
Forte™ for Java™ , Internet Edition Tutorial
Forte for Java, Internet Edition, 2.0
Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303
U.S.A. 650-960-1300

Part No. 806-7515-10
December 2000, Revision A

Copyright © 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303-4900, U.S.A.
All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. PointBase
software is for internal development purposes only and can only be commercially deployed under a separate
license from PointBase. Parts of Forte for Java, Internet Edition were developed using the public domain tool
ANTLR. This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

Sun, Sun Microsystems, the Sun logo, Java, Forte, NetBeans, Solaris, iPlanet, StarOffice, StarPortal, Jini, and
Jiro are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and
Conditions.

Copyright © 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303-4900, U.S.A.
Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licenses qui en restreignent
l’utilisation, la copie, la distribution et la décompilation. Aucune partie de ce produit ou document ne peut
être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de
Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractère, est protégé
par un copyright et licencié par des fournisseurs de Sun. Le logiciel PointBase est destiné au développement
interne uniquement et ne peut être mis sur le marché que sous une licence distincte émise par PointBase.
Certains composants de Forte pour Java, Internet Edition ont été développés à l’aide de l’outil de domaine
public ANTLR. Ce produit comprend un logiciel développé par Apache Software Foundation
(http://www.apache.org/).

Sun, Sun Microsystems, le logo Sun, Java, Forte, NetBeans, Solaris, iPlanet, StarOffice, StarPortal, Jini et Jiro
sont des marques commerciales ou déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Acquisitions fédérales : logiciels commerciaux—Les utilisateurs du gouvernement sont soumis aux termes et
conditions standard.

Contents
Preface
Organization of This Manual . 8

Conventions . 9

Forte for Java, Internet Edition Documentation Set 10
Documentation Set . 10
Online Help . 10
Javadoc . 10

1 Getting Started
Software Requirements for the Tutorial .12

What You Need to Run the Forte for Java IDE . 12
What You Need to Create and Run the Tutorial . 12

Using Alternate Database Software . 13
Using Alternate Web Browsers . 13

Installing the Tutorial Database Table .14
Installing the Tables in a PointBase Database . 15
Installing the Table in Other Databases . 17

Starting the Forte for Java Development Environment18
Single-User and Multiuser Modes . 18
Starting Forte for Java on Solaris™ 7/8,

Linux Redhat 6.2, and other UNIX™ Software . 18
Starting Forte for Java on Microsoft Windows . 18
Command-Line Switches . 19
Exiting Forte for Java . 19

Forte for Java, Internet Edition Directory Structure 20

2 Introduction to the Tutorial
Functionality of the Tutorial Application .24

Application Scenarios . 24
Application Functional Specification . 25

4

User’s View of the Tutorial Application . 26

Architecture of the Tutorial Application . 30
Application Elements. 31
Service Component Details . 31

Overview of Tasks for Creating the Tutorial Application33
Creating the Basic Application. 33

Creating a Web Module . 33
Using Forte for Java Tag Libraries . 34
Creating the Supporting Elements . 34
Test Running the Application . 34

Adding Transparent Persistence. 35
Creating the Persistence-Capable Classes. 35
Saving the Order to the Database . 35
Using the Results to Place the Order . 35
Test Running the Whole Application . 35

End Comments . 36

3 Creating the Basic Tutorial Application
Creating a Web Module . 38

What Is a Web Module? . 38
Create the CDShopCart Web Module . 38

Using Forte for Java Custom Tags . 42
What is a JSP Tag? . 42

Tags (Action Elements). 42
Forte for Java Tag Libraries . 43

Create the CD Catalog List Page. 44
Add Forte for Java Tag Libraries to the Web Module 45
Create the ProductList JSP Page . 46
Declare the Tag Libraries . 47
Use the JDBC connection Tag to Connect to the Database 47
Use the JDBC Query Tag to Fetch the CD Data. 48
Iterate Through the Data With the Presentation Field Tag 49
Create the Add Button for Each CD Row . 50
Clean Up With the JDBC cleanup Tag . 51

Test Run the ProductList JSP Page . 52
Forte for Java, Internet Edition Tutorial

5

Creating the Shopping Cart Page and Supporting Elements 53
Create the CartLineItem JavaBeans Component 54
Create the Cart JavaBeans Component . 57
Create the ShopCart JSP Page . 59

Add Code to Add or Remove an Item From the Shopping Cart Table. . . 59
Use Presentation Tags to Populate the Cart Table 61
Add the Buttons to the Page . 62

Test Run the Shopping Cart Page . 63

Creating the Three Message Pages . 64
Empty Cart Page . 64
Place Order JSP Page . 65
Cancel Order JSP Page. 67
Test Run the Three Message Pages . 68

4 Adding Transparent Persistence
to the Tutorial Application
Overview of Transparent Persistence . 70

How You Use Transparent Persistence. 70
Using Transparent Persistence in the CDShopCart Application 72

Creating the Persistence-Capable Classes . 73
Capture the Database Schema . 73
Generate the Persistence-Capable Classes. 76
Enhance the Persistence-Capable Classes . 80

Creating the Persistence-Aware Bean . 82
Create the CheckOutBean . 82

Create the Bean and Initialize the Persistence Manager
Factory and the Persistence Manager . 82

Create a Method to Fetch a CD Based on an ID 83
Create a Method to Add an Order and Line Items

for Each Item in the Cart . 85
Add a Method to Get a Sequence Number for the Next Order 87

Modifying the PlaceOrder Page to Call CheckOutBean 89

Test Running the New CDShopCart Application . 90

Index .91
Contents

6

Forte for Java, Internet Edition Tutorial

Preface
Welcome to the Forte™ for Java™, Internet Edition tutorial! In this tutorial, you will learn how
to use the features introduced in the Internet Edition, namely, support for Web applications
that use Java™ Servlet and JavaServer Pages™ technology, and database access using Forte for
Java custom tag libraries and Transparent Persistence.

