled through a command line for four rea-

sons: (1) command line options provide a simple mechanism for automation, so that users

can develop scripts to perform a batch of tasks, (2) command line options are available

for external extensions, (3) because Android mutation testing requires a large amount of

execution time, from several hours to a couple of days depending on the size of the app

under test, thus command line options enable testers to conduct the tasks on cloud services

or remote servers, (4) graphic user interfaces on mutation analysis tools may freeze during

the execution, which would undermine the usability or introduce faults to the experiment.

Generating Mutants

Command: muDroidGen

The first step of performing mutation analysis is to select mutation operators and generate

mutants. The command genmutes is designed to fulfill these tasks. Parameters of the

command genmutes are listed as follows:

• � <operator name 1> � <operator name 2> ... <session name>

�project <project name> �package <package name>

The user first identifies which mutation operators to use. The “<operator name>” is

one of the 36 mutation operators (using the acronyms from Table 4.1) plus a simple

80

option to include all available mutation operators (ALL). muDroid allows users to

choose any subset of the operators. The operator names can be either lower or upper

case.

The “<session name>” takes the name of a specific test session. A test session defines

an independent mutation testing unit, including source files, bytecode class files, test

cases, mutants, and results.

• �gradle

In 2016, Android released Android Studio [9] and updated the methodology for devel-

oping Android apps. Gradle [18] is the new build automation system that is used to

manage the development of Android apps. The “�gradle” option is used to accom-

modate this switch. If this option is provided, the user indicates that the Android

app under test is built with Gradle. Without this option, muDroid understands that

the app under test is built with the old system, Apache ANT [12].

• �debug

If the user would like to see more detailed intermediate output through the console,

he or she can specify the “�debug” option in the command.

For example, Figure 5.1 shows an example command that generates Android mutants

with TVD mutation operator for JustSit project. The command consists of several major

parts:

• “java �jar muDroidGen.jar” launches the jar file

• “�TVD” specifies the use of the TVD mutation operator

• The first “JustSit” defines the session name

• “�project JustSit” gives the project name of the app under test, which might be

di↵erent from the session name, particularly when the same app has multiple sessions

for di↵erent sets of tests

81

• “�package com.brocktice.JustSit” defines the package name of the source code

Note that if a mutant cannot pass the Java compiler, it will be discarded. At the end

of the process, the program displays the total number of the mutants generated. In this

example, two TVD mutants are generated.

Figure 5.1: An Example of Generating Mutants

Observing Mutants

After generating mutants, muDroid provides users with a graphical user interface to observe

every mutant, with the mutated code highlighted in colors. Figure 5.2 shows the two TVD

mutants. The original version of the mutated file is in the left pane, while the mutated

versions are in the right pane. The changes are highlighted in both panes. Several lines are

used to connect the changes in two panes so that when the file grows larger, it is convenient

for users to scroll the files to locate the changes and find out what the changes are. The

first dropdown list includes all the sessions available in the muDroid home folder. After

the user selects a session, the second dropdown list is automatically populated with the file

names that have mutants. Once a file name is selected in the second dropdown list, a list of

mutants is automatically shown in the scroll pane on the right. For example, two mutants,

TVD 1 and TVD 2 are listed in the mutant list. Clicking on a mutant name will load and

display the content, then compare with the original version.

82

F
ig
u
re

5.
2:

O
b
se
rv
in
g
M
u
ta
nt
s

83

Executing Tests on Mutants

One goal of Android mutation testing is to help testers design high quality tests. After

generating mutants, users can design tests to kill them. The Android testing framework

extends JUnit [21] to help testers design tests for their Android apps. Many users prefer

to use external Android testing automation frameworks, such as Robotium [29]. muDroid

enables both types of tests. Figure 5.3 shows an example test case written with Robotium.

Solo is the main class for developing Robotium tests. It sends all types of di↵erent user

actions to the app under test, such as clickOnRadioButton in the example. The test also

includes test oracles to determine whether the program behavior is as expected.

Figure 5.3: An Example Test Case

84

Command: muDroidRun

The command muDroidRun is used to execute tests against mutants. Parameters of the

command are listed as follows:

• �adblocation <adb location> �session <session name>

�file <file name1> �file <file name2> ...

�test <test name1> �test <test name2> ...

The option �adblocation specifies the location of Android Debug Bridge (ADB) file,

which is a command line utility tool in Android SDK that can perform tasks on

emulators and mobile devices, such as copying files, installing and uninstalling apps,

and executing shell commands. The option �file lists the source files the user wants

to test, and �test specifies the file names of tests. Both �file and �test accept an

unlimited number of file names, so that the tester can run all or some of the tests on

all or some of the files.

• �runAll (optional)

By default, to save execution cost, muDroid is set to an e�cient mode such that once

a test kills a mutant, the mutant is marked as killed and no further tests will execute

against it. The �runAll option executes all the tests against all mutants, even if

a mutant has been killed by another test. For example, if an app under test has

100 mutants, and the user designs 100 tests, without the �runAll option, there are

10,000 total iterations of execution, while with the �runAll option, the total number

of iterations will be much fewer.

• �device (optional)

muDroid can control an unlimited number of mobile devices and emulators. How-

ever, the �device option tests a subset of connected devices by specifying their serial

numbers.

• �gradle (optional)

Similar to the command for generating mutants, the �gradle option is used whenever

85

the app under test is built by Gradle.

Figure 5.4 shows an example command of executing tests against mutants. The com-

mand includes the following parts:

• “java �jar muDroidRun.jar” launches the jar file.

• “�adblocation” specifies the location of ADB file at C:/Android/android-sdk/platform-

tools/adb.

• “�session” defines the session name as MunchLife.

• “�file” selects MunchLifeActivity as the file under test.

• “�runAll” enables the mode that executes all the tests on all the mutants.

• “�test” chooses the test with the name info.bpace.munchlife.test.test ITR.

Figure 5.4: An Example Command of Executing Tests

Checking Results

After executing tests, muDroid saves the result of execution into a text (TXT) result file

that lists the mutation score of the tests and which tests killed which mutants. The file

name of the result includes a timestamp that indicates the exact finish date and time.

Figure 5.5 shows part of a result file. The mutation score is 77.39%. The mutant LOI 32

is killed by two tests, test LOI3 and test SDL5. No tests killed mutant LOI 34 or SDL 91.

86

Note that the tests listed in the result file for each mutant may not be all the tests that could

kill it, because the default execution mode is to not run killed mutants against subsequent

tests. The �runAll option must be specified to obtain all killing tests for each mutant.

Mutation Score: [0.7739]
LOI 32: [test LOI3, test SDL5]
ODL 30: [test AOIS2, test AOIU, test AORB3, test LOI3, test ODL4, test SDL5]
LOI 33: [test LOI3]
LOI 34: []
LOI 35: [test LOI3]
ODL 34: [test ODL2]
SDL 91: []
ODL 33: [test AOIS2, test AOIU, test ODL3]
SDL 92: [test SDL1]
MDL 3: []
MDL 2: [test AOIS2, test AOIS3, test BSW, test LOI3, test ROR, test TVD]
LOI 66: [test LOI2, test AORB3]
LOI 67: [test LOI3, test AORB3]
MDL 4: [test AOIS2, test AOIS3, test AOIU, test AORB3, test SDL5, test TVD]
LOI 68: [test LOI3, test AORB3]
LOI 61: [test AOIS2, test AORB3, test LOI3, test ROR, test SDL3, test SDL4]
LOI 63: []
... ...

Figure 5.5: An Example Partial Result File

5.1.2 Architecture of muDroid

Figure 5.6 shows the generate architecture of muDroid. It consists of two parsers (Java and

XML), an information extractor, a mutant generator, a mutant observer, a test runner, a

multithreading controller, and a result generator.

Parsers and Information Extractor

Since Android apps are primarily developed in Java and XML, two parsers are used by

muDroid to recognize, understand, and mutate the source code.

87

Figure 5.6: The Architecture of muDroid

For a Java parser, muDroid extends OpenJava, the parser component of muJava [114].

The Java parser component constructs a parser tree based on the Java source code of the

Android app under test, and compiles mutated Java files to bytecode classes. In addition,

muDroid implements an information extractor that can discover and store information used

by mutation operators while parsing Java source code. For example, the OnClick Event

Replacement mutation operator (ECR) requires the information of all the OnClick events

designed in the Android app under test, so that it can replace an OnClick event with

other similar events extracted from the app. This information extractor is critical to some

Android mutation operators, such as ECR.

88

muDroid implements an XML parser to parse and mutate XML files, including both

layout specification files and app configuration files. XML files are also parsed into a tree

structure. The mutation is performed at the element level, that is, muDroid does not change

the XML schema, or validate whether a given XML file is valid according to its schema or

not. Unlike the parser component for Java, the XML parser does not compile XML files.

Mutant Generator

Unlike traditional Java programs, for which bytecode classes are interpreted and executed

through Java Virtual Machines (JVM), Android apps must be compiled to APK files, which

are uploaded and installed on mobile devices. Consequently, the mutant generator includes

two sub-components: a log writer and an APK builder. After a selected mutation operator

modifies the source code of the Android app under test, the APK builder collects all the

files of the app, including Java bytecode classes, XML configuration and layout files, and

graphics, then builds them to an APK file as a mutant of the Android app under test. If a

mutant APK file cannot be compiled, the APK builder will discard it immediately. While

building mutant APK files, the log writer assigns a number to every mutant, and keeps a

log file that records how each mutant is changed, including its mutant number, the modified

location (the method and the line number modified), the original, and the mutated code.

Figure 5.7 shows part of a mutation log file. The file lists six AOIU mutants and six AOIS

mutants. Take AOIU 1 as an example. The change is located at line 155, in method void

onCreate(android.os.Bundle), and a minus symbol is inserted in front of R.layout.main.

Mutant Observer

After generating mutants, users may want to check what these mutants are. Figure 5.2

showed a screenshot of the mutant observer. The mutant observer compares the original

version of the Android app under test to the mutant selected from the mutant list, highlights

the changes in blue, and connects the changes with lines for easy navigation.

89

AOIU 1:155: void onCreate(android.os.Bundle): R.layout.main => -R.layout.main
AOIU 2:156: void onCreate(android.os.Bundle): R.id.btn one => -R.id.btn one
AOIU 3:159: void onCreate(android.os.Bundle): R.id.btn two => -R.id.btn two
AOIU 4:162: void onCreate(android.os.Bundle): R.id.btn three => -R.id.btn three
AOIU 5:165: void onCreate(android.os.Bundle): R.id.btn four => -R.id.btn four
AOIU 6:168: void onCreate(android.os.Bundle): R.id.btn five => -R.id.btn five
AOIS 1:155: void onCreate(android.os.Bundle): R.layout.main => R.layout.main++
AOIS 2:155: void onCreate(android.os.Bundle): R.layout.main => R.layout.main–
AOIS 3:156: void onCreate(android.os.Bundle): R.id.btn one => R.id.btn one++
AOIS 4:156: void onCreate(android.os.Bundle): R.id.btn one => R.id.btn one–
AOIS 5:159: void onCreate(android.os.Bundle): R.id.btn two => R.id.btn two++
AOIS 6:159: void onCreate(android.os.Bundle): R.id.btn two => R.id.btn two–

Figure 5.7: An Example Mutation Log File

Test Runner

The test runner first loads the original version of the Android app under test, randomly

picks one connected Android emulator or real Android device, and installs the APK file of

the app to it. If the selected device already has the app installed, which is very common

in experimental studies, the test runner will replace the one installed on the target device,

to ensure the execution results are from the original version of the Android app under test.

Then, the test runner executes all test cases on the original app and records the results.

The results are compared to the results of each mutant to determine whether the mutant

is killed. After that, the test runner picks every mutant and selects an available connected

Android emulator or real Android device to execute tests on the mutant. Once the execution

is finished, the test runner records the results from the mutant.

Depending on the option selected by the user, the test runner can stop the execution

once a test kills the mutant, or can keep running with all the tests selected. The test runner

is compatible with all the versions of the Android operating systems, and compatible with

both Android emulators and real mobile devices.

90

Multithreading Controller

Computational cost is a major issue in Android mutation testing. Most Android devices and

emulators run much slower than PCs or laptops, which results in a higher cost in terms of

the execution time of Android mutation testing than conducting mutation testing on other

programs. Consequently, muDroid implements a multithreading controller to parallelize the

execution and shorten the overall time required to finish the Android mutation analysis.

Two pools are constructed before the test runner starts to execute tests on the Android

app under test: one pool that contains all the connected Android emulators and real de-

vices, and another pool that includes all the mutants generated. During the execution, the

multithreading controller actively monitors the progress of every emulator and device. As

soon as an emulator or device finishes execution, the multithreading controller selects an

unexecuted mutant from the mutant pool, feeds it to the the test runner, and notifies the

test runner the serial ID of the available emulator or device. Then, the test runner installs

the mutant, runs the tests, and records the results. Theoretically, muDroid can control an

unlimited number of emulators and real devices.

Result Generator

The result generator is used to compare the results of the original version to the results of

every mutant, determine whether the mutant is killed, compute an overall mutation score,

and save all the results to a text file.

5.2 Empirical Evaluation of Android Mutation Testing

The first of three empirical evaluations tried to investigate the feasibility of applying mu-

tation analysis to test Android apps. The motivation of this study was to verify whether

Android mutation testing can be used to evaluate test cases designed with other testing

criteria. I posed the following research questions:

• RQ1: Is it feasible to test real-world Android apps with mutation analysis?

91

• RQ2: How e↵ective can test cases designed with traditional testing criteria be in

killing mutants generated by Android mutation testing?

Statement coverage is one of the most frequently used testing coverage criteria in both

industry and research. Many researchers use statement coverage to evaluate their techniques

[115,117,124]. Just et al. [87] found that the correlation between mutation testing and real

fault detection was statistically stronger than the correlation between statement coverage

and real fault detection. Similarly, Android mutation testing is expected to be stronger

than statement coverage. This empirical evaluation included five phases: selecting empir-

ical subjects, designing test data with 100% statement coverage, generating mutants with

muJava and Android mutation operators, executing tests against mutants, and analyzing

results.

This study also checked whether results are consistent between the emulator and hard-

ware devices, by using two Motorola MOTO G Android smartphones, one with the Dalvik

Virtual Machine, and the other with ART, in addition to Android emulators. The smart-

phones were running in developer mode.

Note that when this study was conducted, only eleven Android mutation operators had

been designed and implemented. The additional mutation operators were designed as a

result of this study.

5.2.1 Empirical Subjects

This empirical study used eight Android apps as empirical subjects. These eight apps had

been used in related research papers on Android testing [115,117].

Alarm Klock [2] is an alarm clock app with advanced and customizable features. It has

a 4.4 star rating by 6,366 reviews1, and the Google Play store shows that the number of

user installations is between 500,000 and 1,000,000.

Jamendo for Android [19] is an app for searching, streaming, and downloading free

online music. It was obtained from F-Droid [16], a repository of free and open source

1As of June, 2017

92

Android apps. It is not currently available on the Google Play store, so it does not have

review or download data.

JustSit [22] is a timer app with an alarm used for meditation. Its latest version is 0.3.3,

released in July 2010, with a 3.8 star rating from 140 users2.

K-9 Mail [23] is an email client app with a rich set of useful features that are not o↵ered

by similar email clients. On the Google Play store, it has a 4.2 star rating from 86,015

reviewers3, and several million user installations. Unlike other selected apps, which were

developed by a small number of programmers, K-9 Mail is developed and released by an

open source community with hundreds of contributors.

MunchLife [26] is a counter application for tracking levels achieved while playing the

card game Munchkin. Its latest version is 1.4.4, released in February 2014, with a 4.3 star

rating from 247 users4.

PasswordMaker Pro for Android [27] produces passwords for websites and other apps.

It accepts a “master password” from the user, combines the URL or the name of the website

requiring the password, and computes a unique password with hash algorithms. It has 23

classes in three di↵erent packages. On the Google Play store, the latest update was in

January 2015, and it has a 3.8 star rating from 71 users5.

TippyTipper [33] calculates tips after taxes are added and splits bills among several

customers. According to the Google Play store, the latest version 2.0 was released in

December 2013 and has a 4.6 star rating from 795 users6. It was downloaded from its

homepage. TippyTipper has five Activities: TippyTipper, SplitBill, Total, Settings, and

About. It also has one Service: TipCalculatorService. Figure 5.8 illustrates three Activities:

TippyTipper is on the left, SplitBill is in the middle, and Total is on the right.

Tipster [59] is similar to TippyTipper that is used to split payment and calculate tips.

It is an example from Darwin’s book [60].

2As of June, 2017
3As of June, 2017
4As of June, 2017
5As of June, 2017
6As of June, 2017

93

Table 5.1: Details of Empirical Subjects
App File SLOC ELOC Lines of XML

Dead Code Elements

Alarm Klock
ActivityAlarmClock.java 290 127 3

alarm list.xml 39 39 6
AndroidManifest.xml 53 53 35

Jamendo
HomeActivity.java 441 132 10

main.xml 66 66 10
AndroidManifest.xml 146 146 93

JustSit

JustSit.java 444 207 30
main.xml 99 99 13

JsSettings.java 61 22 0
JsSettings.xml 52 52 6

AndroidManifest.xml 23 23 14

K-9 Mail
ColorPickerDialog.java 199 93 0
colorpicker dialog.xml 59 59 7
AndroidManifest.xml 214 214 124

MunchLife

MunchLifeActivity.java 384 144 10
main.xml 58 58 12

SettingsActivity.java 68 17 0
preferences.xml 25 25 5

AndroidManifest.xml 32 32 10

PasswordMaker
PasswordMakerPro.java 606 343 26

main.xml 141 141 19
Pro AndroidManifest.xml 26 26 13

TippyTipper

TippyTipper.java 239 103 1
main.xml 93 93 20

SplitBill.java 134 63 6
SplitBill.xml 93 93 31
Total.java 279 133 2
Total.xml 139 139 44

AndroidManifest.xml 32 32 16

Tipster
TipsterActivity.java 297 115 0

main.xml 177 177 30
AndroidManifest.xml 23 23 7

Total 5032 3089 88 515

94

This study used twelve classes along with their corresponding XML layout files, and the

AndroidManifest.xml files from the eight apps. TippyTipper, MunchLifeActivity, JustSit,

PasswordMakerPro, TipsterActivity, ActivityAlarmClock, and HomeActivity are the main

Activity classes of their apps. Other classes were chosen based on their features in the

corresponding apps. For example, in the TippyTipper app, the Activities SplitBill and

Total were selected because they provide features including splitting and calculating tips

and taxes, and generate a rich set of mutants. In addition, ColorPickerDialog of K-9 Mail

is the only class that included event handlers for an OnTouch event. It was selected to

ensure the ETR operator was evaluated.

Details about the empirical subjects are in Table 5.1. The Source Lines of Code (SLOC)

and Executable Lines of Code (ELOC) for the Android classes were calculated by Emma

[143], and the LOCs for XML files were counted within the Android IDE. An XML Docu-

ment Object Model (DOM) parser was used to count the number of XML elements, because

the number of elements is considered as a better way to measure size of XML files than the

number of lines.

The largest Java class is the main Activity of PasswordMaker Pro, PasswordMakerPro,

with 606 SLOC. The smallest is the setting Activity of MunchLife, SettingsActivity, with

17 ELOC. The largest XML file is the AndroidManifest.xml of K-9 Mail, with 214 SLOC

and 124 nodes.

Table 5.1 also lists the number of lines of dead code manually identified for each class.

The selected subjects had three types of dead code. First, if the default case is included in a

switch-case block, but can never be reached with any user input, it is dead code. Second, if

an event listener handles menu clicks, but no menu is on the screen, the entire listener class

is dead code. Third, in a try-catch block, if it is impossible to throw and catch a required

exception the entire catch block will be dead code.

95

Figure 5.8: Three Activities for TippyTipper

5.2.2 Test Data Generation

First, an evolutionary algorithm-based Android test generation tool, EvoDroid [117], was

used to create tests. It generated 744 test cases for the main Activity of TippyTipper

through multiple generations. Ten tests were randomly chosen from the last generation,

which covered 82% of the methods, 90% of the blocks, and 85% of the statements in the

main Activity class, TippyTipper. After that, one additional test was designed by hand to

achieve full statement coverage.

For the nine other Android classes and their associated XML layout files, test inputs

were manually designed to achieve 100% statement coverage (Table 5.1), excluding the dead

code. All available test sets designed for each app were executed against APD mutants of

AndroidManifest.xml files. For example, the test set for AndroidManifest.xml of TippyTip-

per consists of all the test cases designed to test the Activities of TippyTipper, SplitBill,

and Total.

Because mobile devices and emulators usually have relatively fewer computation re-

sources (e.g., less memory and lower CPU speed), sending test inputs directly to them

96

without waiting for their responses to each user action is very likely to get inaccurate test-

ing results. For example, if an action of clicking a button is sent before the button is

completely rendered on the screen, the test will fail due to the failure of finding the button.

