
Software Testing and Maintenance 
Introduction

Jeff Offutt

SWE 437
George Mason University

2008

Thanks to Joyce

“Traditional” Quality Attributes (1980s)

1. Efficiency of process (time-to-market)
2. Efficiency of execution (performance)

SWE 437 - Software Testing and Maintenance © Jeff Offutt 2

This is what we teach is important to 
computer science undergraduates …

It was true … in 1980



Modern Quality Attributes
1. Reliability
2. Usability
3. Security
4. Availability
5. Scalability
6. Maintainability
7. Performance & Time to market

SWE 437 - Software Testing and Maintenance © Jeff Offutt 3

All of these factors (sometimes called 
“-ilities” are important in the 2000s

Based on an informal survey of around a dozen web software development managers, 2000.

Why the
change ?

Software Projects in the 1960s

SWE 437 - Software Testing and Maintenance © Jeff Offutt 4

• In the 1960s we built tiny log cabins …
• Single-programmer
• Not much complexity
• No process needed
• Design could be kept in

short term memory



Software Projects in the 1970s

SWE 437 - Software Testing and Maintenance © Jeff Offutt 5

• In the 1970s we built bigger houses …
• Still single-programmer – focus on algorithms and 

programming
• A little more complex
• We had to start thinking harder
• The lack of process led 

to some disasters
• For most of the 

industry, quality did 
not affect the bottom 
line

• But costs were starting 
to increase …

Software Projects in the 1980s

SWE 437 - Software Testing and Maintenance © Jeff Offutt 6

• In the 1980s we built office buildings …
• We needed teamwork – and communication
• A lot more complex – data abstraction
• We needed to write down requirements and design
• Poor process and 

ignorance of need for 
process created 
spectacular failures

• We no longer had the 
skills and knowledge 
for successful 
engineering



Software Projects in the 1990s

SWE 437 - Software Testing and Maintenance © Jeff Offutt 7

• In the 1990s we built skyscrapers …
• We needed more than teamwork and communication
• We needed totally new technologies – languages, 

modeling techniques, processes
• Software development 

changed completely
• New languages (Java, 

UML, etc) led to 
revolutionary 
procedures

• Education fell behind …

Software Projects in the 2000s

SWE 437 - Software Testing and Maintenance © Jeff Offutt 8

• In the 2000s we build integrated collections of 
continuously evolving cities …

• Algorithm design and programming is no longer the 
primary focus of software development

• CS education fell so far behind it is almost obsolete
• New applications (web, 

embedded) is making 
quality crucial

• Developers learn more 
from training courses
than they did in college

• Very little new 
development



Pace of Change is Exhilarating
• We have gone from …

– Log cabins … to houses … to office buildings …to skyscrapers … to 
building the most complicated engineering systems in human history

• In just half a life-time !!
• Civil engineers took thousands of years for this kind of change

– And the most complicated civil engineering products pale in comparison 
the complexity of a modern IT system

• Electrical engineers took a couple of centuries

No way we could keep up !

Theory, Practice and Education
• What have you learned in college ?

SWE 437 - Software Testing and Maintenance © Jeff Offutt 10

How to build houses
• General software engineering courses (SWE / CS 421) introduce 

a few concepts about buildings

The way we build software has changed 
dramatically since the CS curriculum stabilized in 

1980 !!!!
• Very little new development is being done
• Maintenance … evolution … re-engineering … maintainability 

… being “agile”



What Can You Do ?
• As a developer …

– Program very neatly
– Design to make change easy
– Follow processes that make change easy

• As a professional …
– Listen to your colleagues when they teach you things you didn’t learn in 

college
– Take training classes eagerly (in the next 20 years, you will spend more 

time in training than you spent in college CS courses)
– Further your education (MS degree)

SWE 437 - Software Testing and Maintenance © Jeff Offutt 11

Goals of This Class

1. Reliability / Testing
2. Usability
3. Security
4. Availability
5. Scalability
6. Maintainability
7. Performance & Time to market

Reliability / Testing

Maintainability

First third

Last two thirds



Current Reality
• Most software development is currently some form maintenance

• Maintenance is no longer the boring task it was in the 1980s

• “We have as many testers as we have developers. And developers 
spend half their time testing. We’re more of a testing 
organization than we're a software organization.”

– Bill Gates of Microsoft 

This class teaches modern methods for the two 
dominant portions of software development