Who should read this book? This tutorial creates a simple web application that interacts
with a database and displays dynamically generated content. The design and architecture
conforms to the Java™ 2 Platform, Enterprise Edition Blueprints resources. Anyone wanting
to learn how to use the features of Forte for Java, Internet Edition, to build the components
of a web application will benefit from working through this tutorial. Before starting it, you
should be familiar with the following subjects:

■ Java programming language

■ Java Servlet syntax

■ JDBC™ enabled driver syntax

■ JavaServer Pages syntax

■ HTML syntax

■ Relational database concepts (such as tables and keys)

■ How to use the chosen database

Before you read this book: The following list of resources can help you understand the
concepts upon which this tutorial is based:

■ Java™ 2 Platform, Enterprise Edition Blueprints—www.java.sun.com/j2ee/blueprints

■ Java™ 2 Platform Enterprise Edition Specification—www.java.sun.com/products

■ Java™ Servlet Specification, v2.2—www.java.sun.com/products/servlet/index.html

■ JavaServer Pages™ Specification, v1.1—www.java.sun.com/products/jsp/index.html

Organization of This Manual8
Organization of This Manual
This manual is designed to be read from beginning to end. Each chapter in the tutorial
builds upon the code developed in earlier chapters.

The following table briefly describes the contents of each chapter:

Chapter Description

Chapter 1, “Getting Started” Describes the software requirements for the tutorial,
explains how to install the tutorial database table, and
shows how to start the Forte for Java development
environment, if you have not done so already. It also
includes a descriptive list of the installed Forte for Java
directories.

Chapter 2, “Introduction to the Tutorial” Describes the architecture of the tutorial application.

Chapter 3, “Creating the Basic Tutorial Application” Provides step-by-step instructions for creating the tutorial
application, a simple online shopping cart application for
the purchase of music CDs

Chapter 4, “Adding Transparent Persistence to the
Tutorial Application”

Describes how to use Transparent Persistence to write
customer data to a database when the customer of the
tutorial application wishes to place an order.
Forte for Java, Internet Edition Tutorial

Conventions 9
Conventions
This table provides information about the conventions used in this document.

Format Description

italics Italicized text represents a placeholder. Substitute an appropriate clause or value where you see
italicized text. Italicized text is also used to designate a document title, for emphasis, or for a word
or phrase being introduced.

monospace Monospace text represents example code, commands that you enter on the command line,
directory, file, or path names, error message text, class names, method names (including all
elements in the signature), package names, reserved words, and URLs.

monospace
bold

Monospace bold text represents user input contrasted with computer output.

ALL CAPS Text in all capitals represents file system types (GIF, TXT, HTML and so forth), environment variables,
or acronyms (FFJ, JSP).

Key+Key Simultaneous keystrokes are joined with a plus sign. For example, Ctrl+A means press both keys
simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen. For example, Esc-S means press the Esc key,
release it, then press the S key.
Preface

Forte for Java, Internet Edition Documentation Set10
Forte for Java, Internet Edition Documentation Set
Forte for Java offers a set of books delivered in Acrobat Reader (PDF) format and online help.
This section provides descriptions of these documents.

Documentation Set
You can download the following documents from the Forte for Java web site:

■ The Forte for Java programming series:

■ Introduction to the Programming Series

Introduces the two books in the Forte for Java, Internet Edition programming series.

■ Building Web Components

Describes how to build a web application as a J2EE web module using JSP pages,
servlets, tag libraries, and supporting classes and files.

■ Programming Persistence

Describes support for different persistence programming models provided by Forte
for Java: JDBC and Transparent Persistence.

■ Forte for Java, Internet Edition Tutorial

Provides step-by-step instructions for building a simple web application using tools
introduced in Forte for Java, Internet Edition, which facilitate creating a web module, as
described in the Java™ 2 Platform Enterprise Edition Specification.

Online Help
Online help is available inside the Forte for Java development environment. You can access
it by pressing the help key (Help on Solaris, F1 on Windows and Linux), or by choosing Help
> Contents from the Help menu. This displays a list of help topics and a search facility.

Javadoc
Javadoc documentation is available within the IDE for many Forte for Java modules. Refer to
the Release Notes for instructions for installing this documentation. When you start the IDE,
you can access this Javadoc documentation within the Javadoc pane of the Explorer.
Forte for Java, Internet Edition Tutorial

Chapter 1
Getting Started
This chapter explains what you need to do before starting the Forte for Java, Internet Edition
tutorial. It also duplicates some installation information from the Forte for Java Installation
Guide. The topics in this chapter are:

■ “Software Requirements for the Tutorial” on page 12

■ “Installing the Tutorial Database Table” on page 14

■ “Starting the Forte for Java Development Environment” on page 18

■ “Forte for Java, Internet Edition Directory Structure” on page 20

Software Requirements for the Tutorial12
Software Requirements for the Tutorial
This section describes how to prepare your system before starting the Forte for Java, Internet
Edition tutorial. This means making sure you have everything required to run the Forte for
Java integrated development environment (IDE), as well as what is required in addition to
create and run the tutorial.

What You Need to Run the Forte for Java IDE
Ensure that your system has been installed according to the instructions in the Forte for Java
Installation Guide. It is important that you are running the proper version of the Java
Development Kit. The installer will search for JDK™ software and install the correct version,
if it is not already installed.

What You Need to Create and Run the Tutorial
Everything that you need to create and run the tutorial is included in the default installation
of Forte for Java, Internet Edition installation. This includes:

■ Database software: PointBase Embedded Server, version 3.4

To see if PointBase is installed with the Forte for Java IDE you are using, look for a
pointbase directory under the Forte for Java home directory (referred to in this
document as forte4j_home). If PointBase was not installed, run the installer again to
install it.