Thus, to get accurate empirical results, in the tests, a short two seconds interval was added

after each user action and before executing assertion statements.

5.2.3 Mutant Generation

Table 5.2: Mutants Generated
App Component muJava Android

(Java and XML Layout) Mutants Mutants

Alarm Klock
ActivityAlarmClock 161 235
AndroidManifest.xml n/a 6

Jamendo
HomeActivity 237 115

AndroidManifest.xml n/a 7

JustSit
JustSit 415 241

JsSettings 28 29

K-9 Mail
ColorPickerDialog 551 60

AndroidManifest.xml n/a 17

MunchLife
MunchLifeActivity 534 151
SettingsActivity 47 7

AndroidManifest.xml n/a 1
PasswordMakerPro PasswordMakerPro 515 379

TippyTipper

TippyTipper 105 195
SplitBill 124 37
Total 231 104

AndroidManifest.xml n/a 4
Tipster TipsterActivity 327 118

Total 3275 1706

19 Java method-level mutation operators from muJava [114], and 11 Android mutation

operators were used to generate mutants. Then, these mutants were compiled into instal-

lable APK files. Depending on the size and content of the subjects, generating a mutant

and compiling it as an APK file took up to ten seconds on a MacBook Pro with a 2.6 GHz

Intel i7 processor and 16 GB memory.

97

Table 5.2 lists the results of mutants generation. muDroid generated a total of 3275

mutants from the 19 method-level operators. The number of muJava mutants ranged from

28 (in JsSettings of JustSit) to 551 (in ColorPickerDialog of K-9 Mail). The 11 new An-

droid mutation operators generated 1706 valid Android mutants for 12 Android classes

along with their corresponding XML layout files, and 5 AndroidManifest.xml files (Tip-

pyTipper, MunchLife, K-9 Mail, Alarm Klock, and Jamendo). The number of Android Java

mutants ranged from 7 (in SettingsActivity of MunchLife) to 379 (in PasswordMakerPro of

PasswordMakerPro), and Android XML mutants ranged from one to 17.

Note that a mutant that cannot be compiled into an APK file is called stillborn, and is

not counted in the results. For example, the Activity class TippyTipper has 110 stillborn

mutants in addition to 105 muJava and 195 Android mutants. The entire TippyTipper

app has 195+37+104+4 = 340 Android mutants and 105+124+231 = 460 muJava mutants

(muJava does not mutate XML files). The 110 stillborn mutants are comprised of 36 AOIS

mutants, 2 LOI mutants, 6 ITR mutants, and 66 ECR mutants. Some mutants are stillborn

because of incorrect syntax. Other mutants are stillborn because Android apps use integers

to identify pre-defined resources and values that are saved in a separate file. Some mutation

operators mutate the identification integers, making it impossible for Android to locate these

pre-defined values. In turn, this prevents APK files from being compiled.

Each Android app has an AndroidManifest.xml file, but three AndroidManifest.xml files

(in subjects JustSit, PasswordMakerPro, and Tipster) did not have any mutants. Thus, they

are not listed in Table 5.2.

5.2.4 Empirical Results and Discussion

After generating all the mutants, muDroid loaded and executed 100% statement coverage

test sets against these mutants. Table 5.3 summarizes results from running both muJava

and Android mutants. Equivalent mutants were removed by hand.

Table 5.4 shows results for each mutation operator. The first group contains results from

the muJava traditional mutants, and the second group presents results from the Android

98

T
ab

le
5.
3:

E
m
p
ir
ic
al

R
es
u
lt
s

A
p
p

F
il
e

m
u
J
av

a
M

u
ta

n
ts

A
n
d
ro

id
M

u
ta

n
ts

T
o
ta

l
K
il
le
d

E
q
u
iv
.

M
S

T
o
ta

l
K
il
le
d

E
q
u
iv
.

M
S

A
la
rm

K
lo
ck

A
ct
iv
it
yA

la
rm

C
lo
ck

16
1

11
4

12
0.
76

5
23

5
14

1
49

0.
75

8
A
n
d
ro
id
M
an

if
es
t.
xm

l
n
/a

6
2

0
0.
33

3

Ja
m
en

d
o

H
om

eA
ct
iv
it
y

23
7

17
1

13
0.
76

3
11

5
54

54
0.
88

5
A
n
d
ro
id
M
an

if
es
t.
xm

l
n
/a

7
4

0
0.
57

1

Ju
st
S
it

Ju
st
S
it

41
5

15
3

50
0.
41

9
24

1
59

17
4

0.
88

1
Js
S
et
ti
n
gs

28
17

3
0.
68

0
29

6
18

0.
54

6

K
-9

M
ai
l

C
ol
or
P
ic
ke
rD

ia
lo
g

55
1

27
1

56
0.
54

7
60

13
45

0.
86

7
A
n
d
ro
id
M
an

if
es
t.
xm

l
n
/a

17
3

0
0.
17

6

M
u
n
ch
L
if
e

M
u
n
ch
L
if
eA

ct
iv
it
y

53
4

32
4

72
0.
70

1
15

1
31

10
5

0.
67

4
S
et
ti
n
gs
A
ct
iv
it
y

47
19

8
0.
48

7
7

2
3

0.
50

0
A
n
d
ro
id
M
an

if
es
t.
xm

l
n
/a

1
1

0
1.
00

0
P
as
sw

or
d
M
ak

er
P
ro

P
as
sw

or
d
M
ak

er
P
ro

51
5

22
9

89
0.
53

8
37

9
78

29
0

0.
87

6

T
ip
py

T
ip
p
er

T
ip
py

T
ip
p
er

10
5

71
4

0.
70

3
19

5
85

41
0.
55

2
S
p
li
tB

il
l

12
4

52
14

0.
47

3
37

5
26

0.
45

5
T
ot
al

23
1

12
3

29
0.
60

9
10

4
24

57
0.
51

1
A
n
d
ro
id
M
an

if
es
t.
xm

l
n
/a

4
0

4
1.
00

0
T
ip
st
er

T
ip
st
er
A
ct
iv
it
y

32
7

23
4

27
0.
78

0
11

8
22

88
0.
73

3

T
o
ta

l
3
2
7
5

1
7
7
8

3
7
7

0
.6
1
4

1
7
0
6

5
3
0

9
5
4

0
.7
0
5

M
ed

ia
n

23
4

13
8

28
0.
64

4
60

13
41

0.
67

4
M

ea
n

27
2.
9

14
8.
2

31
.4

0.
62

2
10

0.
4

31
.2

56
.1

0.
66

6

99

mutants.

RQ1: Is it feasible to test real-world Android apps with mutation analysis?

Table 5.3 shows that muDroid successfully generated 3,275 Java traditional method-

level mutants, and 1,706 Android mutants for 8 real-world open source Android apps, and

executed pre-designed 100% statement coverage test sets on these mutants. Across all

subjects, 1,778 of 3,275 muJava mutants and 530 of 1,706 Android mutants were killed by

100% statement coverage test sets, after eliminating equivalent mutants by hand analysis.

In addition, to assess whether the emulator had any e↵ect on the evaluation, this study

executed the tests on di↵erent smartphones using Dalvik and ART. The mutation scores

were identical in all the environments. Therefore, the Android Virtual Machines used does

not have any e↵ect on the empirical study. However, the emulator was much slower than real

devices, even with the Intel Hardware Accelerated Execution Manager (HAXM) installed.

RQ2: How e↵ective can test cases designed with traditional testing criteria

be in killing mutants generated by Android mutation testing?

The premise of mutation testing is that if a software program has a fault, there usually

are some mutants that can only be killed by a test that also detects that fault. Therefore,

e↵ective tests should be able to kill as many mutants as they can, because each mutant

can be considered as a software fault. The mutation score of a test set is the percentage

of non-equivalent mutants killed by this test set. It ranges from 0% to 100% and directly

indicates whether a given test set is e↵ective or not.

Table 5.3 shows the mutation scores (MS columns) of the 100% statement coverage

test sets designed for the subjects. These mutation scores are computed after removing

equivalent mutants. In other words, the percentages show how many mutants are killed

relative to how many can be killed.

The mutation scores for the muJava mutants ranged from 0.419 (in JustSit of JustSit)

to 0.78 (in TipsterActivity of Tipster), with a mean of 0.622 and a median of 0.644. For

Android mutants, the mutation scores ranged from 0.455 (in SplitBill of TippyTipper) to

0.885 (in HomeActivity of Jamendo for Android), with a mean of 0.666 and a median of

100

Table 5.4: Empirical Results for Each Mutation Operator
Operator Killed Equivalent Live Total Mutation

Mutants Mutants Mutants Mutants Scores

Traditional Mutants
AODU 3 0 1 4 0.750
AOIS 249 151 120 520 0.675
AOIU 253 17 112 382 0.693
AORB 113 4 71 188 0.614
AORS 0 0 1 1 0.000
CDL 22 9 18 49 0.550
COD 6 0 1 7 0.857
COI 70 4 55 129 0.560
COR 18 0 14 32 0.563
LOI 296 7 118 421 0.715
LOR 0 0 4 4 0.000
ODL 82 22 84 188 0.494
ROR 169 51 186 406 0.476
SDL 471 109 309 889 0.604
VDL 26 3 26 55 0.500

Subtotal 1778 377 1120 3275 0.614

Android Mutants
APD 10 4 21 35 0.323
BWD 36 0 0 36 1.000
BWS 0 0 99 99 0.000
ECR 111 0 4 115 0.965
ETR 2 0 0 2 1.000
FON 146 949 25 1120 0.854
IPR 7 0 0 7 1.000
ITR 181 0 29 210 0.862
MDL 18 1 5 24 0.783
ORL 13 0 35 48 0.271
TWD 6 0 4 10 0.600

Subtotal 530 954 222 1706 0.705

Total 2308 1331 1342 4981 0.632

101

0.674, excluding the three AndroidManifest.xml files. Obviously, by missing around 39% of

Java traditional method-level mutants, and 30% of Android mutants, the 100% statement

coverage tests used in this empirical study were not very e↵ective at killing mutants.

Discussion

Arithmetic Operator Replacement (AORS) and Logical Operator Replacement (LOR)

mutants have the lowest mutation scores of 0, meaning that none were killed by the state-

ment coverage test sets. These two operators only generated five mutants, so this low

percentage probably is not meaningful.

Among the Android mutation operators, none of the Button Widget Switch (BWS)

mutants were killed by any test, as the statement coverage test sets could not ensure the

locations (either relative, or absolute) of button widgets.

The highest mutation score among the traditional muJava mutants were for Conditional

Operator Deletion (COD), 0.857. All of the Android mutants for OnTouch Event Replace-

ment (ETR), Intent Payload Replacement (IPR), and Button Widget Deletion (BWD) were

killed.

The APD operator (permission deletion) only applies to AndroidManifest.xml files. The

principle of least privilege [144] requires that an app should only request necessary permis-

sions from the Android system. If an app still works correctly after APD deletes its per-

missions (that is, the mutant is equivalent), the permission was unnecessary and granting

it could create a security or privacy threat.

In this empirical study, none of the four APD mutants of TippyTipper were killed. Since

the 100% statement coverage test sets were only designed to cover three out of five Activ-

ities in the app, testing could not show whether those Activities needed the permissions.

To verify whether the permissions were necessary to the app, a detailed hand analysis of

the needs of all the Activities were conducted, which found that none of the Activities

used any of the four permissions requested (WRITE SETTINGS, WAKE LOCK, MOD-

IFY AUDIO SETTINGS, and VIBRATE). Therefore, it turned out that TippyTipper does

102

not need any of them. These four APD mutants were actually equivalent mutants. Addi-

tionally, fourteen live APD mutants of K-9 Mail were judged not equivalent after manual

analysis.

In Table 5.4, 949 of 1,120 (84.7%) FON mutants are equivalent, which is the highest

among all mutation operators. This is because many objects in Android apps can never be

null or empty, which makes the “fail on null” statement impossible to trigger. Figure 5.5

shows an example equivalent FON mutant. Since object array is newly created and correctly

initialized, no test can trigger the “fail on null” statement. However, when FON generates

mutants, muDroid cannot decide whether an object can be null or empty. Even though

manually identifying and filtering these equivalent FON mutants is straightforward and not

time-consuming, it is highly recommended that an improvement in the implementation of

muDroid should be carried out to avoid generating these equivalent mutants, to reduce the

cost of Android mutation testing.

Table 5.5: An Example of FON Mutant

Original FON Mutant

ArrayList<String> array = new ArrayList<>(); ArrayList<String> array = new ArrayList<>();
FailOnNull (array);

array.add(“test”); array.add(“test”);

5.2.5 Threats to Validity

This empirical evaluation has several threats to validity, which could have influenced the

experimental results. However, this study considered these threats and took measures to

minimize and avoid them.

Internal validity: Dead code in the subjects and equivalent mutants were identified

manually by one person. In addition, all the computation and analysis in this empirical

study were conducted using Microsoft Excel. Some tests used in this study were first

generated by evoDroid, an evolutionary algorithm based Android test generation tool, then

103

augmented by hand to achieve 100% statement coverage. Other tests were manually created

without the support of any tool. Human mistakes become a potential threat to this study.

External validity: Like most software engineering experiments, it is not possible to

guarantee the representativeness of selected subjects. The subjects were selected to have

di↵erent sizes, from di↵erent sources, and they were in various domains. Also, the fact

that all the subjects were used by previous researchers provide consistency across multiple

studies. This research is designed for native Android apps that are applications traditionally

developed for running on the Android operating systems with the features supported by

Android SDK libraries. Hybrid apps and HTML5 apps were not used in this empirical

study, because these apps are implemented with elements of web applications that are not

based on the Android platform. The results may di↵er when testing Hybrid apps and

HTML5 apps.

Construct validity: The implementation of Android mutation operators and the An-

droid mutation testing tool, muDroid, may include software faults. They were constantly

tested during the implementation process, to ensure they work as expected. Therefore, in

this empirical study they were assumed to work correctly.

5.3 Experimental Evaluation of Fault Detection E↵ective-

ness

The previous empirical study took the first steps toward applying mutation testing to An-

droid apps and its results show that it is feasible to test real-world Android apps with

mutation analysis. The next experimental evaluation focused on evaluating the fault detec-

tion e↵ectiveness of Android mutation testing and comparing with other Android testing

techniques. The research used two sets of software faults: naturally occurring faults mined

from the subject apps’ source code repositories and crowdsourced faults collected from ex-

perienced Android developers.

This experimental evaluation addresses the following three research questions:

104

• RQ3: How e↵ective is Android mutation analysis at testing Android apps? Specifi-

cally, how many faults can be detected by mutation-generated tests?

• RQ4: How e↵ectively do four other Android testing techniques test Android apps?

Specifically, with the same set of faults, how many of them can be detected by four

other Android testing techniques?

• RQ5: Is there any di↵erence between using naturally occurring faults and using

crowdsourced faults in empirical evaluations?

To better demonstrate the fault detection e↵ectiveness of di↵erent techniques, the null

and alternative hypotheses (HypothesesA) for naturally occurring faults are:

Null hypothesis (H0): There is no significant di↵erence between the numbers of

naturally occurring faults detected by Android mutation testing and other Android testing

techniques.

Alternative hypothesis (H1): There is a significant di↵erence between the numbers of

naturally occurring faults detected by Android mutation testing and other Android testing

techniques.

The null and alternative hypotheses (HypothesesB) for crowdsourced faults are:

Null hypothesis (H0): There is no significant di↵erence between the numbers of

crowdsourced faults detected by Android mutation testing and other Android testing tech-

niques.

Alternative hypothesis (H1): There is a significant di↵erence between the numbers

of crowdsourced faults detected by Android mutation testing and other Android testing

techniques.

The results are presented separately to check whether the results are significantly dif-

ferent and because we had an order of magnitude more hand-seeded faults. Note that these

comparisons are based on e↵ectiveness (the ability to find faults), and do not account for

cost. The four other techniques represented the current state-of-the-art and state-of-the-

practice, and no structural-based techniques or tools for testing mobile apps were available

105

to compare with.

5.3.1 Experimental Subjects

Nine subject apps were used in this experiment. Six were re-used from the previous exper-

iment, including Alarm Klock [2], Jamendo [19], JustSit [22], MunchLife [26], TippyTipper

[33], and Tipster [59]. In addition, three new subject apps were selected, including An-

droidomaticKeyer [11], Lolcat Builder [24], and WorldClock [35]. AndroidomaticKeyer [11]

translates user-entered text into Morse code and plays it through Android devices’ sound

output. It is the only subject app that accesses the GPS sensor to process location data.

It has a 4.1 star user rating7. Lolcat Builder [24] lets users edit photos by adding captions

and text, then save or share them. It has a 3.8 star rating from 376 users8. WorldClock

[35] lets users search and add di↵erent locations in the world, then gives the current time

at each selected place. It has a 4.1 star rating9.

Table 5.6 summarizes the nine experiment subjects. The information regarding Lines of

Code (LOC) in the Java files was obtained by using Metrics [25], a plugin tool for Eclipse.

As an XML file can be formatted into varied forms with di↵erent numbers of lines, the

number of XML elements (nodes) in XML files is a better and more reliable indicator to

measure than Lines of Code (LOC). Therefore, in this experimental evaluation, an XML

parser program was developed to count the numbers of XML nodes in the XML layout and

manifest (configuration) files.

According to Table 5.6, PlayerActivity.java of Jamendo is the largest Java file among all

nine subject apps, with 662 LOC. Its XML layout file, player.xml, is also the largest XML

file, with 45 XML elements. The smallest Java file is Help.java of AndroidomaticKeyer,

which has 10 LOC. The smallest XML file is pending alarms item.xml of AlarmKlock with

only one XML element.

7As of June, 2017
8As of June, 2017
9As of June, 2017

106

Table 5.6: Details of Experimental Subjects

App File LOC XML muJava Android

Elements Mutants Mutants

AlarmKlock

ActivityAlarmClock.java 227
161 240alarm list.xml 6

alarm list item.xml 9

ActivityAlarmNotification.java 175
210 69

notification.xml 10

ActivityAlarmSettings.java 395
401 183settings item.xml 3

settings.xml 7

ActivityAppSettings.java 81 39 59

ActivityPendingAlarms.java 55
24 55pending alarms item.xml 1

pending alarms.xml 2

AlarmClockService.java 240 388 210

AndroidManifest.xml 35 6

AndroidomaticKeyerActivity.java 567
1001 408

main.xml 14

StraightKeyActivity.java 88
5 2

Androido- sk.xml 4

maticKeyer Help.java 10
4 7

help.xml 2

GeoHelper.java 196 507 447

AndroidManifest.xml 21 5

Jamendo

AlbumActivity.java 212
263 100

album.xml 11

ArtistActivity.java 142
81 58

artist.xml 8

DownloadActivity.java 188
206 115

download.xml 14

HomeActivity.java 304
324 142

main.xml 10

PlayerActivity.java 662
663 551

player.xml 45

PlaylistActivity.java 176
210 125

playlist.xml 7

RadioActivity.java 242
196 103

search.xml 11

SettingsActivity.java 36
21 32

settings.xml 9

downloadService.java 90 68 42

PlayerService.java 220 232 142

AndroidManifest.xml 21 7

JsSettings.java 36
28 31

settings.xml 6

107

Table 5.6: Details of Experimental Subjects

App File LOC XML muJava Android

Elements Mutants Mutants

JustSit RunTimer.java 67
131 25

run timer.xml 3

JustSit.java 351
394 258

main.xml 13

JsAbout.java 23
9 13

about.xml 6

AndroidManifest.xml 14 4

Lolcat Builder

LolcatActivity.java 482
581 387

lolcat activity.xml 8

AndroidManifest.xml 12 1

MunchLife

MunchLifeActivity.java 285
534 160

main.xml 12

SettingsActivity.java 47
47 9

preferences.xml 5

AndroidManifest.xml 10 1

TippyTipper

Total.java 218
231 113

Total.xml 44

TippyTipper.java 179
105 198

main.xml 20

SplitBill.java 108
124 49

SplitBill.xml 31

Settings.java 51
13 15

settings.xml 12

About.java 26
4 14

about.xml 10

TipCalculatorService.java 244 1102 45

AndroidManifest.xml 12 0

Tipster

TipsterActivity.java 180
327 130

main.xml 30

AndroidManifest.xml 7 0

WorldClock

WorldClockActivity.java 147
193 105

worldclock main.xml 3

timezoneedit.java 129
113 72

timezone edit.xml 7

AndroidManifest.xml 15 1

Total 6,879 530 8,940 4,739

19 Java traditional method-level mutation operators defined in muJava [114] yielded 8,940

108

muJava mutants. 17 Android mutation operators yielded 4,739 Android mutants for Ac-

tivities, Services, XML layout files, and configuration files of the subjects. The number of

muJava mutants ranges from four (Help.java of AndroidomaticKeyer and About.java of Tip-

pyTipper) to 1,102 (TipCalculatorService.java of TippyTipper). The AndroidManifest.xml

files in two subjects (TippyTipper and Tipster) did not generate any Android mutants.

