
1

Software Testing and Maintenanceg
Agile Software Development

Jeff Offutt

SWE 437
George Mason UniversityGeorge Mason University

2008

Based on Agile Estimating and Planning, Cohn, Prentice Hall, Chapters 1-3
Thanks to Ian Sommerville

1. Agile Process Overview
2 Extreme Programming

Agile Software Development

1.1. Agile Process OverviewAgile Process Overview
2. Extreme Programming
3. Refactoring
4. Refactoring Techniques

SWE 437 - Software Testing and Maintenance © Jeff Offutt 2

2

Agile Software Development Manifesto
“We are uncovering better ways of developing software by

doing it and helping others do it. Through this work we
have come to value:

I di id l d i t ti d t l– Individuals and interactions over processes and tools
– Working software over comprehensive documentation
– Customer collaboration over contract negotiation
– Responding to change over following a plan That is, while there

is value in the items on the right, we value the items on the left
more.”

–Kent Beck et al.

SWE 437- Software Testing and Maintenance © Jeff Offutt 3

What is “Agility”?
• Effective (rapid and adaptive) response to change
• Effective communication among all stakeholders
• Drawing the customer onto the teamg
• Organizing a team so that it controls the work

Yielding ...

Rapid, incremental delivery of softwareRapid, incremental delivery of software

SWE 437- Software Testing and Maintenance © Jeff Offutt 4

3

An Agile Process
• Is driven by customer descriptions of what is required

(scenarios)
• Recognizes that plans are short-lived
• Develops software iteratively with a heavy emphasis on

construction activities
• Delivers multiple “software increments”
• Adapts as changes occur

SWE 437- Software Testing and Maintenance © Jeff Offutt 5

Lots of agile processes have been defined, Lots of agile processes have been defined,
XP is the most widely known … XP is the most widely known …

1. Agile Process Overview
2 Extreme Programming

Agile Software Development

22 Extreme ProgrammingExtreme Programming2. Extreme Programming
3. Refactoring
4. Refactoring Techniques

2.2. Extreme ProgrammingExtreme Programming

SWE 437 - Software Testing and Maintenance © Jeff Offutt 6

4

Extreme Programming (XP)
• The most widely used agile process

• XP Planningg
– Begins with the creation of “user stories”
– Agile team assesses each story and assigns a cost
– Stories are grouped into deliverable increments
– A commitment is made on delivery date
– After the first increment “project velocity” is used to help

define subsequent delivery dates for other increments

SWE 437- Software Testing and Maintenance © Jeff Offutt 7

Extreme Programming (XP)
• XP Design

– Follows the KISS principle
– For difficult design problems, suggests the creation of “spike solutions”—a

design prototype
– Encourages “refactoring”—an iterative refinement of the internal

program design

• XP Programming
– Recommends the construction of unit tests before programming starts
– Encourages “pair programming”

• XP Testing
– All unit tests are executed daily
– “Acceptance tests” are defined by the customer and executed to assess

customer visible functionality

SWE 437- Software Testing and Maintenance © Jeff Offutt 8

5

Extreme Programming (XP)

User stories
values
acceptance test criteria

Simple design Prototypes

Planning

C di

Design

Refactoring

acceptance test criteria
iteration plan

Pair
programming

SWE 437- Software Testing and Maintenance © Jeff Offutt 9

Test
CodingRelease

Unit test
Continuous integrationAcceptance testing

1. Agile Process Overview
2 Extreme Programming

Agile Software Development

2. Extreme Programming
3. Refactoring
4. Refactoring Techniques
3.3. RefactoringRefactoring

SWE 437 - Software Testing and Maintenance © Jeff Offutt 10

6

Refactoring
Refactoring is a disciplined process of changing Refactoring is a disciplined process of changing
a software system in such a way that it does not a software system in such a way that it does not
alter the external behavior of the code while at alter the external behavior of the code while at alter the external behavior of the code while at alter the external behavior of the code while at
the same time improves its internal structurethe same time improves its internal structure

• (Noun) – A change made to internal structure of
software to make it easier to understand and modify
without changing its observable behavior