■ A web server

Tomcat 3.2 beta 4 from the Jakarta Project of the Apache Software Foundation, is a Java
Servlet 2.2 and JavaServer Pages 1.1 reference implementation. When bundled with Forte
for Java, it provides the functionality of a web server for testing purposes. Currently, this
is the only tool you can use with Forte for Java for this purpose. In future, other web
servers will qualify.

■ A web browser: ICE Browser 4.0 from Integrated Systems, Inc.

You can configure Forte for Java to use an alternate database or web browser. The next two
sections describe how to do this.
Forte for Java, Internet Edition Tutorial

Software Requirements for the Tutorial 13
Using Alternate Database Software
If you do not want to use the PointBase database with the tutorial, you must have at least
client database software installed on your system, as well as a JDBC-enabled driver. You must
also manually put a copy of the driver into the lib/ext directory under the Forte for Java
installation directory.

Versions of Oracle and Microsoft SQLServer and their appropriate JDBC-enabled drivers are
supported in Forte for Java, Internet Edition. For the supported versions, check the Support
Matrix section of the Release Notes, which are accessible from the Forte for Java web site.

How to Specify Which Database to Use

To tell Forte for Java that you are using PointBase or any other database, you simply specify
the correct values for your type of database when you create a JDBC connection string. This
is explained in the tutorial.

Using Alternate Web Browsers
When you run a JSP page, servlet, or HTML page, Forte for Java automatically starts a web
browser to display the results. You can use any web browser, such as Netscape or Microsoft
Internet Explorer, instead of the default ICE Browser.

How to Specify Which Web Browser to Use

You configure web browsers by setting the Web Browser property of the global JSP option, as
follows.

➤ To set the Web Browser global property:

1 Start Forte for Java and choose Tools > Global Options to bring up the Global Options
dialog box.

See “Starting the Forte for Java Development Environment” on page 18.

2 Select JSP in the list of option categories in the left pane of the window to display JSP
properties.

3 Click on the Web Browser value to display the file browser (“…”) button, then click that to
display the Browser Properties dialog box.

4 In the Browser Properties dialog box, either set the Internal or External option.

If you set External, use the file browser (“…”) button to find the executable of the web
browser you want to use.

5 Click OK to apply the change and dismiss the dialog box.
Chapter 1Getting Started

Installing the Tutorial Database Table14
Installing the Tutorial Database Table
Before you start the Forte for Java, Internet Edition tutorial, you must create and install
several database tables in a database of your choice. SQL scripts for several versions of SQL
are provided to create these tables.

These scripts are found in the
forte4j_home/Development/tutorial/CDShopCart/SQLscripts directory. They
are:

The CDCatalog scripts create the following database schemas.

The CD table has the following records inserted:

Script name Description

CDCatalog_pb.sql Creates and populates tables used by the tutorial in PointBase SQL format.

CDCatalog_ora.sql Creates and populates tables used by the tutorial in Oracle SQL format.

CDCatalog_ms.sql Creates and populates tables used by the tutorial in SQLServer SQL format.

Table 1 CDCatalog Database Tables

Table Name Columns Primary Key Other

CD id yes

cdtitle

artist

country

price

Sequence tableName yes

tnextPK

CdOrder id yes

orderDate

OrderItem orderID yes

lineItemID Foreign key, references CdOrder (id)

productID Foreign key, references CD (id)

ID CDtitle Artist Country Price

1 Yuan The Guo Brothers China 14.95

2 Drums of Passion Babatunde Olatunji Nigeria 16.95
Forte for Java, Internet Edition Tutorial

Installing the Tutorial Database Table 15
The Sequence table has the following records inserted:

Installing the Tables in a PointBase Database
The instructions given here first create a “tutorial” database, and then load the tables into it,
but you can install the tables in any PointBase database you choose.

➤ To install the tutorial database tables in the PointBase database:

1 Start the PointBase Console, which is in the forte4j_home\pointbase directory.

On Solaris or Linux: Run the console.sh file.

On Windows: Double-click on the console.bat file, or choose Start > Programs >
Forte(tm) for Java(tm), release 2.0, Internet Edition > PointBase-Embedded > pbconsole.

The Connect To Database dialog box appears, showing values for the PointBase driver to
the default sample database.

2 Change the word “sample” at the end of the URL field to cdshopcart, as shown.

3 Toggle the Create Database option to on and click OK.

The PointBase console is displayed. After a number of status messages about creating the
new database, a message ending in “Ready” is displayed.

3 Kaira Tounami Diabate Mali 13.95

4 The Lion is Loose Eliades Ochoa Cuba 12.95

5 Dance the Devil Away Outback Australia 14.95

tableName nextPK

CdOrder 1

ID CDtitle Artist Country Price

Change “sample” to “cdshopcart”

Set this option
Chapter 1Getting Started

Installing the Tutorial Database Table16
4 Choose File > Open to display a file browser dialog box.

5 Use the file browser to find the CDCatalog_pb.sql file and click Open.

The contents of the CDCatalog_pb.sql file are copied to the SQL entry window.

6 Choose SQL > Execute All.

The message window confirms that the script was executed. (Ignore the initial messages
beginning “Cannot find the table…” These appear because of the DROP statements for
each of the tables that have not been created yet. These DROP statements will be useful
in the future if you want to rerun the script to initialize the tables.)

7 Test that you have created the table by clearing the SQL entry window (Window > Clear
Input) and typing:

8 Select the statement and choose SQL > Execute.

Your console should display the CD table.