PlayerActivity.java and its associated XML layout file, player.xml, together generated 551

Android mutants, which is the highest number of Android mutants.

5.3.2 Experimental Procedure

The experimental procedure included five major steps to evaluate the fault detection e↵ec-

tiveness of Android mutation testing:

1. Generate mutants: 19 Java traditional method-level mutation operators and 17

Android mutation operators were used to generate mutants for the 9 experimental

subjects.

2. Design tests: Tests were manually designed to specifically kill all non-equivalent

mutants. All the tests were created with the support of JUnit [21] and Robotium [29].

Equivalent mutants were identified by hand during this step and eliminated from the

experiment.

3. Collect faults: Two types of software program faults were collected in this exper-

iment: naturally occurring faults and crowdsourced faults. Sections 5.3.3 and 5.3.4

describe this step. Each faulty version of the experimental subject apps was saved as

a separate Android app project, so that they can be simply organized and deployed.

4. Detect faults: These mutation-adequate tests were executed against each faulty

version of the experimental subject apps. Then, the results of whether the faults were

detected or not were recorded.

5. Compute results: The fault detection e↵ectiveness of Android mutation testing was

computed for naturally occurring faults and crowdsourced faults.

109

After that, two additional steps were conducted to evaluate the fault detection e↵ective-

ness of the four other Android testing tools.

1. Fault detection: Each Android testing tool was used to test every faulty version of

the experimental subject apps. Their fault detection results were recorded.

2. Results comparison: The fault detection e↵ectiveness of the four Android testing

techniques for naturally occurring and hand-seeded Android faults was calculated,

evaluated, and compared.

Note that each faulty version of the experimental subject apps was deployed and tested

on a clean Android emulator or smartphone to ensure each execution was independent from

the others.

5.3.3 Collecting Naturally Occurring Faults

This section discusses how the naturally occurring faults were collected. As all the nine

subject apps are open source Android apps, each one has its own GitHub repository. Usually,

when developers fix a software fault of open source apps, they submit a new commit to the

repository and describe what, why, and where the change is. An issue tracking system in

the repository can be used to retrieve the information about the faults and make it possible

to reproduce them. Thus, in this experiment, naturally occurring faults were collected by

searching the open source repository of each experimental subject app.

Using the keywords fix, fault, bug, issue, and incorrect, every commit in the nine GitHub

source code repositories was examined. In each commit related to a fault, three types of

data were collected: the source code of the faulty version (the prior version), the source

code of the fixed version, and the description of the commit. Additionally, some developers

linked their commits with the bug reports in their app’s issue tracking system to further

describe the issues that were fixed.

Many commits contained the keywords but actually did not fix a software fault. For

example, several commits were labeled with the keyword “fix,” even though they did not fix

110

a fault, so the detail of every change had to be carefully examined. Other comments were

labeled with “issue,” even though they just changed usability or performance. Commits that

were used to fix typos in message strings or comments were not considered valid, either.

In summary, non-fault fixing commits had to be discarded by manual examination before

proceeding to the next experimental step.

After discarding those non-fault fixing commits, every collected naturally occurring fault

was verified to check whether it could be reproduced in our experimental environment. Some

faults could not be reproduced because either the faulty version or the fixed version used

obsolete APIs. Other faults were specific to only one brand or one model of Android devices,

or specific to only one version of Android system. Some faults are based on external systems

that we could not practically emulate, such as an email client app that cannot delete emails

from a specific user’s server. Faults that could not be reproduced in our experimental

environment were discarded.

Table 5.7 summarizes the naturally occurring faults collected in this experimental step.

Two subjects, Tipster and Lolcat Builder, do not have commits explicitly related to fixed

faults. AlarmKlock has 13 collected faults, in which 7 are reproducible. Both are the highest

among all the subjects. Jamendo also has 13 collected faults, but only 6 of them can be

reproduced. Both JustSit and WorldClock have only one reproducible fault. In total, 51

commits with fault fixing activities were collected, in which 25 faults could be reproduced

in our experimental environment, and 26 faults were discarded.

5.3.4 Collecting Crowdsourced Faults

This section describes how crowdsourced faults were collected. Since the number of nat-

urally occurring faults collected in this experiment was too low to conduct an empirical

study and draw any reasonable conclusion, additional faults were required. This study used

crowdsourcing to create additional faults. Anonymous Android developers were recruited

from a crowdsourcing website10 to hand-seed faults into our nine experiment subject apps.

10
www.Freelancer.com

111

Table 5.7: Numbers of Naturally Occurring Faults Collected for Each Subject App
Apps Total Collected Discarded Commits Kept

Commits Commits as Faults

AlarmKlock 13 6 7
AndroidomaticKeyer 8 5 3
Jamendo 13 7 6
JustSit 2 1 1
MunchLife 6 2 4
TippyTipper 6 3 3
WorldClock 3 2 1

TOTAL 51 26 25

After submitting the recruiting post on the crowdsourcing website, more than 30 Android

developers from di↵erent countries proposed to participate in this study. To ensure the

candidates had the needed expertise, every applicant’s prior project history on the crowd-

sourcing website was carefully reviewed. An ideal candidate must have established records

in Android development, have finished previous projects on time and on budget with a

5-star rating, and be able to communicate in English. Their identities were also verified by

phone, email, or Facebook. After this initial verification, each applicant was interviewed to

determine his or her knowledge and experience in developing and testing Android apps.

Even though all the participants were experienced Android developers, they were not

familiar with seeding faults into software programs. For example, one freelancer kept trying

to identify possible faults in the experimental subjects. After several rounds of explanation

and discussion with him, he still could not understand his task was to hand-seed software

faults, not finding faults. Thus, he was eventually replaced by another candidate.

It is worth mentioning that only those applicants who understood the project in general

but did not know mutation testing were selected. They were not provided any instructions

or guidelines on how to seed faults. The participants were allowed to seed any faults based

on their own developing and testing experience.

After this rigorous process, our crowd was composed of seven freelancers from India,

Bangladesh, Pakistan, and Ukraine. As incentive, each valid seeded fault was awarded $1,

112

and they were allowed to seed up to 200 faults in the nine experiment subject apps.

Every microtask, that is hand-seeding a software fault, was considered to be valid only

if:

1. It changed the source code, including Java classes, XML files, or any other files in the

project.

2. The changed app could be compiled and executed in our experimental environment.

3. The changed app did not crash immediately after launching (otherwise it would be

too trivial to use in the experiment).

4. The fault caused the subject app to behave di↵erently from the original version.

5. This incorrect behavior must be observable.

Table 5.8 lists the numbers of hand-seeded faults created by the participants of this

study. The number of faults ranged from 49 from freelancer F5 to 148 from F4. The

number of faults per subject ranged from 25 to 95. Only one freelancer seeded faults into

AndroidomaticKeyer. Overall, this study collected 589 crowdsourced faults for the nine

subject apps.

Table 5.8: Numbers of Hand-seeded Faults for Each App before Removing Mutants
Apps F1 F2 F3 F4 F5 F6 F7 Total

AlarmKlock 6 14 6 16 9 18 69
AndroidomaticKeyer 25 25
Jamendo 15 3 11 28 57
JustSit 15 7 15 35 15 8 95
Lolcat Builder 12 14 34 13 5 78
MunchLife 12 8 10 24 17 8 79
TippyTipper 25 10 25 60
Tipster 5 25 20 25 5 5 85
WorldClock 3 27 11 9 41

Total 68 96 61 148 49 98 78 589

113

T
ab

le
5.
9:

N
u
m
b
er
s
of

H
an

d
-s
ee
d
ed

F
au

lt
s
fo
r
E
ac
h
A
p
p
af
te
r
R
em

ov
in
g
M
u
ta
nt
s

A
p
p
s

F
1

F
2

F
3

F
4

F
5

F
6

F
7

%
N
o
n
-m

u
ta

n
t
F
a
u
lt
s

T
o
ta

l

A
la
rm

K
lo
ck

5
12

5
13

8
16

85
.5
1%

59
A
n
d
ro
id
om

at
ic
K
ey
er

25
10

0.
00

%
25

Ja
m
en

d
o

11
3

6
20

70
.1
8%

40
Ju

st
S
it

14
7

12
11

8
7

62
.1
1%

59
L
ol
ca
t
B
u
il
d
er

9
14

18
11

4
71

.7
9%

56
M
u
n
ch
L
if
e

11
5

9
12

7
8

65
.8
2%

52
T
ip
py

T
ip
p
er

22
10

15
78

.3
3%

47
T
ip
st
er

3
22

17
14

4
4

75
.2
9%

64
W
or
ld
C
lo
ck

3
15

9
8

85
.3
7%

35

T
O
T
A
L

56
85

53
78

26
67

72
4
3
7

%
o
f
N
o
n
-m

u
ta

n
t
F
a
u
lt
s

82
.3
5%

88
.5
4%

86
.8
9%

52
.7
0%

53
.0
6%

68
.3
7%

92
.3
1%

7
4
.1
9
%

114

Figure 5.9: A Comparison of Before and After Removing Mutant-Faults

One problem with not giving detailed guidelines about the type of faults needed is

that the participants quite naturally created faults that were actually the same as mutants

generated in this study. Thus, each crowdsourced fault created had to be hand-inspected,

and faults that were also mutants were eliminated to avoid biasing the results in favor of

mutation. Table 5.9 lists the numbers of hand-seeded faults after excluding mutants. All

25 hand-seeded faults for AndroidomaticKeyer were non-mutants, while JustSit only had

59 non-mutant faults. Figure 5.9 compares the numbers of faults before and after removing

mutant-faults. Grey bars indicate the numbers of faults before removing mutant-faults for

each participant, and white bars represent the numbers after the removal. One freelancer

(F4) had more than 47% mutant-faults. Freelancer F7 had the least, less than 8%. After

removing these mutant-faults, a total of 437 non-mutant crowdsourced faults were available

to use in this experiment.

115

5.3.5 Other Android App Testing Techniques

This experiment evaluated the fault detection e↵ectiveness of four Android app testing

tools. The same faults were used. Since at the time of conducting the experiment, no

other code-based Android testing tools existed, a direct comparison with Android mutation

testing is di�cult. However, these four Android testing tools represented both the state-

of-the-art and the state-of-the-practice. This section introduces these four Android testing

techniques.

Monkey [8] is o�cially provided by the Android SDK, and is widely used by Android

developers. It can run on both emulators and real devices. Monkey sends pseudo-random

user events to the app, such as touching, flipping, and zooming. Many developers use

Monkey to stress-test their apps.

Dynodroid [115] is an open source project developed by the Android testing research

community. Dynodroid has been used by other researchers to evaluate the e↵ectiveness

of Android testing techniques. Dynodroid views Android apps as event-driven programs

and uses an approach called observe-select-execute to generate test inputs. After executing

an event, it observes the new state of the app and selects a relevant event for the next

execution. Unlike Monkey, Dynodroid considers system events in addition to UI events to

generate both human and machine inputs.

PUMA [81] is a dynamic analysis tool that enables scalable UI automation for Android

apps. It incorporates Monkey and uses the event-driven programming methodology. Given

di↵erent exploration strategies, it can be extended to perform di↵erent dynamic analyses,

such as fraud detection, stress testing, and permission usage profiling.

A3E [47] systematically explores Android apps. It does not require the source code of

the app under test, but constructs a model of the app with transitions among Activities

using static taint analysis algorithms. The model is then used to automatically explore the

Activities in the app.

This study tried to include several other Android testing techniques, such as Mobi-

GUITAR [41], JPF-Android [151], and SwiftHand [54]. However, I could not successfully

116

configure and install them. Problems included missing executable files, missing dependent

libraries, and missing configuration files.

5.3.6 Experimental Results

This section presents the experimental results, concludes the findings to address the research

questions, and discusses key findings.

RQ3: How e↵ective is Android mutation analysis in testing Android apps?

Specifically, how many faults can be detected by mutation-generated tests?

Table 5.10 summarizes the numbers of naturally occurring faults detected by Android

mutation testing. The column Number of Faults provides the number of naturally occurring

faults for each experimental subject app. The column Detected by Android Mutation lists

the number of naturally occurring faults detected by mutation-adequate tests. All the

faults in JustSit, TippyTipper, and WorldClock were detected. Both AlarmKlock and

AndroidomaticKeyer had one fault undetected. Only one in four faults of MunchLife was

found. Overall, mutation-adequate tests detected 18 out of 25 naturally occurring faults.

Table 5.10: Numbers and Percentages of Naturally Occurring Faults Detected by Android
Mutation Testing

Apps Number Detected by Percentage
of Faults Android Mutation

AlarmKlock 7 6 85.71%
AndroidomaticKeyer 3 2 66.67%
Jamendo 6 4 66.67%
JustSit 1 1 100.00%
MunchLife 4 1 25.00%
TippyTipper 3 3 100.00%
WorldClock 1 1 100.00%

TOTAL 25 18 72.00%

Table 5.11 shows the numbers of crowdsourced faults detected by Android mutation

testing. The columns are the same as Table 5.11. All 47 crowdsourced faults in TippyTipper

117

were detected by the mutation-adequate tests, the highest among all the experimental

subjects. Two of 59 faults in AlarmKlock were missed, the second highest percentage in

fault detection. Only 28 out of 56 faults in Lolcat Builder were found by the mutation-

adequate tests, the lowest percentage in fault detection. Overall, the mutation-adequate

tests detected 360 out of 437 crowdsourced faults. Note that all these 437 crowdsourced

faults are non-mutant faults.

Table 5.11: Numbers and Percentages of Crowdsourced Faults Detected by Android Muta-
tion Testing

Apps Number Detected by Percentage
of Faults Android Mutation

AlarmKlock 59 57 96.61%
AndroidomaticKeyer 25 17 68.00%
Jamendo 40 36 90.00%
JustSit 59 52 88.14%
Lolcat Builder 56 28 50.00%
MunchLife 52 41 78.85%
TippyTipper 47 47 100.00%
Tipster 64 51 79.69%
WorldClock 35 31 88.57%

TOTAL 437 360 82.38%

RQ4: How e↵ectively do four other Android testing techniques test Android

apps? Specifically, how many of the faults can be detected by four other Android

testing techniques?

Table 5.12 shows the numbers of naturally occurring faults detected by the four existing

Android testing techniques. Each column with a tool’s name presents the number of faults

detected by this tool. Dynodroid detected four out of seven naturally occurring faults in

AlarmKlock, and Monkey found two for the same subject. Two other Android testing tools,

PUMA and A3E, detected only one fault in AlarmKlock. Both Dynodroid and Monkey

found one out of three faults in AndroidomaticKeyer, but PUMA and A3E did not find any.

These four tools could not find any faults in JustSit, MunchLife, and TippyTipper. Overall,

118

Dynodroid detected the most naturally occurring faults: 7 out of 25. Monkey detected six,

PUMA found three, and A3E discovered only one.

Table 5.13 provides the results of crowdsourced faults detected by the four existing

Android testing techniques. Monkey found 31 out of 59 faults in AlarmKlock, and 26 out of

35 faults in WorldClock. Both are the highest among all the four tools. Dynodroid detected

the most faults in three other subjects. It found 16 of 25 in AndroidomaticKeyer, 22 of 52

in MunchLife, and 22 of 64 in Tipster. Not surprisingly, as all the four tools are designed

and implemented with di↵erent strategies, each one has its strengths and weaknesses at

detecting faults. Overall, Dynodroid also detected the most crowdsourced faults: 138 out

of 437. Monkey found 130, PUMA detected 121, and A3E discovered 79.

RQ5: Is there any di↵erence between using naturally occurring faults and

using crowdsourced faults in empirical evaluations?

All tools detected more hand-seeded faults than naturally occurring faults, although the

di↵erence was not statistically significant (less than 20% across the board). Thus, it is not

possible to conclude that either population of faults led to di↵erent results.

5.3.7 Statistical Analysis

A one-tailed Wilcoxon signed-rank test [156] with the statistical significance level ↵ = 0.05

was used to compare the paired numbers of the naturally occurring faults detected by the

four Android testing tools and Android mutation testing. For HypothesesA, the Wvalue was

0 for both pairs. Because the sample size is less than 10, and at p 0.05 (the statistical

significance level ↵ = 0.05), Wvalue is smaller than the critical value, Wcritical, so the null

hypothesis H0 for HypothesesA is rejected. That is, the experimental results show that

the fault detection e↵ectiveness of Android mutation testing for naturally occurring faults

is significantly greater than Monkey, Dynodroid, PUMA, and A3E.

Again, this study used the one-tailed Wilcoxon signed-rank test (↵ = 0.05) to compare

the paired numbers of the hand-seeded faults detected by the four Android testing tools

and Android mutation testing. For HypothesesB, the Wvalue was 0 for both pairs. At

119

T
ab

le
5.
12

:
N
u
m
b
er
s
an

d
P
er
ce
nt
ag

es
of

N
at
u
ra
ll
y
O
cc
u
rr
in
g
F
au

lt
s
D
et
ec
te
d
by

O
th
er

T
oo

ls
A
p
p
s

#
F
a
u
lt
s

M
o
n
k
ey

%
b
y

D
y
n
o
d
ro

id
%

b
y

P
U
M

A
%

b
y

A
3
E

%
b
y

M
o
n
k
ey

D
y
n
o
d
ro

id
P
U
M

A
A

3
E

A
la
rm

K
lo
ck

7
2

28
.5
7%

4
57

.1
4%

1
14

.2
9%

1
14

.2
9%

A
n
d
ro
id
om

at
ic
K
ey
er

3
1

33
.3
3%

1
33

.3
3%

0
0.
00

%
0

0.
00

%
Ja

m
en

d
o

6
2

33
.3
3%

2
33

.3
3%

2
33

.3
3%

0
0.
00

%
Ju

st
S
it

1
0

0.
00

%
0

0.
00

%
0

0.
00

%
0

0.
00

%
M
u
n
ch
L
if
e

4
0

0.
00

%
0

0.
00

%
0

0.
00

%
0

0.
00

%
T
ip
py

T
ip
p
er

3
0

0.
00

%
0

0.
00

%
0

0.
00

%
0

0.
00

%
W
or
ld
C
lo
ck

1
1

10
0.
00

%
0

0.
00

%
0

0.
00

%
0

0.
00

%

T
O
T
A
L

2
5

6
2
4
.0
0
%

7
2
8
.0
0
%

3
1
2
.0
0
%

1
4
.0
0
%

120

T
ab

le
5.
13

:
N
u
m
b
er
s
an

d
P
er
ce
nt
ag

es
of

H
an

d
-s
ee
d
ed

F
au

lt
s
D
et
ec
te
d
by

O
th
er

T
oo

ls
A
p
p
s

#
F
a
u
lt
s

M
o
n
k
ey

%
b
y

D
y
n
o
d
ro

id
%

b
y

P
U
M

A
%

b
y

A
3
E

%
b
y

M
o
n
k
ey

D
y
n
o
d
ro

id
P
U
M

A
A

3
E

A
la
rm

K
lo
ck

59
31

52
.5
4%

20
33

.9
0%

26
44

.0
7%

1
1.
69

%
A
n
d
ro
id
om

at
ic
K
ey
er

25
5

20
.0
0%

16
64

.0
0%

4
16

.0
0%

1
4.
00

%
Ja

m
en

d
o

40
7

17
.5
0%

22
55

.0
0%

22
55

.0
0%

22
55

.0
0%

Ju
st
S
it

59
16

27
.1
2%

7
11

.8
6%

26
44

.0
7%

15
25

.4
2%

L
ol
ca
t
B
u
il
d
er

56
3

5.
36

%
6

10
.7
1%

19
33

.9
3%

19
33

.9
3%

M
u
n
ch
L
if
e

52
19

36
.5
4%

22
42

.3
1%

5
9.
62

%
3

5.
77

%
T
ip
py

T
ip
p
er

47
10

21
.2
8%

11
23

.4
0%

0
0.
00

%
0

0.
00

%
T
ip
st
er

64
13

20
.3
1%

22
34

.3
8%

7
10

.9
4%

12
18

.7
5%

W
or
ld
C
lo
ck

35
26

74
.2
9%

12
34

.2
9%

12
34

.2
9%

6
17

.1
4%

T
O
T
A
L

4
3
7

1
3
0

2
9
.7
5
%

1
3
8

3
1
.5
8
%

1
2
1

2
7
.6
9
%

7
9

1
8
.0
8
%

121

p 0.05, Wvalue is smaller than the critical value, Wcritical. Thus, the null hypothesis

H0 for HypothesesB is rejected, too. That is, the experimental results show that the fault

detection e↵ectiveness of Android mutation testing for the hand-seeded faults is significantly

greater than four other Android testing techniques.

In other words, for both groups of faults, the Android mutation tests found more faults

than the four other Android testing techniques, and at a statistically significant level (more

than twice as many). Because Android mutation testing addresses more unique character-

istics and testing challenges of Android apps, and specifically targets faults that commonly

occur during Android app programming, the results are not surprising. Figure 5.10 and

5.11 provide two more clear comparisons among all the tools used in this evaluation.