SWE 437- Software Testing and Maintenance © Jeff Offutt 11

• (Verb) – To structure software by applying a series of
refactorings without changing its observable behavior

Refactoring
• Basic metaphor

– Start with an existing code base and make it better
– Change the internal structure (in-the-small to in-the-medium) while

preserving the overall semantics
• i.e., rearrange the “factors” but end up with the same final “product”

• The idea is that you should significantly improve the code :
– Reducing near-duplicate code
– Improved cohesion, less coupling
– Improved parameterization, understandability, maintainability, flexibility,

abstraction, efficiency, etc …

• This is much harder if the high level architecture of the software
is poorly designed

SWE 437- Software Testing and Maintenance © Jeff Offutt 12

7

Refactoring : Why, When, Who?
• Improve the Design

– Without refactoring, the design of the program will decay
– As people change code – changes to realize short-term goals or changes

made without a full comprehension of the design of the code – the code
loses its structure

• Make Software Easier to Understand
– Several users of code – the computer, the writer, and the updater
– The most important by far is the updater !
– Who cares if the compiler takes a few more cycles to compile your code ?
– If it takes someone 3 weeks to update your code that is a problem !!

SWE 437- Software Testing and Maintenance © Jeff Offutt 13

Refactoring : Why, When, Who?
• Helps find faults

– Part of refactoring code is understanding the code and putting that
understanding back in

– That process helps clarify the program
– That clarification allows faults to be found

• Program faster
– Refactor continuously as you develop

• Every day, look at yesterday’s work to see if it needs to be improved
– Without a good design, you can progress quickly for a while, but soon g g , y p g q y ,

poor design starts to slow you down
– You spend time finding and fixing faults and understanding the system

instead of adding new function
– New features need more coding as you patch over patches

SWE 437- Software Testing and Maintenance © Jeff Offutt 14

8

Refactoring, Design and Performance
• Refactoring complements design

• By doing some of the design “in process” programmers avoid the
problems of over designing for reuse flexibility or extendibilityproblems of over designing for reuse, flexibility, or extendibility
that is never needed

• In the short term refactoring may make the code slower

• Optimize for performance separately

• Typically, only 10% of the software accounts for 90% of the
execution time – only optimize that 10%

SWE 437- Software Testing and Maintenance © Jeff Offutt 15

1. Agile Process Overview
2 Extreme Programming

Agile Software Development

2. Extreme Programming
3. Refactoring
4. Refactoring Techniques4.4. Refactoring TechniquesRefactoring Techniques

SWE 437 - Software Testing and Maintenance © Jeff Offutt 16

9

Refactoring “Catalog”
• Refactoring: Improving the Design of Existing Code, by Martin

Fowler (et al.), 1999, Addison-Wesley

• Clarifies and catalogs many of the strategies that good OO
programmers have been doing for years

• 22 “bad smells” … issues in the code that don’t look quite right

• 72 “refactorings” … ways to change the problems in the code

SWE 437- Software Testing and Maintenance © Jeff Offutt 17

Rules of Three
• The first time you code a task, just do it

– Don’t worry if it’s not quite perfect or general

• The second time you code the same idea, wince and
d it icode it up again

• The third time you code the same idea, it’s time to
refactor !

– Any programming construct can be made more abstract …
but that’s not necessarily a good thing

• Generality (flexibility) costs tooy (y)

– Don’t spin wheels designing and coding the most abstract
system you can imagine

• Practice Just-in-Time abstraction
• Expect that you will be re-arranging your code constantly – that’s a

good thing
SWE 437- Software Testing and Maintenance © Jeff Offutt 18

10

Bad “Smell” #1 – Duplicated Code
• Same expression in two methods in the same class?

– Make it a private ancillary routine and parameterize it

(Extract method)(Extract method)(Extract method)(Extract method)

• Same code in two related classes?
– Push commonalities into closest mutual ancestor and parameterize
– Use template method DP for variation in subtasks

(Form template method)(Form template method)

SWE 437- Software Testing and Maintenance © Jeff Offutt 19

(Form template method)(Form template method)

Bad “Smell” #1 – Duplicated Code (2)
• Same code in two unrelated classes?