9 Close the PointBase Console window.

SELECT * FROM CD
Forte for Java, Internet Edition Tutorial

Installing the Tutorial Database Table 17
Installing the Table in Other Databases
Consult the support matrix in the Forte for Java Installation Guide for which databases, their
versions, and their corresponding JDBC drivers are supported. Make sure there is a copy of
the appropriate JDBC-enabled driver in the forte4j_home\lib\ext directory.

This section provides methods for installing the tutorial table on an Oracle and Microsoft
SQLServer database.

➤ To install the tutorial database in other supported databases:

■ For Oracle: Use file indirection with SQL*Plus to load the CDCatalog_ora.sql script.

For example, to load the script into a database on Service Name TUTORIAL with
user/password of tutorial/tutorial, enter the following on the command line:

■ For Microsoft SQLServer:

a Create a database or designate an existing one.

b Modify the first line of the CDCatalog_ms.sql file.

to change “CDShopCart” to the name of your database.

c Use file indirection to load the CDCatalog_ms.sql script.

For example, to load the script into a database on server MY_MSSQL with
user/password of jane/jane, type the following command:

c:\>cd forte4j_home\Development\tutorial\CDShopCart\SQLscripts

c:\>sqlplus tutorial\tutorial@TUTORIAL @CDCatalog_ora.sql

use CDShopCart

c:\>cd forte4j_home\Development\tutorial\CDShopCart\SQLscripts

c:\>isql -SMY_MSSQL -Ujane -Pjane < cdcatalog_ms.sql
Chapter 1Getting Started

Starting the Forte for Java Development Environment18
Starting the Forte for Java Development Environment
Starting Forte for Java means simply running the program executable, which is described in
the Forte for Java Installation Guide. The descriptions here are provided for your
convenience.

Single-User and Multiuser Modes
You can use the Forte for Java development environment in two modes: single-user or
multiuser. Multiuser mode is designed for development groups who need to synchronize
their development activities. To this end, multiuser mode requires a user who acts as the
administrator for maintaining, upgrading, and installing new modules.

You can use either single-user or multiuser mode for creating the tutorial. However, single-
user is recommended, because it is easier to set up.

Starting Forte for Java on Solaris™ 7/8,
Linux Redhat 6.2, and other UNIX™ Software

After installation, a runide.sh script is in forte4j_home/bin directory. Launch this
script by typing:

Starting Forte for Java on Microsoft Windows
After installation, there is a Forte for Java, Internet Edition 2 icon on your desktop. Double-
click this icon to start the IDE. This icon is one of several available, depending on which mode
you want to run the IDE in. For example, the four modes available are represented in the
forte4j_home\bin directory as the following executable files:

■ runidew.exe —launches Forte for Java without a console window. This launcher is used
when you launch the IDE from the shortcut on the Desktop or Start menu.

■ runide.exe —launches Forte for Java with a console window that includes standard
error and standard output from the IDE. On the console, you can press Ctrl-Break to get
a thread dump or Ctrl-C to immediately terminate the program.

■ runidew_multiuser.exe —launches a multiuser version of Forte for Java without a
console window. When you first run this executable, you are prompted to enter a
directory where your files will be stored. This information will be placed in your Windows
registry, so that the directory you specify in the prompt will be used whenever you
launch the IDE in the future.

■ runide_multiuser.exe —launches a multiuser version of Forte for Java with a
console window.

$ sh runide.sh
Forte for Java, Internet Edition Tutorial

Starting the Forte for Java Development Environment 19
Alternatively, you can launch Forte for Java by choosing Start > Programs > Forte for Java,
Internet Edition 2 > Forte for Java, Internet Edition 2. Finally, you can run any of the
executables from the command line. For example:

Command-Line Switches
This section describes the switches that you can use to modify how you launch Forte for Java.
This information is also available from the Forte for Java Installation Guide, but is provided
here for your convenience.

On Windows machines You can set options when running the IDE on the command line or by modifying the
ide.cfg file that is in the bin directory of your installation directory. If you use the
ide.cfg file, you can break the options into multiple lines. The loader tries to read this file
before it starts parsing the command line options. This means that Java application options
can be put in this file.

On Solaris, Linux, and other
UNIX machines

You can modify the ide.sh file in the bin subdirectory of the installation directory, or you
can create your own shell script that calls ide.sh with options.

Exiting Forte for Java
Exit Forte for Java by choosing File > Exit.

C:\> runide.exe

Table 2 runide Command-Line Switches

Switch Meaning

-jdkhome jdk_home_dir Use the specified Java 2 SDK instead of the default SDK.

-hotspot Use the HotSpot JVM (default).

-classic Use the classic JVM.

-cp:p addl_classpath Add a class path to the beginning of the Forte for Java class path.

-cp:a addl_classpath Add a class path to the end of the Forte for Java class path

-Jjvm_flags Pass the specified flag directly to the JVM. (There is no space
between -J and the argument.)

-ui
com.sun.java.swing.plaf.windows.
WindowsLookAndFeel

Run the IDE with the Windows look and feel. (There is no break
between windows. and WindowsLookAndFeel.)

-ui
com.sun.java.swing.plaf.motif.
MotifLookAndFeel

Run the IDE with the Motif look and feel. (There is no break
between motif. and MotifLookAndFeel.

-fontsize fontsize Set the font size used in the GUI to the specified size.

-userdir user_directory Use the specified directory for configuration files.

-h or -help Open a GUI dialog box that lists the command-line options.
Chapter 1Getting Started

Forte for Java, Internet Edition Directory Structure20
Forte for Java, Internet Edition Directory Structure
This section describes the Forte for Java, Internet Edition directory structure. This
information is also available from the Forte for Java Installation Guide, but is provided here
for your convenience.

When you install Forte for Java on your machine, the following subdirectories are included
in your installation directory.