For the first time, Android app developers have a strong technique to design e↵ective

tests or evaluate the quality of existing tests.

5.3.8 Analysis of Undetected Faults

According to Tables 5.10 and 5.11, around 18% of hand-seeded faults and 28% of naturally

occurring faults were not detected by the Android mutation-adequate tests. This section

analyzes these undetected faults.

Only 50% of the hand-seeded faults in Lolcat Builder were detected by the Android

mutation-adequate tests. Lolcat Builder manipulates images by embedding captions into

them, but the tests designed in this study did not check images to decide whether tests

failed or not. For example, Figure 5.12 shows two undetected faults of Lolcat Builder. The

screenshot on the left is the correct version, in which “Hello world” was added at the top

left corner of the image as the caption. The first fault in the middle of Figure 5.12 could

not display the correct caption, and the second fault on the right of Figure 5.12 embedded

the caption at a wrong location (bottom right of the image). In the experiment, the tests

actually caused the apps under test to produce such incorrect images, but the test oracles

were insu�cient to “see” and verify the images. Also, if the font or color of the embeded

caption is mistakenly displayed, no test oracle can notice. That is, the faults in the apps

122

Figure 5.10: A Comparison of Fault Detection E↵ectiveness with Naturally Occurring Faults

were propagated, but not observed.

Similarly, only 68% of the hand-seeded faults in AndroidomaticKeyer were detected by

the Android mutation-adequate tests. AndroidomaticKeyer produces Morse code for user-

entered text and plays it through speakers. Figure 5.13 shows an example undetected fault.

No matter what test inputs were provided, no tests oracle could “hear,” capture, and verify

the audio of the Morse code played through the speaker of devices.

Overall, this is not a problem with Android mutation testing, but a more general ob-

servability problem with test oracles. A similar observability problem with the test oracles

resulted in failures caused by the tests that should have killed the mutant to not be observed.

123

Figure 5.11: A Comparison of Fault Detection E↵ectiveness with Crowdsourced Faults

Li and O↵utt [105] discussed this problem in the context of test oracles.

In addition to the test oracle problem, testing randomness is another area that the

Android mutation-adequate tests did not do well. Randomness shu✏es conditions to make

the game process never the same as the previous. Many games rely on randomness to

increase entertainment, replayability, and unpredictability. Figure 5.14 shows an example

of incorporating randomness in MunchLife, one of the subjects in this experiment. Players

of MunchLife need to roll a die to determine the next move in the game. However, no test

oracle can verify whether the game displays the die correctly, since (1) the die is technically

an image that falls into the previous observability problem, (2) the process of rolling a die

124

Figure 5.12: Two Undetected Image Faults

is random, and any face of the die can be a possible and correct result. If there is a fault

in the implementation of the random process, such as only displaying one face of the die,

the fault cannot be detected. Or, if there is a fault in displaying the die, no tests in this

experiment can detect it due to the observability problem.

Some faults can only be revealed when one app broadcasts an Intent to other apps,

which the Android mutation-adequate tests in this study did not do. Figure 5.15 shows an

example inter-app event in Lolcat Builder. The left screenshot in Figure 5.15 shows that

after constructing an image with caption, Lolcat Builder lets users share the image via email

or message. Users can click on “Messaging,” and then the Android system should launch

the default message client of the device, with a new message created including the image

(the right screenshot in Figure 5.15). However, the Android mutation-adequate tests were

confined in the current app, and not able to provide any input for email, message, or other

apps.

125

Figure 5.13: An Example Undetected Fault

5.3.9 An Additional Common Fault

An additional common fault across several subjects was identified in this study. Many apps

include a “settings” or “preferences” menu to let users configure the apps. But sometimes

the modified settings were not properly stored after the user changed them, leading to other

incorrect behaviors of the app. Figure 5.16 shows an example fault. In MunchLife, users

can customize a max level, and whoever reaches the max level wins the game. The left

screenshot in Figure 5.16 shows that the max level was set to 10. However, in the faulty

app (the right screenshot in Figure 5.16), the user achieved a level of 12, which had exceeded

the max level. Undoubtedly, the modified setting was not put into e↵ect.

126

Figure 5.14: Testing Randomness in Games

Additional mutation operators should be designed to encourage testers to design tests

to ensure the settings menu works correctly.

5.3.10 Threats to Validity

Similar to most experiments in software engineering, this empirical evaluation has several

threats to validity, which could potentially influence the experimental results. Even though

some of these threats may not be completely avoided, this evaluation took measures to

minimize their influence.

Internal validity: One potential threat to internal validity is that only one set of

127

Figure 5.15: An Example Inter-App Event

Android mutation-adequate tests was designed, so it is possible that the results of fault

detection may di↵er if using di↵erent tests. The strategy of using multiple test sets has

been studied and called into question in other research [131].

Also, this study could not guarantee that the crowdsourced faults were representative

faults. To avoid any possible bias regarding this threat, this study used a rigorous selection

process to review and recruit every participant, as discussed in Section 5.3.4. All the par-

ticipants were invited to create faults based on their own Android development experience.

They were not provided any instructions or guidelines. In addition, the crowdsourced faults

that were the same as mutants were eliminated. This experimental study assumed that all

128

Figure 5.16: An Additional Common Fault

the subject apps do not contain any faults before hand-seeding faults to them.

In this study, all the naturally occurring faults were collected manually, every crowd-

sourced fault was hand-inspected, and equivalent mutants were identified by hand, too.

All the calculation and statistical analysis in this experimental study were conducted using

Microsoft Excel. Manual work could introduce mistakes into the artifacts that may a↵ect

the final results.

External validity: This study cannot guarantee that the subject apps are represen-

tative. To ameliorate this, this study selected the subject apps that were diverse in size,

functionality, and features. Also, all of them have been used as subjects by other researchers.

Construct validity: The implementation of muDroid and the associated mutation

129

operators may include software faults. The Android testing tools were obtained from their

websites, and configured and installed in the experimental environment of this study. These

four tools, and the construction of the experimental environment may include faults. In

this study, muDroid and the experimental environment were constantly tested to make sure

they work correctly. This study assumed the four Android testing tools worked as expected

and did not contain faults.

5.4 Experimental Evaluation of Redundancy in Android Mu-

tation Testing

The two previous experimental evaluations explored the feasibility of Android mutation

testing and evaluated its fault detection e↵ectiveness using both naturally occurring faults

and crowdsourced faults. The results show that Android mutation testing is e↵ective at

detecting both types of software faults.

However, a major hurdle of Android mutation testing is its cost, in terms of several

aspects. Even though mobile devices have already evolved from slow devices with tiny,

low-resolution, and black-white screens that are only capable of voice calling, texting, and

browsing news without any pictures or animations, to portable computers and entertainment

terminals, most Android emulators and devices work much slower than personal computers.

Therefore, testing Android apps takes more execution time than testing software on desktops

and laptops. In addition, testing traditional software is conducted on one single computer

or server, while testers for Android apps need to design and compile tests on a computer,

then deploy to a connected Android device or emulator. The compiling, deploying, and

transmitting also take time. Moreover, while Android mutation testing has been found to

be e↵ective at designing high-quality test cases and assessing test cases generated by other

testing techniques, the number of mutants that need to be executed increases the cost of

Android mutation testing. For example, if an Android app has 1,000 mutants, and the

tester creates 20 test cases, and each test takes an average of one minute to run, it will take

130

13.8 days to finish the entire mutation analysis process.

The motivation of this experimental evaluation was to speed up mutation testing by

finding redundant mutation operators that can be excluded from Android mutation testing,

while still maintaining the e↵ectiveness of Android mutation testing. Specifically, this ex-

perimental study analyzed redundancy among the 19 Java traditional mutation operators

and the 17 Android mutation operators. Some of these mutation operators may be redun-

dant and do not contribute to the quality of tests. If redundant mutation operators can

be identified and excluded, the cost of mutation will be reduced. All mutants generated

from the same mutation operator are of the same type. So, this study determines whether

mutants of one type are killed by the tests designed to kill mutants of other types.

In particular, the following research questions were addressed:

RQ6: How many mutants of one particular type can be killed by tests created to kill

another type of mutants?

RQ7: Which types of mutants are less likely killed by tests created to kill other types

of mutants?

RQ8: Can any mutation operator be excluded or improved without significantly reduc-

ing e↵ectiveness?

5.4.1 Experimental Subjects

This experimental evaluation reused four open source Android apps from previous experi-

ments, including 12 Android classes and their XML layout and configuration files: JustSit

[22], MunchLife [26], TippyTipper [33], and Tipster [59]. These subject apps were described

in Section 5.2.1. Table 5.14 provides an overview of the files used in this experimental eval-

uation. The Lines of Code (LOC) in the Java files were measured with Metrics [25], and

the numbers of XML nodes (elements) in the XML layout and manifest (configuration) files

were counted with a specific XML parser plugin of muDroid.

The 19 Java traditional method-level mutation operators from muJava [114] generated

1,947 muJava mutants, and the 17 Android mutation operators developed in this research

131

Table 5.14: Details of Experimental Subjects

Apps Components LOC XML muJava Android

Elements Mutants Mutants

JustSit JustSit.java 444 394 258

main.xml 13

About.java 48 9 13

about.xml 6

RunTimer.java 99 131 25

run timer.xml 3

JsSettings.java 61 28 31

settings.xml 6

AndroidManifest.xml 14 0 4

MunchLife MunchLifeActivity.java 384 534 158

main.xml 12

Settings.java 68 47 8

preferences.xml 5

AndroidManifest.xml 10 0 1

TippyTipper TippyTipper.java 239 105 198

main.xml 20

SplitBill.java 134 124 49

SplitBill.xml 31

Total.java 279 231 115

Total.xml 44

About.java 30 4 14

About.xml 10

Settings.java 61 13 15

Tipster TipsterActivity.java 297 327 129

main.xml 30

Total 2144 204 1947 1018

132

generated 1,018 Android mutants. The number of muJava mutants ranged from four for

About.java in TippyTipper to 534 for MunchLifeActivity.java in MunchLife, and the number

of Android mutants ranges from one for AndroidManifest.xml in MunchLife to 258 for

JustSit.java in JustSit.

5.4.2 Redundancy Scores

The mutation-adequate test set Ti includes tests that are specifically designed to kill all

the mutation in type i. To quantify the redundancy among Java traditional method-level

mutation operators and Android mutation operators, Praphamontripong and O↵utt [140]

defined the redundancy score ri,j to be:

Redundancy Score: ri,j =
mi,j

Mj
⇥ 100% (5.1)

where:

mi,j = Number of mutants of type j killed by the mutation-adequate test set Ti

Mj = Total number of non-equivalent mutants of type j

In other words, the redundancy score ri,j is the percentage of the mutants of type

j killed by test set that is adequate for type i. For example, a program has 100 non-

equivalent Relational Operator Replacement (ROR) mutants and 200 non-equivalent Short-

cut Arithmetic Operator Insertion (AOIS) mutants. A tester designs a test set that kills all

the non-equivalent AOIS mutants, getting an AOIS mutation-adequate test set. If this AOIS

mutation-adequate test set also kills 60 ROR mutants, the redundancy score rAOIS,ROR in

this program is 60÷ 100 = 60%.

Note that in one subject app, according to the definition above, every possible pair of

mutation operators has a redundancy score. Then, across all the subject apps in an ex-

perimental evaluation, there are multiple redundancy scores for the same pair of mutation

operators with di↵erent values. For example, rAOIS,ROR may be 60% in subject s1, 50% in

133

s2, and 40% in s3. Consequently, a score that can represent the overall redundancy rela-

tionship is required. Praphamontripong and O↵utt [140] defined two types of redundancy

scores: overall redundancy score and average redundancy score. The overall redundancy

score roverall,i,j of a mutation operator is the percentage of the cumulative number of killed

mutants of type j from all the subjects killed by an adequate test set that is specifically

designed to kill the mutants of type i, while the average redundancy score raverage,i,j of a

mutation operator is an average value of ri,j in each subject.

Redundancy score is an quantitative indicator of whether a mutation operator is redun-

dant or not. For example, if a mutation operator has a redundancy score of 0%, it means no

tests that were designed to kill other types of mutants could kill the mutants of this type.

That is, this mutation operator is not redundant at all. However, if a mutation operator

has a redundancy score of 100% for the tests that are specifically designed to kill mutants

of another type, it means this operator is totally redundant and does not contribute to the

quality of tests. Excluding it from the mutation analysis can reduce cost without reducing

e↵ectiveness. If a mutation operator has a redundancy score of 50%, half of the mutants

generated by this operator are killed by the tests designed for other types of mutants.

Sometimes, a subject app may not generate every type of mutants as it does not have the

necessary features required by certain mutation operators. Then, no tests will be designed

for this mutation type.

5.4.3 Experimental Procedure

This study includes four steps to obtain the redundancy scores among all the Android

mutation operators. Figure 5.17 shows a general experimental procedure:

1. Generate mutants: Given a subject, the 19 Java traditional method-level mutation

operators and the 17 Android mutation operators were used to to generate mutants,

denoted by mn, that is, mutants created by the operator n.

2. Eliminate equivalent mutants and design tests: For each set of mutants mn,

134

Figure 5.17: Experimental Procedure

all equivalent mutants were identified and eliminated by hand. Then, a set of test

cases was designed to kill all the non-equivalent mutants, denoted by tn, that is, tests

designed to kill the mutants of type n.

3. Execute tests: For each set of test cases tn, execute it on every type of mutants,

from m1 to mn.

4. Compute the redundancy scores: For each pair of mutation operators and for

each subject app, the redundancy score ri,j was computed, that is, the percentage

of the mutants of type j killed by the test cases ti specifically designed to kill the

mutants of type i. Then, to get an overview across all the subjects in the experiment,

an overall redundancy score and an average redundancy score were computed for each

type of mutant.

135

5.4.4 Experiment Results and Discussion

This section presents the experimental results and discusses key findings.

RQ6: How many mutants of one particular type can be killed by tests created

to kill another type of mutants?

Table 5.15 shows the average redundancy scores across all the subject apps obtained

from the experiment. If across all the subject apps, the mutants of type i and the mutants

of type j were never generated from the same subject at the same time, the Android

mutation-adequate test sets of these two types will not have the chance to execute against

the mutants of the other. These are indicated with “n/a.”

Four Java traditional method-level mutation operators, ASRS, LOD, SOR, and AODS,

did not generate any mutants, and four Android mutation operators, ETR, LCM, SMDL,

and WCD, did not generate any mutants. Thus, these mutation operators are not listed in

Table 5.15.

The WakeLock Release Deletion (WRD) mutation operator deletes every method call to

release() to force the Android app not to release the wake lock. It mimics a typical energy

bug, which commonly happens when the app does not release system resources during an

idle state. To kill WRD mutants, testers need to use the dumpsys command in command

line, which can capture system information from Android devices. This command can help

testers identify active wake locks after the app under test has been closed. Figure 4.21

in Section 4.2.6 showed an example of using dumpsys to kill WRD mutants. Since using

the dumpsys command is a unique way of designing tests and cannot kill other types of

mutants, WRD mutants and tests were not used in this experiment.

The Activity Permission Deletion (APD) mutation operator deletes permission requests

from configuration files one at a time, because some apps aggressively request unnecessary

permissions, which may create security vulnerabilities in Android systems. If an APD

mutant cannot be killed by any tests, it means that the app asked for a permission it did

not need. Therefore, testers need to test whether a permission request is necessary to the

app. Instead of designing tests to kill mutants, the principle of APD is to try all possible