– Should they be related?
• Introduce abstract parent

(Extract class, Pull up method)(Extract class, Pull up method)
– Does the code really belongs to just one class?

• Make the other class into a client (Extract method)

(Extract method)(Extract method)
– Can you separate out the commonalities into a subpart or a functor or other

function object?

SWE 437- Software Testing and Maintenance © Jeff Offutt 20

function object?
• Make the method into a subobject of both classes.
• Strategy DP allows for polymorphic variation of methods-as-objects

(Replace method with method object)(Replace method with method object)

11

Method is Too Long
• Often a sign of:

– Trying to do too many things
– Poorly thought out abstractions and boundaries
– Micromanagement anti-pattern

• Best to think carefully about the major tasks and how they inter-
relate – be aggressive!

– Break up into smaller private methods within the class

(Extract method)(Extract method)
– Delegate subtasks to sub-objects that “know best” (i.e., template method DP)

(Extract class/method, replace data value with object)(Extract class/method, replace data value with object)

SWE 437- Software Testing and Maintenance © Jeff Offutt 21

• Fowler’s heuristic:
– When you see a comment, make a method
– Often, a comment indicates:

• The next major step
• Something non-obvious whose details detract from the clarity of the routine as a whole

– In either case, this is a good spot to “break it up”

Class is Too Large
• Too many different subparts and methods
• Two-step solution :

1. Gather up the little pieces into aggregate subparts

(Extract class, replace data value with object)(Extract class, replace data value with object)
2. Delegate methods to the new subparts

(Extract method)(Extract method)
• You might notice some unnecessary subparts that have been

hiding in the forest

SWE 437- Software Testing and Maintenance © Jeff Offutt 22

g
• Resist the urge to micromanage the subparts
• Exception : Library classes have large, fat interfaces (many

methods, many parameters, lots of overloading)
– That is okay if the methods are there to support flexibility

12

Too Many Parameters
• Long parameter lists make methods difficult for clients to

understand
• This is often a symptom of

– trying to do too much– … trying to do too much
– … too far from home ?
– … with too many disparate subparts

• In 1980, structured programming taught parameterization as a
cure for global variables

– With modules / OOP, objects have mini-islands of state that can be
reasonably treated as “global” to the methods

– No need to pass a subpart of yourself as a parameter to your own method

SWE 437- Software Testing and Maintenance © Jeff Offutt 23

Too Many Parameters – Solution
• Trying to do too much?

– Break up into sub-tasks

(Extract method)(Extract method)
• … too far from home?

– Localize passing of parameters; don’t blithely pass down several layers of
calls

(Preserve whole object, introduce parameter object)(Preserve whole object, introduce parameter object)
• … with too many disparate subparts?

G th t i t t b t

SWE 437- Software Testing and Maintenance © Jeff Offutt 24

– Gather up parameters into aggregate subparts
– Your method interfaces will be much easier to understand!

(Preserve whole object, introduce parameter object)(Preserve whole object, introduce parameter object)

13

Divergent Changes
• Occurs when one class is changed in different ways for different

reasons
• Likely, this class is trying to do too much and contains too many

unrelated subpartsunrelated subparts
• Over time, some classes acquire details and even ownership of

subparts that rightly belong elsewhere
• This is a sign of poor cohesion

– Unrelated elements in the same container

• Solution :
Break it p resh ffle reconsider relationships and responsibilities– Break it up, reshuffle, reconsider relationships and responsibilities

SWE 437- Software Testing and Maintenance © Jeff Offutt 25

(Move method or field)(Move method or field)

Shotgun Surgery
• The opposite of divergent change

– Each time you want to make a single, seemingly coherent change, you have
to change lots of classes in little ways

• Also a classic sign of poor cohesiong p
– Related elements are not in the same container !

• Solution :
– Look to do some gathering, either in a new or existing class

(Move method or field)(Move method or field)

SWE 437- Software Testing and Maintenance © Jeff Offutt 26

14

Feature Envy
• A method seems more interested in another class than the one

it’s defined in
– e.g., a method A::m() calls lots of get/set methods of class B

• Solution:Solution:
– Move m() (or part of it) into B!