Table 3 Forte for Java Directory Structure

Directory/Folder Purpose

beans Contains JavaBeans™ components installed in Forte for Java.

bin Includes Forte for Java launchers (as well as the forte4j.cfg file on Windows
installations) and addtopath.bat, which is used by the batch file startup.

Development The directory mounted by default in Filesystems. Objects you create in Forte for
Java will be saved here unless you mount other directories and use them instead.

Development/examples Contains several example applications.

Development/tutorial Contains several tutorial applications, including the CDShopCart tutorial described
in this document and its database scripts.

docs Contains the Forte for Java help files and PDF files of the documents in the Forte for
Java programming series, as described in “Documentation Set” on page 10,
including this tutorial. (Release Notes are found under forte4j_home.)

javadoc The directory mounted by default in Forte for Java Javadoc repository. Javadoc
supplied with the IDE and Javadoc documentation that you create in Forte for Java
is stored here.

lib Contains JAR files that make up Forte for Java’s core implementation and the open
APIs.

lib/ext Contains extensions to Forte for Java for things such as JavaHelp, Absolute Layout,
javac, and regular expressions. Also includes all classes for PointBase (if installed).
If you use a different database, you must copy the JDBC driver to this directory.

lib/patches Any JAR or ZIP file included in this directory is automatically included at the
beginning of the IDE's startup class path. That is, it will be a patch against the
core.

modules Any JAR file in this directory is a Forte for Java module.

modules/ext Contains libraries used by modules.

pointbase Contains the executables, classes, databases, and documentation for the
PointBase Embedded database (if installed).

sources Sources for libraries that may be redistributed with user applications.
Forte for Java, Internet Edition Tutorial

Forte for Java, Internet Edition Directory Structure 21
system Includes files and directories used by Forte for Java for special purposes. It includes
ide.log, which provides information useful when seeking technical support,
and project.last, which contains information on Forte for Java projects. It is
mounted as a hidden file system.

system/Actions Contains actions that appear in Global Options under Actions.

system/applet Policy file for debugging applets.

system/Bookmarks Contains web bookmarks.

system/ParserDB Holds databases that are used for Java code completion and other Editor functions.

system/Startup Holds classes that are run at Forte for Java startup.

teamware Contains Forte for Java TeamWare module files (if installed).

teamware/bin Contains Forte TeamWare executable files.

teamware/doc Contains Forte TeamWare documentation.

teamware/readme Contains important late-breaking information about Forte TeamWare.

temp Contains information used by the internal Tomcat server, the transaction monitor,
and TeamWare.

Table 3 Forte for Java Directory Structure (Continued)

Directory/Folder Purpose
Chapter 1Getting Started

Forte for Java, Internet Edition Directory Structure22
Forte for Java, Internet Edition Tutorial

Chapter 2
Introduction to the Tutorial
In the process of creating the tutorial example application, you will learn how to use features
that are introduced in Forte for Java, Internet Edition for building components of a web
application.

To better understand the tools you will learn to use, this chapter first describes the
application you will build, laying out its requirements and then describing an architecture
that will fulfill those requirements. The final section describes how you use the Forte for
Java, Internet Edition features—web module constructs, Forte for Java tag libraries, and
Transparent Persistence— to create the application.

This chapter is organized into the following sections:

■ “Functionality of the Tutorial Application” on page 24

■ “User’s View of the Tutorial Application” on page 26

■ “Architecture of the Tutorial Application” on page 30

■ “Overview of Tasks for Creating the Tutorial Application” on page 33

Functionality of the Tutorial Application24
Functionality of the Tutorial Application
The tutorial example application, CDShopCart, is a simple online shopping cart application
for the purchase of music CDs. The customer uses a web browser to interact with the
application’s interface.

The application presents the customer with a catalog of products. From this catalog,:

1 The customer selects items to be added to a shopping cart

2 The customer can add more items to or remove existing items from the shopping cart.

3 When the customer is ready to buy what is in the shopping cart, the application writes
the order to the database, displays a message that thanks the customer and provides a
customer order number, and ends the session.

4 The customer can then exit the application or use a button on the order page to start a
new shopping session.

Application Scenarios
The interaction of the CDShopCart application begins with the customer’s visit to the
application’s home page and ends when the customer either completes an order or quits the
site. The scenarios that follow describe a few of the user’s interactions with the CDShopCart
application. Walking through these scenarios illustrates the requirements of the application,
as well as interactions that happen within the application.

1 The customer starts the application by pointing the browser to the URL of the
application’s home page.

The home page is the CD Catalog List page, which displays the list of available music CDs
and their associated information: title, the CD id number, the name of the performing
artist, the artist’s country, and the price.

2 The customer selects a CD for purchase by clicking the Add button associated with a CD.

This action causes the application to display a Shopping Cart page showing the selected
CD title, its ID number, and price.

3 The customer selects more CDs for purchase by clicking the Resume Shopping button on
the Shopping Cart page.

The application redisplays the CD catalog page, so that the customer can select another
CD, as in #2. The customer can repeat this sequence as many times as she likes, even
adding the same CD multiple times (which adds more rows of the same CD to the cart).

4 The customer removes an item from her shopping cart by clicking the Delete button
associated with the item on the shopping cart page.

Clicking this button redisplays the shopping cart minus the item, unless she deleted the
last CD in the cart. When the last CD is removed, a page is displayed that announces that
the cart is empty.
Forte for Java, Internet Edition Tutorial

Functionality of the Tutorial Application 25
5 The customer can click the Resume Shopping button on the page to return to the CD
Catalog List page, or the Cancel Order button to end the session. (See #6 for the Cancel
Order page.)

6 The customer decides to make a purchase and clicks the Place Order button on the
Shopping Cart page.

This action writes the order to the database, displays a “Thank You” message page, and
ends the session. The customer can click the Resume Shopping link on the message page
to start another session, or leave the application by closing the browser or going to a
different URL.