136

T
ab

le
5.
15

:
A
ve
ra
ge

R
ed

u
n
d
an

cy
S
co
re
s

m
u
J
av

a
M

u
ta

ti
o
n

O
p
er

a
to

r
A
n
d
ro

id
M

u
ta

ti
o
n

O
p
er

a
to

r

A
O
D
U

A
O
IS

A
O
IU

A
O
R
B

C
D
L

C
O
D

C
O
I

C
O
R

L
O
I

L
O
R

O
D
L

R
O
R

S
D
L

V
D
L

B
W

D
B
W

S
E
C
R

F
O
B

F
O
N

IP
R

IT
R

M
D
L

O
R
L

T
V
D

T
W

D

te
st

A
O
D
U

—
—

0.
18

2
0.
35

1
0.
25

0
0.
00

0
0.
00

0
0.
10

8
0.
00

0
0.
28

6
0.
00

0
0.
05

3
0.
16

9
0.
16

5
0.
00

0
0.
12

5
0.
33

3
0.
20

0
0.
00

0
0.
91

7
0.
00

0
0.
16

7
0.
75

0
0.
00

0
0.
00

0
0.
50

0

te
st

A
O
IS

1.
00

0
—

—
0.
81

9
0.
87

5
0.
75

0
1.
00

0
0.
53

7
0.
52

4
0.
63

1
0.
00

0
0.
49

1
0.
50

4
0.
54

5
0.
93

7
0.
68

8
0.
11

1
0.
86

9
0.
16

7
0.
56

7
0.
80

0
0.
77

8
0.
87

5
0.
02

1
0.
00

0
0.
66

7

te
st

A
O
IU

1.
00

0
0.
54

5
—

—
0.
86

5
0.
60

0
0.
75

0
0.
46

6
0.
47

6
0.
68

1
0.
00

0
0.
40

2
0.
44

3
0.
56

0
0.
91

6
0.
81

3
0.
16

7
0.
86

9
0.
12

5
0.
47

2
0.
80

0
0.
94

4
0.
78

1
0.
01

6
0.
00

0
0.
66

7

te
st

A
O
R
B

1.
00

0
0.
56

3
0.
68

8
—

—
0.
75

0
0.
75

0
0.
50

0
0.
64

3
0.
56

1
0.
00

0
0.
52

7
0.
42

9
0.
39

6
0.
94

7
0.
68

8
0.
11

1
0.
86

9
0.
00

0
0.
45

8
0.
80

0
0.
77

8
0.
85

0
0.
02

5
0.
00

0
0.
66

7

te
st

C
D
L

1.
00

0
0.
60

1
0.
76

8
0.
63

3
—

—
0.
75

0
0.
45

6
0.
64

3
0.
64

5
n
/a

0.
56

7
0.
49

7
0.
54

6
0.
70

2
0.
58

3
0.
11

1
0.
80

3
0.
00

0
0.
33

3
n
/a

1.
00

0
0.
90

0
0.
02

5
0.
05

0
0.
50

0

te
st

C
O
D

1.
00

0
0.
21

1
0.
63

2
0.
33

3
1.
00

0
—

—
0.
50

0
0.
28

6
0.
50

0
n
/a

0.
47

4
0.
32

6
0.
34

2
0.
33

3
0.
25

0
0.
33

3
n
/a

0.
00

0
1.
00

0
n
/a

n
/a

1.
00

0
0.
00

0
0.
00

0
0.
00

0

te
st

C
O
I

1.
00

0
0.
42

4
0.
47

1
0.
61

3
0.
50

0
1.
00

0
—

—
0.
90

5
0.
57

4
0.
50

0
0.
43

9
0.
85

4
0.
62

1
0.
57

9
0.
83

3
0.
41

7
0.
77

5
0.
20

0
0.
70

8
0.
80

0
0.
95

8
0.
85

0
0.
02

5
0.
00

0
0.
50

0

te
st

C
O
R

0.
00

0
0.
41

2
0.
38

5
0.
07

5
0.
12

5
0.
75

0
0.
87

4
—

—
0.
50

5
n
/a

0.
27

7
0.
72

5
0.
56

3
0.
02

6
0.
37

5
0.
33

3
0.
33

3
0.
33

3
0.
66

7
n
/a

1.
00

0
0.
83

3
0.
04

2
0.
00

0
0.
00

0

te
st

L
O
I

1.
00

0
0.
77

7
0.
86

8
0.
76

5
0.
60

0
1.
00

0
0.
46

1
0.
57

1
—

—
0.
00

0
0.
42

5
0.
64

5
0.
59

0
0.
91

6
0.
81

3
0.
27

8
0.
86

9
0.
12

5
0.
47

2
0.
80

0
0.
77

8
0.
78

1
0.
01

6
0.
00

0
0.
66

7

te
st

L
O
R

1.
00

0
0.
28

6
0.
17

6
0.
50

0
n
/a

n
/a

0.
10

5
n
/a

0.
13

8
—

—
0.
00

0
0.
15

2
0.
13

2
0.
00

0
1.
00

0
n
/a

0.
60

0
0.
00

0
0.
83

3
0.
80

0
0.
33

3
0.
50

0
0.
00

0
0.
00

0
1.
00

0

te
st

O
D
L

1.
00

0
0.
77

7
0.
84

7
0.
88

5
1.
00

0
1.
00

0
0.
68

9
1.
00

0
0.
79

6
0.
50

0
—

—
0.
71

2
0.
67

3
1.
00

0
0.
79

2
0.
27

8
0.
86

9
0.
14

3
0.
56

7
0.
80

0
0.
97

2
0.
89

3
0.
01

8
0.
04

2
0.
66

7

te
st

R
O
R

1.
00

0
0.
65

4
0.
54

3
0.
83

8
1.
00

0
1.
00

0
0.
90

0
1.
00

0
0.
62

1
0.
50

0
0.
66

4
—

—
0.
69

4
0.
65

8
1.
00

0
0.
41

7
1.
00

0
0.
20

0
0.
70

8
0.
80

0
0.
95

8
0.
85

0
0.
12

5
0.
00

0
0.
50

0

te
st

S
D
L

1.
00

0
0.
73

0
0.
92

1
0.
92

0
1.
00

0
1.
00

0
0.
92

6
1.
00

0
0.
85

3
0.
50

0
0.
91

6
0.
94

5
—

—
0.
93

7
1.
00

0
0.
27

8
1.
00

0
0.
25

0
0.
63

9
0.
80

0
0.
97

2
0.
90

6
0.
07

8
0.
08

3
1.
00

0

te
st

V
D
L

1.
00

0
0.
70

6
0.
74

3
0.
70

8
1.
00

0
0.
75

0
0.
36

8
0.
64

3
0.
65

3
0.
50

0
0.
52

7
0.
42

9
0.
42

4
—

—
0.
68

8
0.
11

1
0.
86

9
0.
00

0
0.
45

8
0.
40

0
0.
97

2
0.
85

0
0.
02

5
0.
00

0
0.
66

7

te
st

B
W

D
1.
00

0
0.
40

1
0.
56

6
0.
43

1
0.
33

3
0.
75

0
0.
56

1
0.
78

6
0.
58

3
0.
00

0
0.
31

6
0.
45

9
0.
33

1
0.
35

5
—

—
0.
27

8
1.
00

0
0.
00

0
0.
45

8
0.
80

0
0.
83

3
0.
68

8
0.
03

1
0.
00

0
0.
00

0

te
st

B
W

S
0.
00

0
0.
00

9
0.
44

5
0.
03

3
0.
00

0
0.
00

0
0.
20

0
0.
00

0
0.
41

8
n
/a

0.
01

3
0.
04

8
0.
18

5
0.
01

8
1.
00

0
—

—
0.
00

0
0.
00

0
0.
33

3
n
/a

0.
00

0
0.
91

7
0.
00

0
0.
00

0
0.
00

0

te
st

E
C
R

1.
00

0
0.
50

0
0.
53

2
0.
57

5
0.
75

0
n
/a

0.
45

3
1.
00

0
0.
52

1
0.
00

0
0.
40

0
0.
39

7
0.
47

0
0.
47

4
1.
00

0
0.
00

0
—

—
0.
00

0
0.
27

8
1.
00

0
0.
97

2
0.
58

3
0.
04

2
0.
00

0
0.
50

0

te
st

F
O
B

0.
50

0
0.
00

4
0.
50

3
0.
02

0
0.
00

0
0.
00

0
0.
08

0
0.
00

0
0.
44

9
0.
00

0
0.
00

6
0.
04

9
0.
31

2
0.
01

1
0.
00

0
0.
00

0
0.
00

0
—

—
0.
47

2
0.
00

0
0.
00

0
0.
28

1
0.
00

0
0.
00

0
0.
00

0

te
st

F
O
N

0.
50

0
0.
13

8
0.
57

8
0.
36

3
0.
12

5
0.
00

0
0.
27

6
0.
33

3
0.
53

7
0.
00

0
0.
12

5
0.
24

6
0.
33

8
0.
07

9
0.
50

0
0.
00

0
0.
65

2
0.
00

0
—

—
0.
40

0
0.
63

9
0.
60

7
0.
01

8
0.
00

0
0.
00

0

te
st

IP
R

1.
00

0
0.
28

6
0.
35

3
0.
50

0
n
/a

n
/a

0.
10

5
n
/a

0.
13

8
0.
00

0
0.
38

9
0.
15

2
0.
38

8
0.
00

0
1.
00

0
n
/a

1.
00

0
0.
00

0
0.
83

3
—

—
0.
50

0
0.
50

0
0.
00

0
0.
00

0
0.
00

0
E
x
cl
u
d
in
g
:

te
st

IT
R

1.
00

0
0.
26

2
0.
47

1
0.
36

7
0.
25

0
n
/a

0.
18

6
0.
00

0
0.
41

5
0.
00

0
0.
24

0
0.
13

5
0.
25

1
0.
03

5
0.
38

9
0.
00

0
0.
56

3
0.
00

0
0.
27

8
0.
80

0
—

—
0.
75

0
0.
00

0
0.
00

0
0.
50

0
A
O
D
S

A
P
D

te
st

M
D
L

0.
50

0
0.
06

2
0.
52

0
0.
04

0
0.
25

0
0.
00

0
0.
17

1
0.
33

3
0.
47

2
0.
00

0
0.
02

3
0.
10

9
0.
33

4
0.
02

1
0.
12

5
0.
00

0
0.
11

1
0.
00

0
0.
47

2
0.
00

0
0.
33

3
—

—
0.
01

6
0.
00

0
0.
00

0
A
S
R
S

E
T
R

te
st

O
R
L

0.
00

0
0.
00

7
0.
50

3
0.
02

0
0.
00

0
0.
00

0
0.
08

0
0.
00

0
0.
44

9
0.
00

0
0.
00

6
0.
01

9
0.
29

1
0.
01

1
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
47

2
0.
00

0
0.
00

0
0.
21

9
—

—
0.
00

0
0.
00

0
L
O
D

L
C
M

te
st

T
V
D

0.
50

0
0.
01

0
0.
44

9
0.
02

5
0.
20

0
0.
00

0
0.
10

0
0.
00

0
0.
42

6
0.
00

0
0.
22

3
0.
06

2
0.
36

3
0.
21

1
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
45

8
0.
00

0
0.
00

0
0.
83

3
0.
08

3
—

—
0.
00

0
S
O
R

S
M
D
L

te
st

T
W

D
0.
50

0
0.
09

5
0.
51

8
0.
16

7
0.
00

0
0.
25

0
0.
19

2
0.
14

3
0.
47

6
0.
00

0
0.
14

7
0.
15

7
0.
18

3
0.
00

0
0.
16

7
0.
33

3
0.
60

3
0.
00

0
0.
61

1
0.
00

0
0.
50

0
0.
83

3
0.
00

0
0.
00

0
—

—
W
C
D

A
v
er

a
g
e

0
.7
7
1

0
.3
6
0

0
.5
6
9

0
.4
5
0

0
.4
6
5

0
.5
3
8

0
.3
8
7

0
.4
6
8

0
.5
1
4

0
.1
2
5

0
.3
1
9

0
.3
6
1

0
.4
0
4

0
.3
8
2

0
.5
7
6

0
.1
7
7

0
.6
0
2

0
.0
6
4

0
.5
6
1

0
.5
3
0

0
.6
2
6

0
.7
4
3

0
.0
2
5

0
.0
0
7

0
.3
7
5

W
R
D

137

tests to identify those APD mutants that can never be killed by any tests. Thus, APD was

not included in this experiment either.

RQ7: Which types of mutants are less likely to be killed by tests created to

kill other types of mutants?

Some Android mutants are very hard to kill, and they are sometimes grouped by type.

Table 5.16 extracts the average redundancy scores of Fail on Back (FOB) mutants. On

average, only 6.4% of Fail on Back (FOB) mutants were killed by the mutation adequate

test sets of other mutation operators, with the highest redundancy score of 33.3%. FOB

injects a “Fail on Back” event handler into every Activity class. Since Android apps are

event-based programs, their execution flows rely heavily on events initiated by di↵erent user

actions. The Back button lets users move backward to the previous Activity, interrupting

the usual execution flow. It is usually not on the happy path from the perspective of software

design, and results in a common fault of Android apps, that is the crash when the Back

button is clicked. To kill FOB mutants, testers need to design tests that press the Back

button at least once at every Activity. However, in this experiment, very few tests designed

for other mutation operators included the user action of clicking the Back button.

The TextView Deletion (TVD) mutation operator is another type for which very few

mutants were killed in the experiment. Table 5.17 extracts the average redundancy scores of

TVD. On average, less than 1% of TVD mutants were killed by the mutation adequate test

sets of other mutation operators, with the highest redundancy score of 8.3%. Figure 4.13 in

Section 4.2.3 provided an example screenshot of a TVD mutant. Since TextView widgets

cannot be edited by users, they usually do not associate with any user events, nor require

any event handlers from the implementation of the app. However, TextView widgets are

widely used by developers to present essential information. TVD deletes TextView widgets

from screens one at a time. Killing a TVD mutant needs a test to ensure that TextView

widget displays correct information. Very few tests checked TextView widgets’ contents,

unless the TextView widget was used to display some variable results, such as a tip amount.

The Orientation Lock (ORL) mutation operator had very few mutants killed in the

138

Table 5.16: Average Redundancy Scores of Fail on Back (FOB)

Mutation Adequate Fail on Back

Test Set (FOB)

test AODU 0.000

test AOIS 0.167

test AOIU 0.125

test AORB 0.000

test CDL 0.000

test COD 0.000

test COI 0.200

test COR 0.333

test LOI 0.125

test LOR 0.000

test ODL 0.143

test ROR 0.200

test SDL 0.250

test VDL 0.000

test BWD 0.000

test BWS 0.000

test ECR 0.000

test FOB ——

test FON 0.000

test IPR 0.000

test ITR 0.000

test MDL 0.000

test ORL 0.000

test TVD 0.000

test TWD 0.000

Average 0.064

139

Table 5.17: Average Redundancy Scores of TextView Deletion (TVD)

Mutation Adequate TextView Deletion

Test Set (TVD)

test AODU 0.000

test AOIS 0.000

test AOIU 0.000

test AORB 0.000

test CDL 0.050

test COD 0.000

test COI 0.000

test COR 0.000

test LOI 0.000

test LOR 0.000

test ODL 0.042

test ROR 0.000

test SDL 0.083

test VDL 0.000

test BWD 0.000

test BWS 0.000

test ECR 0.000

test FOB 0.000

test FON 0.000

test IPR 0.000

test ITR 0.000

test MDL 0.000

test ORL 0.000

test TVD ——

test TWD 0.000

Average 0.007

140

experiment. Table 5.18 lists the average redundancy scores of ORL. On average, only

2.5% of Orientation Lock (ORL) mutants were killed by the mutation adequate test sets

of other mutation operators, with the highest redundancy score of 12.5%. Most mobile

devices have the unique feature of being able to change the screen orientation. To use to

this feature, many apps change their layout of the GUI when the orientation changes. For

example, Figure 1.9 in Section 1.2 provided an example of a simple calculator (left) with

portrait orientation that becomes a scientific calculator (right) when switched to landscape

orientation. However, di↵erent screen sizes and resolutions, and di↵erent devices, make

switching the orientation di�cult for the developers and lead to many faults in Android apps.

ORL mutants freeze the orientation of an Activity by inserting a special locking statement

into the source code, so that no switching actions can be accepted by the app. To kill ORL

mutants, testers need to design tests that explicitly change the orientation, then check

whether the GUI structure is displayed as expected after switching the orientation. Again,

in this experiment, no other mutation operators consider switching the screen orientation.

RQ8: Are any Android mutation operators redundant enough to be ex-

cluded, or can any be improved? In particular, can the mutants generated from

this mutation operator always be killed by tests created to kill another type of

mutant?

According to the results, several mutation operators generated mutants that were easily

killed by the tests designed to kill other types of mutants.

Among the 17 Android mutation operators, the Activity Lifecycle Method Deletion

(MDL) mutation operator has the highest mean redundancy score (74.3%). Table 5.19 lists

the average redundancy scores of MDL. Android operating systems require all components

in Android apps to behave according to a pre-defined lifecycle. Figure 1.5 in Section 1.2

provided an overview of the Activity component lifecycle. If developers want to define a

specific behavior when an Activity switches its state, they must follow the lifecycle and

override correct methods in it. For example, after an Activity is launched, three methods,

onCreate(), onStart(), and onResume(), need to be executed sequentially before the user

141

Table 5.18: Average Redundancy Scores of Orientation Lock (ORL)

Mutation Adequate Orientation Lock

Test Set (ORL)

test AODU 0.000

test AOIS 0.021

test AOIU 0.016

test AORB 0.025

test CDL 0.025

test COD 0.000

test COI 0.025

test COR 0.042

test LOI 0.016

test LOR 0.000

test ODL 0.018

test ROR 0.125

test SDL 0.078

test VDL 0.025

test BWD 0.031

test BWS 0.000

test ECR 0.042

test FOB 0.000

test FON 0.018

test IPR 0.000

test ITR 0.000

test MDL 0.016

test ORL ——

test TVD 0.083

test TWD 0.000

Average 0.025

142

Table 5.19: Average Redundancy Scores of Activity Lifecycle Method Deletion (MDL)

Mutation Adequate Activity Lifecycle Method

Test Set Deletion (MDL)

test AODU 0.750

test AOIS 0.875

test AOIU 0.781

test AORB 0.850

test CDL 0.900

test COD 1.000

test COI 0.850

test COR 0.833

test LOI 0.781

test LOR 0.500

test ODL 0.893

test ROR 0.850

test SDL 0.906

test VDL 0.850

test BWD 0.688

test BWS 0.917

test ECR 0.583

test FOB 0.281

test FON 0.607

test IPR 0.500

test ITR 0.750

test MDL ——

test ORL 0.219

test TVD 0.833

test TWD 0.833

Average 0.743

143

Figure 5.18: A Trivial MDL Mutant

can see the Activity on the screen. MDL deletes each overriding method to force Android

to call the version in the super class. This requires the tester to design tests that ensure the

app is in the correct expected state. However, many developers use onCreate() to define

and initialize GUI structures of their apps. After MDL deletes the content of onCreate(),

no GUI widgets can be displayed for the current Activity. Figure 5.18 shows an example of

this situation. The MDL mutant on the right is trivial, and any test case that looks for a

GUI widget or initiates a user event can kill this MDL mutant.

A recommendation is that instead of simply deleting the content of onCreate(), an alter-

native implementation is to move the content of onCreate() to onStart() and onResume().

Figure 5.19 gives an example of the recommended implementation. All the code that defines

GUI widgets and initializes event handlers has been migrated from onCreate() to onStart().

144

In this way, MDL mutants are no longer trivial. In addition, the only way to kill this new

version of MDL mutants is to make the Activity switch among di↵erent states, so that

di↵erent lifecycle methods can be called. Therefore, modified MDL would require testers

to design tests to make the Activity switch among di↵erent states.

Among the 19 muJava mutation operators, the Unary Arithmetic Operator Deletion

(AODU) mutation operator has the highest mean redundancy score (77.1%). Table 5.20

lists the average redundancy scores of AODU. 16 sets of mutation adequate test sets designed

to kill other types of mutants killed all AODU mutants, indicated by “1.000” values in Table

5.20. AODU deletes basic unary arithmetic operators in an expression. Figure 5.21 shows

an example AODU mutant, in which the minus symbol is deleted. The results indicate that

AODU is redundant and can be excluded.

As shown in Table 5.22, the Button Widget Deletion (BWD) has six “1.000” values,

which is the second highest among all muJava and Android mutation operators. In fact, all

the BWD mutants were killed by the BWS tests. Table 5.22 shows the average redundancy

scores of BWD and BWS. Button widgets are used by nearly all Android apps in many

ways. BWD deletes buttons one at a time from the XML layout file of the UI. BWS

switches the locations of two buttons on the same screen. In this way, the function of a

button is una↵ected, but the GUI layout looks di↵erent from the original version. BWS

requires the tester to design tests that deliberately check the location (either relative or

absolute) of a button widget. Figure 5.20 gives example BWS and BWD mutants. The

BWS mutant (middle) switches the locations of button “7” and “OK.” The BWD mutant

(right) deletes button “OK.”

Not surprisingly, when BWS mutants ensure every button is displayed at an expected

location, it is also necessarily guaranteed that this button is shown on the screen. Sub-

sumption is used to theoretically compare test criteria: a criterion C1 subsumes another

criterion C2, if every test that satisfies C1 is guaranteed to satisfy C2 [43]. Particularly in

mutation testing, a mutation operator MO1 subsumes another mutation operator MO2 if

a test set that kills all mutants of MO1 is guaranteed to kill MO2. Thus, BWS subsumes

145

Table 5.20: Average Redundancy Scores of Unary Arithmetic Operator Deletion (AODU)

Mutation Adequate Unary Arithmetic Operator

Test Set Deletion (AODU)

test AODU ——

test AOIS 1.000

test AOIU 1.000

test AORB 1.000

test CDL 1.000

test COD 1.000

test COI 1.000

test COR 0.000

test LOI 1.000

test LOR 1.000

test ODL 1.000

test ROR 1.000

test SDL 1.000

test VDL 1.000

test BWD 1.000

test BWS 0.000

test ECR 1.000

test FOB 0.500

test FON 0.500

test IPR 1.000

test ITR 1.000

test MDL 0.500

test ORL 0.000

test TVD 0.500

test TWD 0.500

Average 0.771

146

@Override
public void onCreate (Bundle savedInstanceState)
{
super.onCreate (savedInstanceState);
setContentView (R.layout.main);
Button up button = (Button) findViewById (R.id.up button);
up button.setOnClickListener (levelUpClickListener);
Button down button = (Button) findViewById (R.id.down button);
down button.setOnClickListener (levelDownClickListener);
... ...

}

@Override
public void onStart ()
{
super.onStart ();

}
Original

@Override
public void onCreate (Bundle savedInstanceState)
{
super.onCreate (savedInstanceState);

}

@Override
public void onStart ()
{
super.onStart ();
setContentView (R.layout.main);
Button up button = (Button) findViewById (R.id.up button);
up button.setOnClickListener (levelUpClickListener);
Button down button = (Button) findViewById (R.id.down button);
down button.setOnClickListener (levelDownClickListener);
... ...

}
Mutant

Figure 5.19: Recommended Implementation of MDL

BWD, that is, every test set designed to kill all the BWS mutants can kill all the BWD

mutants. As a result, when users include BWS mutants in the Android mutation analysis,

excluding BWD mutants will not a↵ect test e↵ectiveness. Note that if an Activity only has

147

Table 5.21: An Example AODU Mutant

Original: int x = - y ; AODU Mutant: int x = y ;

Figure 5.20: BWS and BWD Mutants

one button widget, BWS cannot generate any mutants. This is because to achieve switch-

ing, the Activity must display at least two buttons. Thus, I recommend disabling BWD

when there are BSW mutants, and enabling it otherwise.