(Move method or field, extract method)(Move method or field, extract method)

• Exceptions:
– Visitor / iterator / strategy where the whole point is to decouple the data

from the algorithm
Feat re en is more of an iss e hen both A and B ha e interesting data

SWE 437- Software Testing and Maintenance © Jeff Offutt 27

• Feature envy is more of an issue when both A and B have interesting data

Data Clumps
• A set of variables that seem to “hang out” together

– e.g., passed as parameters, changed/accessed at the same time

• This usually means that a coherent sub-object is just waiting to
be recognized and encapsulatedbe recognized and encapsulated

void Scene::setTitle (string titleText, int titleX, int titleY,
Color titleColor){…}

void Scene::getTitle (string& titleText, int& titleX,
int& titleY, Color& titleColor){…}

SWE 437- Software Testing and Maintenance © Jeff Offutt 28

• A Title class is almost dying to be born
• If a client knows all these parameters, the client could more

easily create its own classes

15

Data Clumps (2)
• Creating a new class will shorten and simplify parameter lists

– Program is easier to read, understand and maintain
– Class is conceptually simpler too

• Moving the data may create feature envy (the last “bad smell”)• Moving the data may create feature envy (the last bad smell)
– Iterate on the design …

(Preserve whole object, extract class, introduce (Preserve whole object, extract class, introduce
parameter object)parameter object)

SWE 437- Software Testing and Maintenance © Jeff Offutt 29

Primitive Obsession
• All subparts of an object are instances of primitive types

(int, string, bool, double, etc.)
For example: dates, currency, SIN, tel.#, ISBN, special string values
Th ll bj t ft h i t ti d t i i l• These small objects often have interesting and non-trivial
constraints that can be modeled

For example: fixed number of digits/chars, check digits, special values

• Solution:
– Create some “small classes” that can validate and enforce the

constraints
This makes your system more strongly typed– This makes your system more strongly typed

SWE 437- Software Testing and Maintenance © Jeff Offutt 30

(Replace data value with object, extract class, (Replace data value with object, extract class,
introduce parameter object)introduce parameter object)

16

Switch Statements
• Switch statements can often be redesigned with polymorphism

Double getSpeed () {
switch (_type) {

case EUROPEAN:
return getBaseSpeed();

case AFRICAN:
return getBaseSpeed() –

getLoadFactor() * _numCoconuts;
case NORWEGIAN_BLUE:

if (_isNailed) return 0
else return getBaseSpeed (_voltage);

}
}

SWE 437- Software Testing and Maintenance © Jeff Offutt 31

• This displays a lack of understanding of the proper use of
polymorphism and encapsulation

• Redesign as a polymorphic method of PythonBird
(Replace conditional with polymorphism, replace (Replace conditional with polymorphism, replace

type with subclasses)type with subclasses)

Lazy Class
• Classes that don’t do much that’s different from other classes
• If several sibling classes do not exhibit polymorphic behavioral

differences, consider collapsing them back into the parent and
adding some parametersadding some parameters

• Lazy classes are often legacies of ambitious design or a
refactoring that removed interesting behavior from the class

(Collapse inheritance / polymorphism hierarchy, (Collapse inheritance / polymorphism hierarchy,
inline class)inline class)

SWE 437- Software Testing and Maintenance © Jeff Offutt 32

17

Speculative Generality
• “We might need this one day …”

– That’s okay … but did you really need it ?
– Extra classes and features add complexity – decreasing maintainability

• XP philosophy• XP philosophy
– “As simple as possible but no simpler”
– “Rule of three”

• Keep in mind that refactoring is an ongoing process
– If you really need it later, you can add it back in

(Collapse hierarchy, inline class, remove parameter)(Collapse hierarchy, inline class, remove parameter)

SWE 437- Software Testing and Maintenance © Jeff Offutt 33

(p y p)(p y p)

Message Chains
• Client asks an object, which asks a sub-object, which asks a sub-

object, …
– This multi-layer “drill down” may result in sub-sub-sub-objects being

passed to the original requesting client

• The client must understand the object structure, even if it is
going through several intermediaries !

• Need to rethink the abstraction …
– Why is a deeply nested sub-part needed up above ?
– Why is the sub-part so simple that it’s useful so far from home ?