7 The customer cancels an order by clicking the Cancel Order button on the shopping cart
page.

This causes the application to display a “cancel order” message page that ends the session.
The Cancel Order page includes a Resume Shopping button, in case the customer wants
to start a new session.

Application Functional Specification
Given the kinds of scenarios in which the CDShopCart application would be used, the
following items list the main functions for a user interface of an application that supports
these shopping interactions.

■ A set of links to navigate from page to page

■ A master view of all the site’s offerings through a displayed list

■ A view of items selected for purchase

■ Buttons on the catalog page for adding each item

■ Buttons on the shop cart page for removing items

■ A button on the shop cart page to initiate checkout

■ A button on the shop cart page to cancel the order

■ A button on the checkout page to return to the home page to begin a new order

■ A button on the empty cart page to return to the home page

■ A button on the empty cart page to cancel the order
Chapter 2Introduction to the Tutorial

User’s View of the Tutorial Application26
User’s View of the Tutorial Application
This section describes the user’s view of the application, illustrating how the scenarios and
the functional specification, described in “Functionality of the Tutorial Application” on
page 24 are realized.

➤ To run the CDShopCart application:

1 The application starts with a CD Catalog List page that displays a list of CD titles.

This page is created with the ProductList JSP page.

2 To add a CD to your shopping card, click the Add button in the row of that CD.

This action displays the Shopping Cart page with the selected CD on it. This page is
created by the ShopCart JSP page.
Forte for Java, Internet Edition Tutorial

User’s View of the Tutorial Application 27
3 To add another CD, click Resume Shopping, which takes you back to the CD Catalog List
page.

4 Click Add on the same or a different CD.

The Shopping Cart page is redisplayed with an additional selection.

5 Repeat Step 2 and Step 3 until you have all the CDs you want to purchase.

The Shopping Cart displays your items. If you have chosen more than one of the same
item, these are displayed as separate rows.

6 To remove an item, click the item’s Delete button.

The table is redisplayed minus the removed item.
Chapter 2Introduction to the Tutorial

User’s View of the Tutorial Application28
If you remove the last item in the table, the Empty Cart HTML page is displayed:

7 Click the Resume Shopping button to return to the CD Catalog List page.

8 To place an order, click the Place Order button on the Shopping Cart page.

The Place Order page is displayed. This page is created by the PlaceOrder JSP page.

You can either exit the application by pointing the browser at a different URL, or start a
new session by clicking the Resume Shopping button.
Forte for Java, Internet Edition Tutorial

User’s View of the Tutorial Application 29
9 Or, to cancel your order, from the Shopping Cart page, click the Cancel Order button.

The Cancel Order page is displayed. This page is created by the CancelOrder JSP page.

You can start a new session by clicking the Resume Shopping button.
Chapter 2Introduction to the Tutorial

Architecture of the Tutorial Application30
Architecture of the Tutorial Application
The previous sections have given you an understanding of what the CDShopCart application
is supposed to do. This section describes an architecture that supports those requirements.

The CDShopCart application is a web-centric application that uses a web client to send
requests to and receive results from a web application. A web application is a bundle of web
components and their supporting classes, beans, and files. Web components are server-side
J2EE components, such as Servlets and JSP pages.

The CDShopCart application consists of one web module. A web module is the smallest
deployable and usable unit of web resources in a J2EE application. A feature introduced in
Forte for Java, Internet Edition is the web module construct, which automatically creates the
required directory structures, default versions of required data objects, and other special
services required by the web module.

For more information on web modules and related concepts, see Building Web Components.
For information specific to the web module construct, see the Developing Web Modules
section under JavaServlet Pages and Servlets in online help.

Figure 1 shows the CDShopCart application elements and their relation to one another.

Figure 1 Architecture of the CDShopCart Application

 url

Web
Page

Web Client

Database

ShopCart JSP

ProductList

ProductList JSP

HTTP Requests
Cart

CancelOrder
JSP

PlaceOrder JSP

Web
Page

 url

CartLineItems

Empty
Cart

 url

Session Scope
CD

catalog

 url

db tag

Populates
product list

Displays
product list

CheckOutBean

Populates
shopping cart

Session Scope
Forte for Java, Internet Edition Tutorial

Architecture of the Tutorial Application 31
Application Elements
Briefly, the elements shown in Figure 1 are:

■ The client component

The client component is a web browser that displays the application pages.

■ The service component (a web module) that includes:

■ A ProductList JSP page that retrieves the product data from a database and displays it
in a table on the CD Catalog List web page. ProductList also provides an Add button by
which a user can add a CD to the shopping cart.

■ A ShopCart JSP page that displays CDs selected for purchase in a table on the Shopping
Cart web page, and provides Delete, Place Order, Cancel Order, and Resume Shopping
buttons.

■ An EmptyCart HTML page that displays a message when the customer deletes the last
item in the shopping cart. This JSP page includes a Resume Shopping link.

■ A CancelOrder JSP page that displays a message that the order has been canceled and
a Resume Shopping button for returning to the ProductList JSP page.

■ A PlaceOrder JSP page that uses CheckOutBean to save the order to the database.
PlaceOrder displays a message that the order has been placed, and includes a Resume
Shopping button to the ProductList JSP page.

■ A Cart bean that represents the items selected for purchase.

■ A CartLineItem bean that represents a cart line item.

■ A CheckOutBean bean that uses Transparent Persistence to update the database with
the order data.

Service Component Details
The service component of the CDShopCart application is a web module that includes four
JSP pages that coordinate the application’s behavior, given input from the client, and
supporting elements to the web module include JavaBeans elements and an HTML page file.