The Conditional Operator Deletion (COD) mutation operator also has six “1.000” values

(second highest), and the Constant Deletion (CDL) mutation operator has five “1.000”

values (third highest). Also, the ODL test sets killed all the mutants of CDL, COD, and

the Variable Deletion mutation operator (VDL). Table 5.23 lists the average redundancy

scores of CDL, COD, ODL, and VDL. The Operator Deletion mutation operator (ODL) was

originally designed by Delamaro et al. [63]. It deletes each arithmetic, relational, logical,

bitwise, and shift operator from all expressions. CDL deletes each constant in an expression,

148

Table 5.22: Average Redundancy Scores of Button Widget Deletion (BWD) and Button
Widget Switch (BWS)

Mutation Adequate Button Widget Deletion Button Widget Switch

Test Set (BWD) (BWS)

test AODU 0.125 0.333

test AOIS 0.688 0.111

test AOIU 0.813 0.167

test AORB 0.688 0.111

test CDL 0.583 0.111

test COD 0.250 0.333

test COI 0.833 0.417

test COR 0.375 0.333

test LOI 0.813 0.278

test LOR 1.000 n/a

test ODL 0.792 0.278

test ROR 1.000 0.417

test SDL 1.000 0.278

test VDL 0.688 0.111

test BWD —— 0.278

test BWS 1.000 ——

test ECR 1.000 0.000

test FOB 0.000 0.000

test FON 0.500 0.000

test IPR 1.000 n/a

test ITR 0.389 0.000

test MDL 0.125 0.000

test ORL 0.000 0.000

test TVD 0.000 0.000

test TWD 0.167 0.333

Average 0.576 0.177

149

T
ab

le
5.
23

:
A
ve
ra
ge

R
ed

u
n
d
an

cy
S
co
re
s
of

C
on

st
an

t
D
el
et
io
n
(C

D
L
),

C
on

d
it
io
n
al

O
p
er
at
or

D
el
et
io
n
(C

O
D
),

O
p
er
at
or

D
el
et
io
n

(O
D
L
),
an

d
V
ar
ia
b
le

D
el
et
io
n
(V

D
L
)

M
u
ta

ti
o
n

A
d
e
q
u
a
te

C
o
n
st
a
n
t
D
e
le
ti
o
n

C
o
n
d
it
io
n
a
l
O
p
e
r
a
to

r
O
p
e
r
a
to

r
D
e
le
ti
o
n

V
a
r
ia
b
le

D
e
le
ti
o
n

T
e
st

S
e
t

(C
D
L
)

D
e
le
ti
o
n

(C
O
D
)

(O
D
L
)

(V
D
L
)

te
st

A
O
D
U

0
.0
0
0

0
.0
0
0

0
.0
5
3

0
.0
0
0

te
st

A
O
IS

0
.7
5
0

1
.0
0
0

0
.4
9
1

0
.9
3
7

te
st

A
O
IU

0
.6
0
0

0
.7
5
0

0
.4
0
2

0
.9
1
6

te
st

A
O
R
B

0
.7
5
0

0
.7
5
0

0
.5
2
7

0
.9
4
7

te
st

C
D
L

—
—

0
.7
5
0

0
.5
6
7

0
.7
0
2

te
st

C
O
D

1
.0
0
0

—
—

0
.4
7
4

0
.3
3
3

te
st

C
O
I

0
.5
0
0

1
.0
0
0

0
.4
3
9

0
.5
7
9

te
st

C
O
R

0
.1
2
5

0
.7
5
0

0
.2
7
7

0
.0
2
6

te
st

L
O
I

0
.6
0
0

1
.0
0
0

0
.4
2
5

0
.9
1
6

te
st

L
O
R

n
/
a

n
/
a

0
.0
0
0

0
.0
0
0

te
st

O
D
L

1
.0
0
0

1
.0
0
0

—
—

1
.0
0
0

te
st

R
O
R

1
.0
0
0

1
.0
0
0

0
.6
6
4

0
.6
5
8

te
st

S
D
L

1
.0
0
0

1
.0
0
0

0
.9
1
6

0
.9
3
7

te
st

V
D
L

1
.0
0
0

0
.7
5
0

0
.5
2
7

—
—

te
st

B
W

D
0
.3
3
3

0
.7
5
0

0
.3
1
6

0
.3
5
5

te
st

B
W

S
0
.0
0
0

0
.0
0
0

0
.0
1
3

0
.0
1
8

te
st

E
C
R

0
.7
5
0

n
/
a

0
.4
0
0

0
.4
7
4

te
st

F
O
B

0
.0
0
0

0
.0
0
0

0
.0
0
6

0
.0
1
1

te
st

F
O
N

0
.1
2
5

0
.0
0
0

0
.1
2
5

0
.0
7
9

te
st

IP
R

n
/
a

n
/
a

0
.3
8
9

0
.0
0
0

te
st

IT
R

0
.2
5
0

n
/
a

0
.2
4
0

0
.0
3
5

te
st

M
D
L

0
.2
5
0

0
.0
0
0

0
.0
2
3

0
.0
2
1

te
st

O
R
L

0
.0
0
0

0
.0
0
0

0
.0
0
6

0
.0
1
1

te
st

T
V
D

0
.2
0
0

0
.0
0
0

0
.2
2
3

0
.2
1
1

te
st

T
W

D
0
.0
0
0

0
.2
5
0

0
.1
4
7

0
.0
0
0

A
v
e
r
a
g
e

0
.4
6
5

0
.5
3
8

0
.3
1
9

0
.3
8
2

150

and VDL deletes each variable in an expression. Figures 5.24 and 5.25 show example ODL,

CDL, and VDL mutants. According to the definitions, it is guaranteed that ODL subsumes

CDL and VDL. COD deletes unary conditional operators. Figure 5.26 shows that ODL and

COD generate the same mutants. Theoretically, ODL also subsumes COD. Not surprisingly,

test cases designed to kill ODL mutants can also kill CDL, COD, and VDL mutants, which

means when using ODL, we can exclude CDL, COD, and VDL.

Table 5.24: Example ODL Mutants

Original: int x = y + 2 ; ODL Mutant 1: int x = y ;
ODL Mutant 2: int x = 2 ;

Original: int x = - y ; ODL Mutant: int x = y ;

Original: if (! isError) { ODL Mutant: if (isError) {
x = y ; x = y ;

} }

Table 5.25: An Example CDL and VDL Mutant

Original: int x = y + 2 ; CDL Mutant: int x = y ;
VDL Mutant: int x = 2 ;

Table 5.26: An Example COD Mutant

Original: if (! isError) { COD Mutant: if (isError) {
x = y ; x = y ;

} }

The Unary Arithmetic Operator Insertion (AOIU) operator inserts a minus sign in front

of integer variables. The Logical Operator Insertion (LOI) inserts a bitwise complement

operator in front of integer variables. Table 5.27 lists the average redundancy scores of

AOIU and LOI. 50.3% of AOIU mutants and 44.9% of LOI mutants were killed by tests

151

Table 5.27: Average Redundancy Scores of Unary Arithmetic Operator Insertion (AOIU)
and Logical Operator Insertion (LOI)

Mutation Adequate Unary Arithmetic Operator Logical Operator

Test Set Insertion (AOIU) Insertion (LOI)

test AODU 0.351 0.286

test AOIS 0.819 0.631

test AOIU —— 0.681

test AORB 0.688 0.561

test CDL 0.768 0.645

test COD 0.632 0.500

test COI 0.471 0.574

test COR 0.385 0.505

test LOI 0.868 ——

test LOR 0.176 0.138

test ODL 0.847 0.796

test ROR 0.543 0.621

test SDL 0.921 0.853

test VDL 0.743 0.653

test BWD 0.566 0.583

test BWS 0.445 0.418

test ECR 0.532 0.521

test FOB 0.503 0.449

test FON 0.578 0.537

test IPR 0.353 0.138

test ITR 0.471 0.415

test MDL 0.520 0.472

test ORL 0.503 0.449

test TVD 0.449 0.426

test TWD 0.518 0.476

Average 0.569 0.514

152

(test FOB) designed to kill Fail on Back (FOB) mutants, which are very simple tests that

only launch an Activity and click on the Back button.

int level = 1;
current level.setText (Integer.toString (level));

Original
int level = 1;
current level.setText (Integer.toString (-level));

AOIU
int level = 1;
current level.setText (Integer.toString (⇠level));

LOI

Figure 5.21: AOIU and LOI Examples

Figure 5.21 gives example AOIU and LOI mutants. In Android apps, each GUI widget is

assigned a resource ID that is recorded as an integer number. These resource IDs are stored

and managed in XML files. Both AOIU and LOI generate many mutants by mutating the

resource IDs in Android apps. Figure 5.22 shows an example where AOIU changes the

resource ID of up button. However, once a resource ID is changed and not mapped to its

original GUI widget, the Android app will immediately crash after launched, making the

mutant trivial and redundant. That is, any test case that launches the app can kill this

mutant. Similarly, LOI also generates trivial mutants. Therefore, when using mutation

testing for Android apps, I recommend to exclude AOIU and LOI.

Button up button = (Button) findViewById (R.id.up button);
Original

Button up button = (Button) findViewById (- R.id.up button);
AOIU

Figure 5.22: AOIU Changes Android Resource ID

In summary, according to the results of this experiment, I recommend:

153

1. Exclude AODU, because its highest average redundancy scores

2. Improve the design of MDL, because MDL generates trivial mutants

3. Exclude BWD when using BWS, because BWS subsumes BWD

4. Exclude AOIU and LOI, because around 50% of AOIU and LOI mutants are trivial

5. Exclude CDL, COD, and VDL when using ODL, because ODL subsumes them

5.4.5 Re-evaluate the E↵ectiveness

Based on the evaluation results, Section 5.4.4 provides recommendations to eliminate the

redundancy among Android mutation operators. However, it is not clear whether the

e↵ectiveness of Android mutation testing still holds after removing and modifying redundant

mutation operators. Due to the high computational cost of Android mutation testing, re-

conducting the whole e↵ectiveness evaluation in Section 5.3 may take several months, which

is very time-consuming. Thus, this re-evaluation selected one subject app for spot-checking.

According to the recommendations in Section 5.4.4, I updated the implementation in

muDroid, by excluding AODU, AOIU, and LOI, excluding CDL, COD, and VDL when

using ODL, excluding BWD when using BWS, and improving the implementation of MDL.

I took Tipster as the subject app for the re-evaluation. Originally, Tipster generated

327 muJava mutants and 130 Android mutants. After removing and modifying redundant

mutation operators, Tipster generated 259 muJava mutants and 125 Android mutants, with

an overall 16% reduction in terms of the total number of the mutants. After that, a new set

of mutation adequate tests was designed. Originally, Tipster had 64 crowdsourced faults,

in which 51 were detected by the old mutation adequate test set. After re-conducting the

evaluation, the newly designed mutation adequate test set using fewer and less redundant

mutants found the same 51 crowdsourced faults in Tipster. Therefore, it is concluded that

removing and modifying redundant mutation operators in this research did not impact the

e↵ectiveness of Android mutation testing.

154

5.4.6 Threats to Validity

Similar to most experiments in software engineering, this empirical evaluation has several

threats to validity, which could potentially impact the experimental results.

Internal validity: In this experiment, only one set of Android mutation-adequate tests

was designed for each type of mutants. The results of redundancy scores may di↵er for

di↵erent Android mutation-adequate tests, creating a potential threat to internal validity.

Also, in this experimental study, all the equivalent mutants were identified by hand.

Manual work could introduce human errors into the artifacts that may a↵ect the final

results.

External validity: Like in all software engineering experiments, I cannot guarantee

that the selected subjects are representative. Using di↵erent subject apps, the results and

redundancy scores may di↵er from the results and the redundancy scores in this study. All

the Android apps in this study were previously used by other researchers in Android testing

research.

Construct validity: The implementation of muDroid and the associated mutation

operators may include software faults. In this study, muDroid and the experimental envi-

ronment were constantly tested to make sure they work correctly.

155

Chapter 6: Conclusions and Future Work

This chapter summarizes the studies conducted in this research, revisits the research ques-

tions and the findings, and draws conclusions (Section 6.1). In addition, the chapter lists the

contributions of this research (Section 6.2.1), and suggests some future research directions

(Section 6.3).

6.1 Conclusions

Android mobile devices and Android apps dominate the global market in terms of the

numbers of users, developers, devices, and apps. However, this volume makes the quality

problem of Android apps much worse. Severe software failures are frequently observed in

many Android apps, such as runtime crashes, incorrect behaviors, and security vulnerabil-

ities. Thus, we desperately need more sophisticated and e↵ective testing.

To make this more di�cult, Android apps include new programming features and struc-

tures never seen in traditional software before. These unique characteristics introduce new

types of software faults into Android apps, but existing software testing techniques and

simple testing coverage criteria cannot su�ciently test Android apps or detect these new

types of software faults.

New software testing techniques specific for Android apps are being developed, but

prior to this research, we did not have e↵ective techniques to evaluate these techniques, or

to ensure a reasonable number of e↵ective tests.

This research investigated the programming framework, unique programming features,

and novel characteristics of Android apps, and developed Android mutation testing, a more

sophisticated testing strategy than current practice. Android mutation testing not only

designs e↵ective tests for Android apps, but also supplies an e↵ective evaluation criterion

156

for assessing other Android app testing techniques. Redundant or ine↵ective Android test

cases can be filtered out, and ultimately, the ability to deliver quality Android apps can be

improved.

The following hypothesis has been validated with eight research questions across three

experimental studies.

Research Hypothesis:

Mutation testing of Android apps can reveal more faults than existing

testing techniques can.

The first experimental study investigated the feasibility of applying mutation analysis to

testing Android apps. It verified whether Android mutation testing can be used to evaluate

test cases designed with other testing criteria.

• RQ1: Is it feasible to test real-world Android apps with mutation analysis?

– muDroid successfully generated 3,275 Java traditional method-level mutants, and

1,706 Android mutants for 8 real-world open source Android apps, and executed

pre-designed 100% statement coverage test sets on these mutants.

– Di↵erent types of devices, Android emulators and real smartphones, with di↵er-

ent Virtual Machines, Dalvik and ART, were assessed in the study. The results

show that Android mutation testing can feasibly test real-world Android apps.

• RQ2: How e↵ective can test cases designed with traditional testing criteria be in

killing mutants generated by Android mutation testing?

– 100% statement coverage tests were evaluated in this study. They missed around

39% of Java traditional method-level mutants, and 30% of Android mutants.

Given that every mutant can be considered to represent one or more software

faults, 100% statement coverage tests were found to be not very e↵ective.

After exploring the applicability of Android mutation testing, the second experiment

157

investigated the fault detection e↵ectiveness of Android mutation testing, and compared

it with four other Android app testing tools: Monkey [8], Dynodroid [115], PUMA [81],

and A3E [47]. In addition, to make this study more comprehensive, this evaluation uses

naturally occurring faults as well as crowdsourced faults introduced by experienced Android

developers.

• RQ3: How e↵ective is Android mutation analysis in testing Android apps? Specifi-

cally, how many faults can be detected by mutation-generated tests?

– In this study, overall, Android mutation-adequate tests detected 18 of 25 natu-

rally occurring faults, and 360 of 437 crowdsourced faults.

• RQ4: How e↵ectively do four other Android testing techniques test Android apps?

Specifically, with the same set of faults, how many of them can be detected by four

other Android testing techniques?

– Of the 25 naturally occurring faults, Dynodroid detected seven, Monkey detected

six, PUMA found three, and A3E discovered only one. Of the 437 crowdsourced

faults, Dynodroid detected 138, Monkey found 130, PUMA detected 121, and

A3E discovered 79.

– According to the experiment results, for both groups of faults, Android mutation-

adequate tests found more faults than the four other Android testing techniques

at a statistically significant level. This is not surprising, because Android mu-

tation testing addresses more unique characteristics and testing challenges of

Android apps, and specifically targets faults that commonly occur during An-

droid app programming.

• RQ5: Is there any di↵erence between using naturally occurring faults and using

crowdsourced faults in empirical evaluations?

– All tools detected more hand-seeded faults than naturally occurring faults, al-

though the di↵erence was not statistically significant (less than 20% across the

158

board). Thus, it is not possible to conclude that either population of faults led

to di↵erent results.

After evaluating the e↵ectiveness of Android mutation testing, the third experiment

investigated the possibility of reducing the cost of Android mutation testing by searching

for redundant mutation operators.

• RQ6: How many mutants of one particular type can be killed by tests created to kill

another type of mutants?

– Overall, the average redundancy scores ranged from 0% to 100%, which means

that certain mutation operators were totally redundant and can be excluded

to save costs without downgrading the e↵ectiveness of Android mutation test-

ing, including Unary Arithmetic Operator Deletion (AODU), Unary Arithmetic

Operator Insertion (AOIU), and Logical Operator Insertion (LOI).

• RQ7: Which types of mutants are less likely to be killed by tests created to kill other

types of mutants?

– Some Android mutation operators are very hard to kill. Less than 7% of Fail on

Back (FOB) mutants were killed. The Back button interrupts the usual execution

flow, but it is usually not on the happy path from the perspective of software

design. The TextView Deletion (TVD) mutation operator is another type that

was very hard to kill in the experiment (less than 1%). Many TextView widgets

do not associate with any user events, nor require any event handlers from the

implementation of the app, so they are very likely to be overlooked by tests. On

average, only 2.5% of the Orientation Lock (ORL) mutants was killed by other

types of tests.

• RQ8: Are any Android mutation operators redundant enough to be excluded, or

can any be improved? In particular, can the mutants generated from this mutation

operator always be killed by tests created to kill another type of mutant?

159

– Unary Arithmetic Operator Deletion (AODU) has the highest average redun-

dancy scores among all the muJava and Android mutation operators. 16 mu-

tation adequate test sets killed all AODU mutants, so AODU is redundant and

should be excluded. Activity Lifecycle Method Deletion (MDL) has very high

redundancy scores with respect to tests designed for killing other types of mu-

tants, because it deletes the definition and initialization of GUI structures in

onCreate() method, which leads to trivial mutants. A new implementation was

suggested in Section 5.4.4. Unary Arithmetic Operator Insertion (AOIU) and

Logical Operator Insertion (LOI) also create many trivial mutants, as they mu-

tate the resource IDs of GUI widgets in Android apps, resulting in crashes right

after launching. All the Button Widget Deletion (BWD) mutants were killed by

Button Widget Switch (BWS) tests, because BWS subsumes BWD. ODL also

subsumes CDL, COD, and VDL. These three can also be excluded if ODL is

used in Android mutation testing.

In conclusion, the results validated the hypothesis and confirmed that Android mutation

testing not only designs e↵ective tests for Android apps, but also supplies an e↵ective

evaluation criterion for assessing other Android apps test selection techniques.

6.2 Intellectual Merits

This section summarizes the research contributions of this dissertation, including the re-

search contributions (Section 6.2.1) and the scientific impacts (Section 6.2.2).

6.2.1 Research Contributions

This research developed an e↵ective technique for testing Android apps using mutation

analysis, by which testers can design powerful tests for Android apps, or evaluate the

e↵ectiveness of a pre-existing test set. Ultimately, our ability to deliver quality Android

apps is improved through stronger testing. Particularly, this research makes the following

160

major contributions:

1. A fault model for Android apps

This research documented common faults in Android apps, as a fault model, by mining

open source project repositories and investigating the programming framework, unique

features, and novel characteristics of Android apps.

2. A set of Android mutation operators

This research designed 17 novel Android mutation operators for Android apps. These

mutation operators address the common faults as documented in my fault model.

3. An Android mutation testing tool

I implemented an Android mutation testing tool, muDroid, based on the Android

mutation operators. muDroid is fully compatible with the Android operating system,

able to install compiled mutants and execute tests on both Android emulators and

real devices, and store mutation execution results.

4. A repository of Android apps with naturally occurring faults and crowd-

sourced faults

This research delivers a repository of Android apps, which includes hundreds of nat-

urally occurring faults and crowdsourced faults our study used. The repository can

serve as a benchmark to assess Android testing techniques, support software engineer-

ing experiments for Android apps, and provide research subjects for Android program

analysis.

5. Experimentally evaluated the e↵ectiveness of Android mutation testing

This research experimentally evaluated the the feasibility and the e↵ectiveness of

Android mutation testing. The results showed that Android mutation testing is very

e↵ective at detecting naturally occurring faults and crowdsourced faults.

6. Experimentally found that statement coverage does not provide e↵ective

tests

161

With the mutation scores of 61.4% for muJava mutants and 70.5% for Android mu-

tants, this research found that statement coverage cannot provide e↵ective tests for

Android apps.

7. Experimentally determined that four Android app testing tools are not

e↵ective at detecting faults

This research experimentally evaluated and then compared the fault detection ef-

fectiveness of four Android app testing tools, both state-of-the-art and state-of-the-

practice. The results showed that they are not e↵ective at detecting naturally occur-

ring faults and crowdsourced faults.

8. Experimentally analyzed the redundancy in Android mutation testing

This research experimentally analyzed the redundancy in Android mutation testing,

and provided recommendation for reducing the cost of Android mutation testing.

6.2.2 Impacts

This dissertation has the following impacts:

1. To the research community

This research is the first attempt to extend mutation analysis to the domain of mobile

apps, which initiates a new innovative research area, Android mutation testing. Re-

searchers interested in designing testing techniques for Android apps can use Android

mutation testing to compare or evaluate their methodologies.

2. To Android developers, testers, and the mobile app industry

The quality of an app directly impacts the income of its developers and testers. With

the Android mutation testing tool, muDroid, developers and testers of Android apps

can design tests that are more e↵ective at detecting software faults. This research

can help mobile app vendors deliver higher quality apps, attract more customers, and

increase revenue.

162

3. To the general public

This research can help users of mobile apps experience fewer software failures than

before, bringing higher user satisfaction.

6.2.3 Papers

This chapter lists the papers that are based on this dissertation topic and other papers I

have co-authored in my Ph.D. study period.

1. Papers based on this dissertation:

(a) Lin Deng and Je↵ O↵utt, E↵ectively Testing Android Apps with Mutation

Analysis, manuscript in preparation.

(b) Lin Deng and Je↵ O↵utt, An Empirical Study to Identify Redundant Mutation

Operators in Android Mutation Testing, manuscript in preparation.

(c) Lin Deng, Je↵ O↵utt, and David Samudio, Is Mutation Analysis E↵ective at

Testing Android Apps?, in 2017 IEEE International Conference on Software

Quality, Reliability and Security (QRS 2017), July 2017, Prague, Czech Re-

public.

(d) Lin Deng, Je↵ O↵utt, Paul Ammann, and Nariman Mirzaei, Mutation Opera-

tors for Testing Android Apps, Information and Software Technology, Vol. 81,

January 2017, Pages 154-168.

(e) Lin Deng, Nariman Mirzaei, Paul Ammann, and Je↵ O↵utt, Towards Mutation

Analysis of Android Apps, in 10th Workshop on Mutation Analysis (Mutation

2015), April 2015, Graz, Austria.

2. Other co-authored papers in Ph.D. study period:

(a) Feras Batarseh, Ruixin Yang, and Lin Deng, A Comprehensive Model for Man-

agement and Validation of Federal Big Data Analytical Systems, Journal of Big

Data Analytics, 2017.

163

(b) Deanna Caputo, Shari Pfleeger, Angela Sasse, Paul Ammann, Je↵ O↵utt, and

Lin Deng, Barriers to Usable Security? Three Organizational Case Studies,

IEEE Security and Privacy, Vol. 14, No. 5, Pages 22-32, Sept.-Oct. 2016.