(Hide delegate)(Hide delegate)

SWE 437- Software Testing and Maintenance © Jeff Offutt 34

(Hide delegate)(Hide delegate)

18

Middle Person
• “All hard problems in software engineering can be solved by an

extra level of indirection”
– Many OO design principles are some variation of this statement, although

they are usually stated in more clever and elegant ways

• If most of a class’s methods simply use services of delegate sub-
objects, then something is wrong with this abstraction

• The behavior of an object should be more than the sum of its
parts !

(Remove middle person, replace delegation with (Remove middle person, replace delegation with
inheritance)inheritance)

SWE 437- Software Testing and Maintenance © Jeff Offutt 35

inheritance)inheritance)

Inappropriate Intimacy
• Sharing of secrets between classes, especially outside of

inheritance
• public variables, too many get / set methods, C++

friendship, protected data in classes, …friendship, protected data in classes, …
• Leads to data coupling, intimate knowledge of internal structures

and implementation decisions
• Makes clients brittle, hard to evolve, easy to break

• Solution :
• Appropriate use of get / set methods
• Rethink basic abstraction
• Merge classes when it helps

SWE 437- Software Testing and Maintenance © Jeff Offutt 36

(Move/extract method/field, change bidirectional (Move/extract method/field, change bidirectional
association to unidirectional, hide association to unidirectional, hide delegate)delegate)

19

Alternative Classes with Different
Interfaces

• Classes and methods seem to implement the same or similar
abstraction – yet are otherwise unrelated

– This is not a criticism of overloading, just haphazard design

• Solution :
– Move the classes “closer” together
– Find a common interface
– Find a common subpart and remove it

(Extract [super(Extract [super] class] class, move method/field, rename , move method/field, rename
th d)th d)

SWE 437- Software Testing and Maintenance © Jeff Offutt 37

method)method)

Refused Bequest
• Subclass inherits methods and variables but does not use some of

them
– Sometimes this is a good sign : the parent manages the common behaviors

and the child manages the differences
– Need to look at clients to see if clients use the class and its parent like that
– Do clients use parent’s methods ?

• Did the subclass inherit simply to get some functionality cheaply?
– If so, better to use delegation

(Replace (Replace inheritance with inheritance with delegation)delegation)
• Parent has features that only some children use

SWE 437- Software Testing and Maintenance © Jeff Offutt 38

Parent has features that only some children use
• Create more intermediate abstract classes in the hierarchy

• Move the methods down one level

(Push down field or method)(Push down field or method)

20

Comments
• Comments are essential to readability and maintainability

– They are also pretty helpful during debugging !

• Very long comments, however, are sometimes a sign that the
code is too long complicated and impossible to maintaincode is too long, complicated, and impossible to maintain

– Comments should be used to explain why, not what

• Instead of explaining code that is too hard to read, restructure it
so people can use it !

(Restructure complicated logic)(Restructure complicated logic)

SWE 437- Software Testing and Maintenance © Jeff Offutt 39

(Restructure complicated logic)(Restructure complicated logic)

Summarizing Refactoring
• Instead of thinking of maintenance as something that happens

– … separately from programming …
– … in response to needs for change …
– … by someone else …… by someone else …

• Think of refactoring as a process of
– Continuously …
– Smoothly …
– Improving the software by the developer

Only fools (and software engineering professors) Only fools (and software engineering professors)

SWE 437- Software Testing and Maintenance © Jeff Offutt 40

Only fools (and software engineering professors) Only fools (and software engineering professors)
think programmers can design and build all the think programmers can design and build all the

software right the first timesoftware right the first time

21

Summary
• The 1980-style view of software development …

– analyze … design … program … test … deploy … maintain …

• Is as out of date as punk music, portable CD players and floppy
disks !disks !

• We can not effectively find problems in designs until we write the
program

• If we want to build integrated collections of continuously
evolving cities, we must view software development as

continuous evolutioncontinuous evolution

SWE 437- Software Testing and Maintenance © Jeff Offutt 41

1. The process must be agile
2. Testing must be seamlessly integrated with development
3. Software design must be continuously evolved and refactored