ProductList JSP page This page locates the session for the current user or creates one if it
doesn’t exist. This page uses tags from the Forte for Java database tag library to access the
list of CDs from the database and other tags from the presentation library to display them
in a table. This page also provides an Add button on each CD line item it displays.

ShopCart JSP page When the user clicks the Add button on the ProductList page, the data
of the line item is passed to this JSP page, which instantiates a Cart object consisting of
CartLineItem objects, and uses tags from the Forte for Java presentation tag library to display
it in a table. This page provides a Delete button on each cart item. When the user clicks this
button, the page uses a scriptlet to remove the item, update the table data, and redisplay it.
If the item removed is the last item in the cart, this page forwards to the EmptyCart page.
Chapter 2Introduction to the Tutorial

Architecture of the Tutorial Application32
This page also provides Resume Shopping, Cancel Order, and Place Order buttons. These
buttons forward to the ProductList page, the CancelOrder page, and the PlaceOrder page,
respectively.

Cart JavaBean This bean has a lineItems attribute and includes the methods for getting
and removing the CartLineItem objects. This bean is imported by the ShopCart page.

CartLineItem Javabean This bean has CD related attributes, and includes methods for
getting and setting attributes of Cart line items (ID, title, artist, country, and price).

CancelOrder JSP This JSP page is called when the user clicks the Cancel Order button on the
ShopCart page. This page invalidates the session, displays a “Your order is canceled” message,
and provides a Resume Shopping button to the ProductList page.

EmptyCart JSP This JSP page is called when the user clicks the Place Order button on the
ShopCart page when the number of line items is zero. It displays a message that the cart is
empty and includes a Resume Shopping button.

PlaceOrder JSP This JSP page is called when the user clicks the Place Order button on the
Cart page when there are items in the cart. It uses the CheckOutBean to save the order to the
database, then invalidates the session, and displays a “Thank you for your order” message.
PlaceOrder includes a Resume Shopping button.

CheckOutBean JavaBean This bean uses Transparent Persistence tools to connect to the
database and associate a unique order number with the customer’s order, then update the
database with the new order data.
Forte for Java, Internet Edition Tutorial

Overview of Tasks for Creating the Tutorial Application 33
Overview of Tasks for Creating the Tutorial Application
The tutorial is divided into two chapters. In the first, you create the basic application, but
without saving the order to the database. In the second chapter, you learn how to save the
order to the database with Transparent Persistence.

Before you can create the tutorial application, you must have Forte for Java installed and set
up to run, and the tutorial database tables installed, as described in Chapter 1, “Getting
Started.”

Creating the Basic Application
In Chapter 3, “Creating the Basic Tutorial Application,” you learn how to use the following
Forte for Java features:

■ Web modules (creating, developing, and test running)

■ Provided database tags for connecting to and interacting with a database

■ Provided presentation tags for iterating through the retrieved data

In addition, you create the supporting elements: several beans and an HTML page.

Creating a Web Module
Forte for Java provides a tool for automatically creating the hierarchical directory structure
of a web application. This tool is the web module. Except for elements relating to Transparent
Persistence development, you develop the entire CDShopCart application within a single web
module construct.

The tutorial doesn’t try to provide complete information about how to develop a web
module. The section “Creating a Web Module” on page 38 serves as an introduction to the
subject, outlining the basic elements of the structure, and the (very easy) method for
creating it. When you want to know more about how to develop web modules, see Building
Web Components.
Chapter 2Introduction to the Tutorial

Overview of Tasks for Creating the Tutorial Application34
Using Forte for Java Tag Libraries
Within the CDShopCart web module, you create the ProductList JSP page to fetch the CD
catalog data to display on the CD Product List web page. You then create the ShopCart JSP
page to display CDs that the user selects for purchase. You use Forte for Java custom JSP tag
libraries for database access and data presentation functions to accomplish this.

Database and presentation
tags in ProductList

The section “Using Forte for Java Custom Tags” on page 42 describes how to use the custom
database tags to make the JDBC connection to the database and fetch the CD data. It then
describes how to use presentation tags to iterate through the resulting data, so that
ProductList can display it in an HTML form on the web page.

Presentation tags in ShopCart The ShopCart JSP page displays CD data passed to it by the ProductList JSP page. The section
“Add Code to Add or Remove an Item From the Shopping Cart Table” on page 59
demonstrates how to use presentation tags to iterate through the passed values to find the
individual field values, so they can be displayed in the correct columns in the cart table.

Creating the Supporting Elements
The supporting elements for the ShopCart JSP page are two beans (Cart and CartLineItem),
two JSP pages (CancelOrder and PlaceOrder), and one HTML page (EmptyCart).

Beans that hold cart item
data

The section “Create the CartLineItem JavaBeans Component” on page 54 shows you how to
create a bean whose object holds the parameters of a line item passed to ShopCart from
ProductList when a user clicks the Add button on the item. Then, in “Create the Cart
JavaBeans Component” on page 57, you learn how to create a bean whose object holds the
accumulated line items that have been selected. The Cart bean has methods for removing
line items from the cart.

An HTML error page In “Empty Cart Page” on page 64 section, you create an HTML page that displays a message
that the cart is empty. This is to avoid displaying an empty form on the Shopping Cart page.
The exercise teaches you how to open an HTML source file in the IDE, which is different from
opening other source files.

JSP pages that display
messages appropriate to
button actions

You create two more JSP pages, but these hold minor logic compared with ProductList and
ShopCart. In “Place Order JSP Page” on page 65, you create a JSP page that thanks you for
placing an order and then invalidates the session. It is this page that you will expand in the
next chapter to use Transparent Persistence to write the order to a database. In “Cancel Order
JSP Page” on page 67, you create a similar page that announces that your order is canceled
and invalidates the session.