(c) Upsorn Praphamontripong, Je↵ O↵utt, Lin Deng, and Jingjing Gu, An Exper-

imental Evaluation of Web Mutation Operators, in 11th Workshop on Mutation

Analysis (Mutation 2016), April 2016, Chicago, IL.

(d) Marcio Delamaro, Lin Deng, Nan Li, Vinicius Durelli, and Je↵ O↵utt, Growing

a Reduced Set of Mutation Operators, in 28th Brazilian Symposium on Software

Engineering (SBES 2014), September 2014, Maceio, Brazil.

(e) Bob Kurtz, Paul Ammann, Marcio Delamaro, Je↵ O↵utt, and Lin Deng, Mu-

tation Subsumption Graphs, in 9th Workshop on Mutation Analysis (Mutation

2014), April 2014, Cleveland, OH.

(f) Marcio Delamaro, Lin Deng, Nan Li, Vinicius Durelli, and Je↵ O↵utt, Experi-

mental Evaluation of SDL and One-Op Mutation for C, in 7th IEEE International

Conference on Software Testing, Verification and Validation (ICST 2014), April

2014, Cleveland, OH.

(g) Nan Li, Xin Meng, Je↵ O↵utt, and Lin Deng, Is Bytecode Instrumentation as

Good as Source Instrumentation: An Empirical Study with Industrial Tools, in

24th IEEE International Symposium on Software Reliability Engineering (ISSRE

2013), November 2013, Pasadena, CA.

(h) Lin Deng, Je↵ O↵utt, and Nan Li, Empirical Evaluation of the Statement

Deletion Mutation Operator, in 6th IEEE International Conference on Software

Testing, Verification and Validation (ICST 2013), March 2013, Luxembourg.

6.3 Future Research Directions

This research designed Android mutation testing and demonstrated that it is very e↵ective

at designing high quality test cases and evaluating pre-existing test cases. The research into

164

Android mutation testing is not finished and, there are still avenues for future research and

improvement. This section suggests four future research directions.

1. Better mutation operators

(a) The experiment in Section 5.3 identified a possible common fault across several

subjects. Many apps designed a “settings” or “preferences” menu to let users

configure the apps, but failed to properly save the modified settings after the user

changed them, which leads to other incorrect behaviors of the app. Additional

mutation operators could be defined to encourage testers to design tests to ensure

the settings menu works correctly.

(b) The implementation of several mutation operators can be improved. The ex-

periment in Section 5.4.4 provided several recommendations regarding reducing

the costs of Android mutation testing. For example, improving the algorithm

that implements MDL could not only help testers to verify that Activity com-

ponents behave correctly when switching states, but also generate fewer trivial

mutants. Also, muDroid could automatically disable mutation operators sub-

sumed by others. The experiment in Section 5.2 also identified a way to improve

the implementation of FON to generate fewer equivalent mutants.

2. Better tests

(a) Many Android apps heavily employ rich GUI components and multimedia rep-

resentations, such as audio inputs, outputs, and graphics. The experiment de-

scribed in Section 5.3 showed that when these types of multimedia elements

contained faults, it is very di�cult to detect them, which becomes a much more

general observability problem with test oracles. Consequently, existing strate-

gies for designing test oracle are not as e↵ective as with traditional software.

Researchers have designed graphical and audio test oracles in other software

domains. muDroid could be used to carry out an empirical study to evaluate

165

and compare the e↵ectiveness of Android graphical and audio test oracles with

existing test oracle strategies.

(b) The current implementation of Android mutation testing supports tests written

with several Android automation testing frameworks, such as Robotium [29],

Espresso [15], and Selendroid [30]. However, muDroid is not able to support

tests for inter-app user events. Certain faults in Android apps may only be

revealed when one app calls an Intent in another app, which the tests designed

in this research did not support. Adding support for inter-app tests could be

very promising.

3. A better tool

(a) The experiment in Section 5.2.1 mentioned that Android mutation testing was

designed for native Android apps traditionally running on the Android operating

systems with the features supported by Android SDK libraries. However, there

are other types of Android apps developed with di↵erent methodologies. For

example, hybrid apps are implemented with elements of web applications. To

improve the applicability of Android mutation testing, it would help to add the

support for these types of Android apps by leveraging web mutation testing.

(b) Android mutation testing is still only semi-automated. Even though mutant

generation and test execution are automated, test generation and equivalent mu-

tant identification require manual work. Therefore, a promising future research

direction is to incorporate new techniques, such as machine learning, to further

help generate tests automatically and identify equivalent mutants, and ultimately

make it fully automated.

4. Additional empirical studies

(a) Many Android developers release their test suites along with their program source

code on open source repositories such as GitHub. These tests are often randomly

166

generated or created with an ad-hoc process raising the question whether they are

e↵ective at detecting software faults? Using Android mutation testing, we could

conduct a large scale evaluation against test suites from open source repositories.

(b) Recent research of minimal mutation analysis and dominator mutation score

[95, 97] identified that traditional mutation score is inflated during the process

of mutation analysis and cannot serve as an ideal measurement for assessing the

e↵ectiveness of tests or evaluating the test completeness. Since a very strong and

rich test set is necessary to minimal mutation analysis and dominator mutation

score, this research did not include them into Android mutation testing, due to

the expensive cost of Android mutation testing, in terms of computational time

and e↵ort. For the future work, it would be very promising to use minimal mu-

tation analysis and dominator mutation score to check whether the conclusions

in this research still hold or not.

6.4 Industrial Application

The ultimate goal of Android mutation testing is to improve our ability to deliver higher

quality Android apps. Thus, to help Android developers and testers using the technique

designed in this dissertation in their Android app development, I recommend the following

future industrial and research extensions.

muDroid was developed to execute from a command line, and every step of Android

mutation analysis o↵ers a list of APIs. These development measures provide necessary sup-

port for future extensions and integrations. For example, an IDE plugin could be developed

using the APIs of muDroid to integrate muDroid to Android development IDEs, such as

Android Studio. A cloud server based Android app testing environment could be developed

using the APIs of muDroid, so that developers could testing their Android apps on cloud

and significantly save the execution cost.

Test automation is a necessary step for industrial application. Researchers always want

to provide developers and testers better automated testing techniques to save their time

167

and cost in software development. Particularly for Android mutation testing, I interpret

test automation in three perspectives: automated input generation, automated test oracle

generation, and fewer equivalent mutants.

Automated input generation helps testers design better test inputs with less e↵ort.

Recent research has incorporated deep learning techniques to produce test inputs [111].

Including automated input generation in Android mutation testing is definitely a necessary

and feasible step.

Automated test oracle generation is a promising but challenging aspect in test automa-

tion. This dissertation suggested graphical, audio, and multimedia test oracles in Android

app testing. Leveraging machine learning techniques, I believe integrating automated test

oracle generation into Android mutation testing is feasible.

Like mutation testing in other software domains, equivalent mutants contribute to the

cost of Android mutation testing. It is undesirable to make developers and testers manually

identify all equivalent mutants, even though they are the people who understand their

apps thoroughly. Thus, generating fewer equivalent mutants is a necessary step for test

automation of Android mutation testing. This could be achieved by improving the design of

mutation operators through a subsumption and redundancy analysis on equivalent Android

mutants. Making the technique detect equivalent mutants would also help save the cost of

Android mutation testing.

In summary, I would like to devote more e↵orts to the technical and research extensions

for Android mutation testing, to shorten the distance from research findings to industrial

applications, to ultimately improve our ability to deliver higher quality Android apps.

168

Appendix A: Acronyms

ACRT Android Capture and Replay Testing Tool

ADT Android Developer Tools

AODS Arithmetic Operator Deletion, Short-cut

AODU Arithmetic Operator Deletion, Unary

AOIS Arithmetic Operator Insertion, Short-cut

AOIU Arithmetic Operator Insertion, Unary

AORB Arithmetic Operator Replacement, Binary

AORS Arithmetic Operator Replacement, Short-cut

AORU Arithmetic Operator Replacement, Unary

APD Activity Permission Deletion

APIs Application Programming Interfaces

APK Android Application Package

ART Android Runtime

ASRS Assignment Operator Replacement, Short-cut

BWD Button Widget Deletion

BWS Button Widget Switch

CDL Constant DeLetion

COD Conditional Operator Deletion

COI Conditional Operator Insertion

169

COR Conditional Operator Replacement

DOM Document Object Model

ECR OnClick Event Replacement

EDC Evans Data Corporation

ELOC Executable Lines of Code

ETR OnTouch Event Replacement

FOB Fail on Back

FON Fail on Null

GPS Global Positioning System

GUI Graphical User Interface

HAXM Hardware Accelerated Execution Manager

IDC International Data Corporation

IP Internet Protocol

IPR Intent Payload Replacement

ITR Intent Target Replacement

JPF Java PathFinder

LCM Location Modification

LOD Logical Operator Deletion

LOI Logical Operator Insertion

LOR Logical Operator Replacement

MDL Activity Lifecycle Method Deletion

170

NLP Natural Language Processing

NOS Null Test Oracle Strategy

NPE Null Pointer Exception

ODL Operator DeLetion

ORL Orientation Lock

RERAN REcord and Replay for ANdroid

ROR Relational Operator Replacement

ROR Relational Operator Replacement

SDK Software Development Kit

SDL Statement DeLetion Mutation Operator

SDL Statement DeLetion

SLOC Source Lines of Code

SMDL Service Lifecycle Method Deletion

SOR Shift Operator Replacement

SPAG-C SmartPhone Automated GUI Testing tool with Camera

SURF Speeded Up Robust Features

TVD TextView Deletion

TWD EditText Widget Deletion

VDL Variable DeLetion

VM Virtual Machine

WCD Wi-Fi Connection Disabling

171

WRD WakeLock Release Deletion

XML eXtensible Markup Language

172

Bibliography

173

Bibliography

[1] A Survey on Mobile Devices from Boston Consulting Group. https://goo.gl/
wLBuEH, last access March 2017.

[2] Alarm Klock. https://play.google.com/store/apps/details?id=com.
angrydoughnuts.android.alarmclock, last access June 2017.

[3] Android. https://www.android.com, last access June 2017.

[4] Android apps on Google Play. https://www.appbrain.com/stats, last access March
2017.

[5] Android Developer Tools (ADT). https://developer.android.com/studio/
tools/sdk/eclipse-adt.html, last access March 2017.

[6] Android developers guide. http://developer.android.com/guide/topics/
fundamentals.html, last access June 2017.

[7] Android Intent. https://developer.android.com/guide/components/
intents-filters.html, last access March 2017.

[8] Android Monkey. https://developer.android.com/studio/test/monkey.html,
last access June 2017.

[9] Android Studio. https://developer.android.com/studio/index.html, last access
March 2017.

[10] Android Testing Framework. http://developer.android.com/guide/topics/
testing/, last access June 2017.

[11] Androidomatic Keyer. http://play.google.com/store/apps/details?id=com.
templaro.opsiz.aka/, last access June 2017.

[12] Apache ANT. http://ant.apache.org, last access March 2017.

[13] ART and Dalvik. https://source.android.com/devices/tech/dalvik/, last ac-
cess June 2017.

[14] Eclipse. https://eclipse.org, last access March 2017.

[15] Espresso. https://google.github.io/android-testing-support-library/docs/
espresso/index.html, last access March 2017.

174

[16] F-Droid. https://f-droid.org/, last access June 2017.

[17] Facebook. https://play.google.com/store/apps/details?id=com.facebook.
katana&hl=en, last access March 2017.

[18] Gradle. https://gradle.org, last access March 2017.

[19] Jamendo for Android. http://telecapoland.github.io/jamendo-android/, last
access June 2017.

[20] Java PathFinder. http://babelfish.arc.nasa.gov/trac/jpf/, last access June
2017.

[21] JUnit. http://junit.org, last access June 2017.

[22] JustSit. https://play.google.com/store/apps/details?id=com.brocktice.
JustSit, last access June 2017.

[23] K-9 Mail. https://play.google.com/store/apps/details?id=com.fsck.k9, last
access June 2017.

[24] Lolcat Builder. http://play.google.com/store/apps/details?id=com.android.
lolcat, last access June 2017.

[25] Metrics. http://metrics2.sourceforge.net, last access June 2017.

[26] MunchLife. https://play.google.com/store/apps/details?id=info.bpace.
munchlife, last access June 2017.

[27] PasswordMakerProForAndroidActivity. https://play.google.com/store/apps/
details?id=org.passwordmaker.android, last access June 2017.

[28] Robolectric. https://github.com/robolectric/robolectric, last access June
2017.

[29] Robotium. http://code.google.com/p/robotium/, last access June 2017.

[30] Selendroid. http://selendroid.io, last access June 2017.

[31] StackOverflow. http://stackoverflow.com, last access March 2017.

[32] Template matching. http://docs.opencv.org/doc/tutorials/imgproc/
histograms/template_matching/template_matching.html, last access June
2017.

[33] TippyTipper. https://play.google.com/store/apps/details?id=net.
mandaria.tippytipper, last access June 2017.

[34] UNO. https://play.google.com/store/apps/details?id=com.gameloft.
android.ANMP.GloftUOHM&hl=en, last access March 2017.

[35] World Clock. https://play.google.com/store/apps/details?id=com.irahul.
worldclock, last access June 2017.

175

[36] Yelp. https://play.google.com/store/apps/details?id=com.yelp.android&
hl=en, last access March 2017.

[37] R. Abraham and M. Erwig. Mutation operators for spreadsheets. IEEE Transactions
on Software Engineering, 35(1):94–108, Jan 2009.

[38] Hiralal Agrawal, Richard DeMillo, R. Hathaway, William Hsu, Wynne Hsu, Edward
Krauser, Rhonda J. Martin, Aditya Mathur, and Gene Spa↵ord. Design of mutant
operators for the C programming language. Technical report SERC-TR-41-P, Software
Engineering Research Center, Purdue University, West Lafayette, IN, March 1989.

[39] D. Amalfitano, A. R. Fasolino, and P. Tramontana. A GUI crawling-based technique
for Android mobile application testing. In Third International Workshop on TESTing
Techniques and Experimentation Benchmarks for Event-Driven Software, pages 252–
261, March 2011.

[40] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M. Memon.
Using GUI ripping for automated testing of Android applications. In Proceedings of
the 27th IEEE/ACM International Conference on Automated Software Engineering,
ASE 2012, pages 258–261, New York, NY, USA, 2012. ACM.

[41] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M. Memon. Mobi-
guitar: Automated model-based testing of mobile apps. IEEE Software, 32(5):53–59,
Sept 2015.

[42] Paul Ammann, Marcio Eduardo Delamaro, and Je↵ O↵utt. Establishing theoretical
minimal sets of mutants. In Proceedings of the 2014 IEEE International Conference on
Software Testing, Verification, and Validation, ICST ’14, pages 21–30, Washington,
DC, USA, 2014. IEEE Computer Society.

[43] Paul Ammann and Je↵ O↵utt. Introduction to software testing. Cambridge University
Press, 2nd edition, 2017. ISBN 978-1107172012.

[44] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. Automated
concolic testing of smartphone apps. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE ’12, pages
59:1–59:11, New York, NY, USA, 2012. ACM.

[45] Stephan Arlt, Cindy Rubio-Gonzlez, Philipp Rmmer, Martin Schf, and Natarajan
Shankar. The gradual verifier. In NASA Formal Methods, volume 8430 of Lecture
Notes in Computer Science, pages 313–327. Springer International Publishing, 2014.

[46] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration for system-
atic testing of Android apps. In Proceedings of the 2013 ACM SIGPLAN Interna-
tional Conference on Object Oriented Programming Systems Languages & Applica-
tions, OOPSLA ’13, pages 641–660, New York, NY, USA, 2013. ACM.

[47] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration for system-
atic testing of Android apps. In Proceedings of the 2013 ACM SIGPLAN Interna-
tional Conference on Object Oriented Programming Systems Languages & Applica-
tions, pages 641–660. ACM, 2013.

176

[48] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik Roychoud-
hury. Detecting energy bugs and hotspots in mobile apps. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 588–598. ACM, 2014.

[49] Alistair Barr. Google says Android has 1.4 billion active
users. Online, September 2015. http://www.wsj.com/articles/
google-says-android-has-1-4-billion-active-users-1443546856, last ac-
cess June 2017.

[50] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust
features (SURF). Computer Vision and Image Understanding, 110(3):346–359, June
2008.

[51] Lars Bishop and David Chait. Fixing common Android life-
cycle issues in games, 2015. https://developer.nvidia.com/
fixing-common-android-lifecycle-issues-games, last access June 2017.

[52] Penelope A. Brooks and Atif M. Memon. Automated GUI testing guided by usage
profiles. In Proceedings of the Twenty-second IEEE/ACM International Conference
on Automated Software Engineering, ASE ’07, pages 333–342, New York, NY, USA,
2007. ACM.

[53] Graeme Burton. RBS claims to have found and fixed payments IT glitch that a↵ected
600,000. Online, June 2015. http://www.computing.co.uk/2414023, last access
June 2017.

[54] Wontae Choi, George Necula, and Koushik Sen. Guided GUI testing of Android
apps with minimal restart and approximate learning. In Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’13, pages 623–640, New York, NY, USA, 2013.
ACM.

[55] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. Automated test
input generation for Android: Are we there yet? In Proceedings of the 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 429–440. IEEE Computer Society, 2015.

[56] Cisco. Cisco visual networking index: Global mobile data tra�c forecast up-
date, 20162021. Online, February 2017. http://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/
mobile-white-paper-c11-520862.pdf, last access March 2017.

[57] R. Coelho, L. Almeida, G. Gousios, and A. van Deursen. Unveiling exception handling
bug hazards in Android based on GitHub and Google Code issues. In 2015 IEEE/ACM
12th Working Conference on Mining Software Repositories (MSR), pages 134–145,
May 2015.

[58] Valentin Dallmeier and Thomas Zimmermann. Extraction of bug localization bench-
marks from history. In Proceedings of the Twenty-second IEEE/ACM International

177

Conference on Automated Software Engineering, ASE ’07, pages 433–436, New York,
NY, USA, 2007. ACM.

[59] Ian Darwin. Tipster. https://github.com/IanDarwin/
Android-Cookbook-Examples/tree/master/Tipster, last access June 2017.

[60] Ian Darwin. Android Cookbook. O’Reilly Media, 2012. ISBN 9978-1449388416.

[61] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy. Priv-
ilege escalation attacks on Android. In Mike Burmester, Gene Tsudik, Spyros Magliv-
eras, and Ivana Ili, editors, Information Security, number 6531 in Lecture Notes in
Computer Science, pages 346–360. Springer Berlin Heidelberg, October 2010.

[62] Márcio E. Delamaro and José C. Maldonado. Proteum-A tool for the assessment of
test adequacy for C programs. In Proceedings of the Conference on Performability in
Computing Systems (PCS 96), pages 79–95, New Brunswick, NJ, July 1996.

[63] Márcio E. Delamaro, Je↵ O↵utt, and Paul Ammann. Designing deletion mutation
operators. In 7th IEEE International Conference on Software Testing, Verification
and Validation (ICST 2014), Cleveland, OH, March 2014.

[64] Richard A. DeMillo, Richard J. Lipton, and Fred G. Sayward. Hints on test data
selection: Help for the practicing programmer. IEEE Computer, 11(4):34–41, April
1978.

[65] Richard A. DeMillo and Je↵ O↵utt. Constraint-based automatic test data generation.
IEEE Transactions on Software Engineering, 17(9):900–910, September 1991.

[66] Lin Deng, Narimen Mirzaei, Paul Ammann, and Je↵ O↵utt. Towards mutation anal-
ysis of Android apps. In Tenth Workshop on Mutation Analysis (Mutation 2015),
pages 1–10, April 2015.

[67] Lin Deng, Je↵ O↵utt, and Nan Li. Empirical evaluation of the statement deletion
mutation operator. In 6th IEEE International Conference on Software Testing, Ver-
ification and Validation (ICST 2013), pages 80–93, Luxembourg, March 2013.

[68] Eelco Dolstra, Raynor Vliegendhart, and Johan Pouwelse. Crowdsourcing GUI tests.
In Proceedings of the 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation, ICST ’13, pages 332–341, Washington, DC, USA, 2013.
IEEE Computer Society.

[69] O. El Ariss, Dianxiang Xu, S. Dandey, B. Vender, P. McClean, and B. Slator. A
systematic capture and replay strategy for testing complex GUI based Java appli-
cations. In 2010 Seventh International Conference on Information Technology: New
Generations (ITNG), pages 1038–1043, April 2010.

[70] Evans Data Corporation. Mobile developer population reaches 12m worldwide, ex-
pected to top 14m by 2020. Online, October 2016. https://evansdata.com/press/
viewRelease.php?pressID=244, last access March 2017.

178

[71] S. C. P. F. Fabbri, J. C. Maldonado, M. E. Delamaro, and P. C. Masiero. Mutation
analysis testing for finite state machines. In 5th IEEE International Symposium on
Software Reliability Engineering (ISSRE 94), pages 220–229, Monterey, CA, Novem-
ber 1994.

[72] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M. E. Delamaro, and E. W.
Wong. Mutation analysis applied to validate specifications based on Petri nets. In
Proceedings of the 8th International Conference on Formal Description Techniques
(FORTE’95), pages 329–337, Quebec, Canada, October 1995.

[73] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
Android permissions demystified. In Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS ’11, pages 627–638, New York, NY,
USA, 2011. ACM.

[74] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated ran-
dom testing. In 2005 ACM SIGPLAN conference on Programming Language Design
and Implementation, pages 213–223, Chicago, IL, June 2005.

[75] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. RERAN:
Timing- and touch-sensitive record and replay for Android. In Proceedings of the
2013 International Conference on Software Engineering, ICSE ’13, pages 72–81. IEEE
Press, 2013.

[76] Maŕıa Gómez, Romain Rouvoy, Martin Monperrus, and Lionel Seinturier. A recom-
mender system of buggy app checkers for app store moderators. In Proceedings of the
Second ACM International Conference on Mobile Software Engineering and Systems
(MOBILESoft 2015), pages 1–11. IEEE Press, 2015.

[77] Google. Google Play. Online. https://play.google.com/store, last access June
2017.

[78] Hannes Gruber. Android support lib bug causing crash on orientation change–A
workaround. Online, February 2015. http://www.jayway.com/2015/02/03/
android-support-lib-bug-causing-crash-orientation-change-workaround/,
last access June 2017.

[79] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang. Characterizing and detecting
resource leaks in Android applications. In 2013 28th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pages 389–398, Nov 2013.

[80] Pter Gyimesi, Gbor Gyimesi, Zoltn Tth, and Rudolf Ferenc. Characterization of
source code defects by data mining conducted on GitHub. In Computational Science
and Its Applications – ICCSA 2015, number 9159 in Lecture Notes in Computer Sci-
ence, pages 47–62. Springer International Publishing, June 2015. DOI: 10.1007/978-
3-319-21413-9 4.

[81] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and Ramesh Govindan.
Puma: Programmable UI-automation for large-scale dynamic analysis of mobile apps.
In Proceedings of the 12th Annual International Conference on Mobile Systems, Ap-
plications, and Services (MobiSys 2014), pages 204–217. ACM, 2014.

179

[82] Robert Hierons and Mercedes Merayo. Mutation testing from probabilistic finite state
machines. In Third IEEE Workshop on Mutation Analysis (Mutation 2007), pages
141–150, Windsor, UK, September 2007.

[83] Cuixiong Hu and Iulian Neamtiu. Automating GUI testing for Android applications.
In Proceedings of the 6th International Workshop on Automation of Software Test,
AST ’11, pages 77–83, New York, NY, USA, 2011. ACM.

[84] International Data Corporation. Smartphone OS market share, 2016 Q3. Online,
November 2016. http://www.idc.com/promo/smartphone-market-share/os, last
access March 2017.

[85] Casper S. Jensen, Mukul R. Prasad, and Anders Møller. Automated testing with tar-
geted event sequence generation. In Proceedings of the 2013 International Symposium
on Software Testing and Analysis, ISSTA 2013, pages 67–77, New York, NY, USA,
2013. ACM.

[86] Ryan Johnson, Zhaohui Wang, Corey Gagnon, and Angelos Stavrou. Analysis of An-
droid applications’ permissions. In Proceedings of the 2012 IEEE Sixth International
Conference on Software Security and Reliability Companion, SERE-C ’12, pages 45–
46. IEEE Computer Society, 2012.

[87] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. Are mutants a valid substitute for real faults in software testing?
In Proceedings of the Symposium on the Foundations of Software Engineering (FSE),
pages 654–665, Hong Kong, November 18–20 2014. ACM SIGSOFT Distinguished
Paper Award.

[88] René Just, Bob Kurtz, and Paul Ammann. Inferring mutant utility from program
context. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2017, pages 284–294, New York, NY, USA,
2017. ACM.

[89] Sunwoo Kim, John A. Clark, and John A. McDermid. Investigating the applicability
of traditional test adequacy criteria for object-oriented programs. In Proceedings of
ObjectDays 2000, October 2000.

[90] Sunwoo Kim, John A. Clark, and John A. McDermid. Investigating the e↵ectiveness of
object-oriented strategies with the mutation method. In Proceedings of Mutation 2000:
Mutation Testing in the Twentieth and the Twenty First Centuries, pages 4–100,
San Jose, CA, October 2000. Wiley’s Software Testing, Verification, and Reliability,
December 2001.

[91] Kim N. King and Je↵ O↵utt. A Fortran language system for mutation-based software
testing. Software-Practice and Experience, 21(7):685–718, July 1991.

[92] Kleiner Perkins Caufield & Byers. Internet trends 2015. Online, May 2015. http:
//www.kpcb.com/internet-trends, last access June 2017.

[93] Bogdan Korel. A dynamic approach of test data generation. In Conference on Software
Maintenance-1990, pages 311–317, San Diego, CA, 1990.

180

[94] B. Kurtz, P. Ammann, and J. O↵utt. Static analysis of mutant subsumption. In
Tenth Workshop on Mutation Analysis (Mutation 2015), pages 1–10, April 2015.

[95] B. Kurtz, P. Ammann, J. O↵utt, and M. Kurtz. Are we there yet? how redundant and
equivalent mutants a↵ect determination of test completeness. In Eleventh Workshop
on Mutation Analysis (Mutation 2016), pages 142–151, April 2016.

[96] Bob Kurtz, Paul Ammann, Marcio E. Delamaro, Je↵ O↵utt, and Lin Deng. Mutant
subsumption graphs. In Tenth IEE Workshop on Mutation Analysis (Mutation 2014),
Cleveland, OH, March 2014.

[97] Bob Kurtz, Paul Ammann, Je↵ O↵utt, Márcio E. Delamaro, Mariet Kurtz, and Nida
Gökçe. Analyzing the validity of selective mutation with dominator mutants. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, pages 571–582, New York, NY, USA, 2016. ACM.

[98] T. D. LaToza, W. Ben Towne, A. van der Hoek, and J. D. Herbsleb. Crowd devel-
opment. In 2013 6th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE), pages 85–88, May 2013.

[99] T. D. LaToza and A. van der Hoek. Crowdsourcing in software engineering: Models,
motivations, and challenges. IEEE Software, 33(1):74–80, Jan 2016.

[100] Thomas D. LaToza, W. Ben Towne, Christian M. Adriano, and André van der Hoek.
Microtask programming: Building software with a crowd. In Proceedings of the 27th
Annual ACM Symposium on User Interface Software and Technology, UIST ’14, pages
43–54, New York, NY, USA, 2014. ACM.

[101] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. A
systematic study of automated program repair: Fixing 55 out of 105 bugs for $8 each.
In Proceedings of the 34th International Conference on Software Engineering, ICSE
’12, pages 3–13, Piscataway, NJ, USA, 2012. IEEE Press.

[102] Suet Chun Lee and J. O↵utt. Generating test cases for XML-based web compo-
nent interactions using mutation analysis. In 2001 12th International Symposium on
Software Reliability Engineering (ISSRE 2001), pages 200–209, Nov 2001.

[103] Otávio Augusto Lazzarini Lemos, Fabiano Cutigi Ferrari, Paulo Cesar Masiero, and
Cristina Videira Lopes. Testing aspect-oriented programming pointcut descriptors.
In Proceedings of the 2nd workshop on testing aspect-oriented programs, pages 33–38.
ACM, 2006.

[104] Nan Li and Je↵ O↵utt. An empirical analysis of test oracle strategies for model-
based testing. In Proceedings of the 2014 IEEE International Conference on Software
Testing, Verification, and Validation, ICST ’14, pages 363–372, Washington, DC,
USA, 2014. IEEE Computer Society.

[105] Nan Li and Je↵ O↵utt. Test oracle strategies for model-based testing. IEEE Trans-
actions on Software Engineering, 43(4):372–395, April 2017.

181

[106] Ying-Dar Lin, J. F. Rojas, E. T.-H. Chu, and Yuan-Cheng Lai. On the accuracy,
e�ciency, and reusability of automated test oracles for Android devices. IEEE Trans-
actions on Software Engineering, 40(10):957–970, October 2014.

[107] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Rocco Oliveto,
Massimiliano Di Penta, and Denys Poshyvanyk. Mining energy-greedy API usage
patterns in Android Apps: An empirical study. In Proceedings of the 11th Working
Conference on Mining Software Repositories (MSR 2014), pages 2–11. ACM, 2014.

[108] B. Lindstrom, S. F. Andler, J. O↵utt, P. Pettersson, and D. Sundmark. Mutating
aspect-oriented models to test cross-cutting concerns. In Tenth Workshop on Mutation
Analysis (Mutation 2015), pages 1–10, April 2015.

[109] Chien-Hung Liu, Chien-Yu Lu, Shan-Jen Cheng, Koan-Yuh Chang, Yung-Chia Hsiao,
and Weng-Ming Chu. Capture-replay testing for Android applications. In 2014 Inter-
national Symposium on Computer, Consumer and Control (IS3C), pages 1129–1132,
June 2014.

[110] Di Liu, Ranolph Bias, Matthew Lease, and Rebecca Kuipers. Crowdsourcing for
usability testing. In Proceedings of the 75th Annual Meeting of the American Society
for Information Science and Technology (ASIS&T), October 28–31 2012.

[111] Peng Liu, Xiangyu Zhang, Marco Pistoia, Yunhui Zheng, Manoel Marques, and
Lingfei Zeng. Automatic text input generation for mobile testing. In Proceedings
of the 39th International Conference on Software Engineering, ICSE ’17, pages 643–
653, Piscataway, NJ, USA, 2017. IEEE Press.

[112] Localytics. App retention improves - apps used only once declines to 20%. Online,
June 2014. http://info.localytics.com/blog/app-retention-improves, last ac-
cess June 2017.

[113] Yu-Seung Ma, Yong-Rae Kwon, and Je↵ O↵utt. Inter-class mutation operators for
Java. In Proceedings of the 13th International Symposium on Software Reliability
Engineering, pages 352–363, Annapolis, MD, November 2002. IEEE Computer Society
Press.

[114] Yu-Seung Ma, Je↵ O↵utt, and Yong-Rae Kwon. MuJava : An automated class mu-
tation system. Software Testing, Verification, and Reliability, Wiley, 15(2):97–133,
June 2005.

[115] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input generation
system for Android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, pages 224–234. ACM, 2013.

[116] Riyadh Mahmood, Naeem Esfahani, Thabet Kacem, Nariman Mirzaei, Sam Malek,
and Angelos Stavrou. A whitebox approach for automated security testing of Android
applications on the cloud. In 2012 7th International Workshop on Automation of
Software Test (AST), pages 22–28, June 2012.

182

[117] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. Evodroid: Segmented evo-
lutionary testing of Android apps. In Proceedings of the 2014 ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, Hong Kong, China,
November 2014. ACM.

[118] Ke Mao, Licia Capra, Mark Harman, and Yue Jia. A survey of the use of crowdsourc-
ing in software engineering. Journal of Systems and Software, 126:57–84, 2017.

[119] Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective automated testing for
Android applications. In Proceedings of the 25th International Symposium on Software
Testing and Analysis, ISSTA 2016, pages 94–105, New York, NY, USA, 2016. ACM.

[120] Evan Martin and Tao Xie. A fault model and mutation testing of access control
policies. In Proceedings of the 16th International Conference on World Wide Web,
WWW ’07, pages 667–676, New York, NY, USA, 2007. ACM.

[121] Aditya P. Mathur and W. Eric Wong. An empirical comparison of data flow and
mutation-based test adequacy criteria. Software Testing, Verification and Reliability,
4(1):9–31, 1994.

[122] R. Minelli and M. Lanza. Software analytics for mobile applications–insights & lessons
learned. In 2013 17th European Conference on Software Maintenance and Reengineer-
ing (CSMR), pages 144–153, March 2013.

[123] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. E�cient JavaScript mutation test-
ing. In 2013 IEEE Sixth International Conference on Software Testing, Verification
and Validation (ICST), pages 74–83, March 2013.

[124] Nariman Mirzaei, Sam Malek, Corina S. Păsăreanu, Naeem Esfahani, and Riyadh
Mahmood. Testing Android apps through symbolic execution. SIGSOFT Software
Engineering Notes, 37(6):1–5, November 2012.

[125] Larry J. Morell. A theory of fault-based testing. IEEE Transactions on Software
Engineering, 16(8):844–857, August 1990.

[126] Jason Murray. There are now 1.4 billion active Android devices
and 20 million Chromecasts worldwide. Online, September 2015.
https://ausdroid.net/2015/09/30/there-are-now-1-4-billion-active-android-devices-
and-20-million-chromecasts-worldwide/, last access June 2017.

[127] Bao N. Nguyen, Bryan Robbins, Ishan Banerjee, and Atif Memon. GUITAR: An
innovative tool for automated testing of GUI-driven software. Automated Software
Engineering, 21(1):65–105, May 2013.

[128] Robert Nilsson, Je↵ O↵utt, and Jonas Mellin. Test case generation for mutation-
based testing of timeliness. In Proceedings of the 2nd International Workshop on
Model Based Testing, pages 102–121, Vienna, Austria, March 2006.

[129] A. Je↵erson O↵utt, Jie Pan, Kanupriya Tewary, and Tong Zhang. An experimental
evaluation of data flow and mutation testing. Softw. Pract. Exper., 26(2):165–176,
February 1996.

183

[130] Je↵ O↵utt, Roger Alexander, Ye Wu, Quansheng Xiao, and Chuck Hutchinson. A
fault model for subtype inheritance and polymorphism. In Proceedings of the 12th In-
ternational Symposium on Software Reliability Engineering, pages 84–93, Hong Kong,
China, November 2001. IEEE Computer Society Press.

[131] Je↵ O↵utt and Marcio E. Delamaro. Assessing the influence of multiple test case
selection on mutation experiments. In Tenth IEEE Workshop on Mutation Analysis
(Mutation 2014), Cleveland, OH, March 2014.

[132] Je↵ O↵utt, Zhenyi Jin, and Jie Pan. The dynamic domain reduction approach to test
data generation. Software-Practice and Experience, 29(2):167–193, January 1999.

[133] Je↵ O↵utt, Yu-Seung Ma, and Yong-Rae Kwon. The class-level mutants of muJava.
In Workshop on Automation of Software Test (AST 2006), pages 78–84, Shanghai,
China, May 2006.

[134] Je↵ O↵utt and Roland Untch. Mutation 2000: Uniting the orthogonal. In Proceedings
of Mutation 2000: Mutation Testing in the Twentieth and the Twenty First Centuries,
pages 45–55, San Jose, CA, October 2000.

[135] Je↵ O↵utt and Wuzhi Xu. Testing web services by XML perturbation. In Proceedings
of the 16th International Symposium on Software Reliability Engineering, Chicago,
IL, November 2005. IEEE Computer Society Press.

[136] R.A.P. Oliveira, E. Alegroth, Zebao Gao, and A. Memon. Definition and evaluation of
mutation operators for GUI-level mutation analysis. In Tenth Workshop on Mutation
Analysis (Mutation 2015), pages 1–10, April 2015.

[137] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. Whyper:
Towards automating risk assessment of mobile applications. In Proceedings of the
22nd USENIX Security Symposium (USENIX Security 13), pages 527–542, 2013.

[138] Greg Pass and Ramin Zabih. Comparing Images Using Joint Histograms, volume 7.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, May 1999.

[139] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Bootstrapping energy debugging
on smartphones: A first look at energy bugs in mobile devices. In Proceedings of the
10th ACM Workshop on Hot Topics in Networks, pages 5:1–5:6, New York, NY, USA,
2011. ACM.

[140] U. Praphamontripong and J. O↵utt. Finding redundancy in web mutation operators.
In Twelfth Workshop on Mutation Analysis (Mutation 2017), pages 134–142, March
2017.

[141] Upsorn Praphamontripong and Je↵ O↵utt. Applying mutation testing to web ap-
plications. In Sixth IEEE Workshop on Mutation Analysis (Mutation 2010), Paris,
France, April 2010.

[142] Leena Rao. ebay’s mobile apps get a refresh. Online, September 2015. http://
fortune.com/2015/09/08/ebay-mobile-apps/, last access June 2017.

184

[143] Vlad Roubtsov. Emma. Online, 2006. http://emma.sourceforge.net/, last access
January 2015.

[144] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems.
Proceedings of the IEEE, 63(9):1278–1308, Sept 1975.

[145] David Samudio. Automated Android Energy-E�ciency In-
spectiON, 2014. https://plugins.jetbrains.com/plugin/
7444-aeon-automated-android-energy-efficiency-inspection/update/33212?
pr=androidstudio, last access March 2017.

[146] John Steven, Pravir Chandra, Bob Fleck, and Andy Podgurski. jRapture: A cap-
ture/replay tool for observation-based testing. In Proceedings of the 2000 ACM SIG-
SOFT International Symposium on Software Testing and Analysis, ISSTA ’00, pages
158–167. ACM, 2000.

[147] T. Takala, M. Katara, and J. Harty. Experiences of system-level model-based GUI
testing of an Android application. In 2011 IEEE Fourth International Conference on
Software Testing, Verification and Validation (ICST), pages 377–386, March 2011.

[148] TechRepublic. Infographic: Byod is popular, but not widely supported
by it. Online, March 2017. http://www.techrepublic.com/article/
infographic-byod-is-popular-but-not-widely-supported-by-it/, last access
March 2017.

[149] Mark Trakhtenbrot. New mutations for evaluation of specification and implementation
levels of adequacy in testing of statecharts models. In Third IEEE Workshop on
Mutation Analysis (Mutation 2007), pages 151–160, Windsor, UK, September 2007.

[150] R. Untch. Schema-based Mutation Analysis: A New Test Data Adequacy Assessment
Method. PhD thesis, Clemson University, Clemson, SC, 1995. Clemson Department
of Computer Science Technical report 95-115.

[151] Heila van der Merwe, Brink van der Merwe, and Willem Visser. Verifying Android
applications using Java PathFinder. SIGSOFT Software Engineering Notes, 37(6):1–
5, November 2012.

[152] Heila van der Merwe, Brink van der Merwe, and Willem Visser. Execution and prop-
erty specifications for JPF-Android. SIGSOFT Software Engineering Notes, 39(1):1–
5, February 2014.

[153] Panagiotis Vekris, Ranjit Jhala, Sorin Lerner, and Yuvraj Agarwal. Towards verifying
Android apps for the absence of no-sleep energy bugs. In Proceedings of the 2012
USENIX Conference on Power-Aware Computing and Systems, Berkeley, CA, USA,
2012. USENIX Association.

[154] T. Vidas, N. Christin, and L. Cranor. Curbing Android permission creep. In Pro-
ceedings of the Web 2.0 Security and Privacy 2011 workshop (W2SP 2011), Oakland,
CA, May 2011.

185

[155] Lucy Warwick-Ching. RBS hit by IT failure on mobile app. Online, May 2013.
http://www.ft.com/intl/cms/s/0/a3606a92-c460-11e2-9ac0-00144feab7de.
html#axzz3mReZjpDd, last access June 2017.

[156] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin,
1(6):80–83, 1945.

[157] W. Eric Wong, M. E. Delamaro, J. C. Maldonado, and Aditya P. Mathur. Constrained
mutation in C programs. In Proceedings of the 8th Brazilian Symposium on Software
Engineering, pages 439–452, Curitiba, Brazil, October 1994.

[158] W. Eric Wong and Aditya P. Mathur. Fault detection e↵ectiveness of mutation and
data flow testing. Software Quality Journal, 4(1):69–83, Mar 1995.

[159] W. Eric Wong and Aditya P. Mathur. Reducing the cost of mutation testing: An
empirical study. Journal of Systems and Software, Elsevier, 31(3):185–196, December
1995.

[160] Wei Yang, Mukul R. Prasad, and Tao Xie. A grey-box approach for automated GUI-
model generation of mobile applications. In Proceedings of the 16th International
Conference on Fundamental Approaches to Software Engineering, FASE’13, pages
250–265, Berlin, Heidelberg, 2013. Springer-Verlag.

[161] Jian Zhou, Hongyu Zhang, and D. Lo. Where should the bugs be fixed? More
accurate information retrieval-based bug localization based on bug reports. In 34th
International Conference on Software Engineering (ICSE), pages 14–24, June 2012.

186

Curriculum Vitae

Lin Deng is a Ph.D. candidate in the Department of Computer Science of Volgenau School of
Engineering at George Mason University. He received his M.S. in Computer and Information
Sciences from Gannon University in Pennsylvania in 2011. Before that, he received a B.E. in
Computer Science from Renmin University of China in 2005. His research interests include
software testing, mobile application development, and usable security. His advisor is Dr. Je↵
O↵utt.

187