Test Running the Application
Throughout this chapter, you test run each element just after you create it. Forte for Java
automatically deploys a web module to its internal container when you execute one of the
web module’s components.
Forte for Java, Internet Edition Tutorial

Overview of Tasks for Creating the Tutorial Application 35
Adding Transparent Persistence
In Chapter 4, “Adding Transparent Persistence to the Tutorial Application,” you learn to use
Transparent Persistence to write the order to the CdOrder table you created in Chapter 1,
“Getting Started.”

Creating the Persistence-Capable Classes
You use three of the tutorial database tables— CdOrder, OrderItem, and Sequence— to
generate unique numbers for the customer’s order and the line items in that order. This
allows you to store individual orders uniquely. To be able to operate on these database tables
as Java classes, you capture the database schema, then generate persistence-capable classes
from them. The final step in making the classes persistent is to “enhance” them, which is
done by the process of packaging them in a JAR file. You then put the JAR file within the
application’s web module hierarchy, so that it will be included in the web module’s WAR
(Web ARchive) file. These procedures are described in “Creating the Persistence-Capable
Classes” on page 73.

Saving the Order to the Database
A single bean (CheckOutBean) encapsulates all the Transparent Persistence procedures for
writing the order data to the database when the user clicks the Place Order button. The
procedures for creating this bean are described in “Creating the Persistence-Aware Bean” on
page 82. The procedures include creating a Persistence Manager Factory, which creates a
template for the database connection, and then creating a Persistence Manager, which
manages the transaction and query operations. You use the methods of the Query interface
to perform the required database functions that you would otherwise have to use SQL or
some other data store-specific language to perform.

Using the Results to Place the Order
In the section “Modifying the PlaceOrder Page to Call CheckOutBean” on page 89, you modify
the PlaceOrder JSP page to use the results from CheckOutBeans methods to write the order
to the database and display the returned order number.

Test Running the Whole Application
You now run the CDShopCart application, add a few CDs to the shopping cart, and then place
the order. This exercise demonstrates the power of Transparent Persistence by displaying a
generated order number. You can also check this action by checking changes in your
database table data.
Chapter 2Introduction to the Tutorial

Overview of Tasks for Creating the Tutorial Application36
End Comments
The tutorial application is designed to be brief enough for you to create in a relatively short
time (a day or so). This places certain restrictions on its scope. For example:

■ There is no error handling.

■ There are no debugging procedures.

■ There is no description of how to create the WAR file for deployment.

Future releases will have these procedures.

Although the tutorial application is designed to be a simple application that you can
complete quickly, you might want to import the entire application, view the source files, or
copy and paste method code into methods you create. The CDShopCart application is
accessible from within the IDE, under the forte4j_home/Development/tutorial file
system.
Forte for Java, Internet Edition Tutorial

Chapter 3
Creating the Basic Tutorial
Application
This chapter describes, step by step, how to create the CDShopCart tutorial application,
except for writing the order data to a database. Before you can create the tutorial application,
you must have Forte for Java installed and set up to run, and the tutorial database tables
installed, as described in Chapter 1, “Getting Started.”

This chapter is organized under the following topics:

■ “Creating a Web Module” on page 38

■ “Using Forte for Java Custom Tags” on page 42

■ “Creating the Shopping Cart Page and Supporting Elements” on page 53

■ “Creating the Three Message Pages” on page 64

You test each component as you create it. By the end of this chapter, you will be able to run
the basic application, as described in Chapter 2, “Introduction to the Tutorial,” except that
Step 9 will not display the order number. That part is covered in Chapter 4, “Adding
Transparent Persistence to the Tutorial Application.”

Creating a Web Module38
Creating a Web Module
The CDShopCart application is a web-centric application. Web-centric applications are
comprised of web modules. The CDShopCart application is a very simple application,
composed of only one web module.

This section shows you how to set up your application as a web module by using the Forte
for Java, Internet Edition web module construct.

What Is a Web Module?
According to the Java Servlet Specification, v2.2, “a web application exists as a structured
hierarchy of directories.” The root of this hierarchy is the document root, which holds all
the files that are part of the web application. The hierarchy also includes a special non-public
subdirectory, the WEB-INF directory, for things that are related to the web application but
are not to be served directly to the client. Items in the WEB-INF directory include the web
deployment descriptor (the web.xml file), and servlet and utility classes used by the web
application loader to load classes from.

No J2EE deployment construct forces you to develop your web application within this special
directory hierarchy. However, your application’s files must eventually be part of a web
module structure in order to package them as a WAR file (a Web ARchive format file) for
delivery into a web container. The Forte for Java web module construct automates much of
the process of creating the required directory hierarchy, as well as filling it with default
version of some of the objects.

For more information This tutorial does not try to provide complete information about
developing web modules. For that task, see Building Web Components. Also, consult the Forte
for Java online help for more details on web modules. Look for this information in the
Developing Web Modules folder under the JavaServer Pages and Servlets main folder.

Create the CDShopCart Web Module
In this section, you create the web module for the CDShopCart application. A web module is
a directory. You can use the Forte for Java web module feature to convert an existing directory
into a web module, but such a directory doesn’t yet exist. You will create one from scratch.

➤ To create the CDShopCart web module:

1 With the Filesystems pane of the Explorer window active, choose File > New to display the
New Template Chooser dialog box.
Forte for Java, Internet Edition Tutorial

Creating a Web Module 39
2 Open the JSP & Servlet folder and select WebModule.

3 Click Next to display a dialog box for specifying the path to the directory for the web
module.

4 Click the browse button (“…”) to add a new directory.

5 On the Web Module Directory dialog box that appears, find the location you want and
click the New Folder button.

WebModule

Click here to
browse for an
existing
directory or add
a new one
Chapter 3Creating the Basic Tutorial Application

Creating a Web Module40
6 Scroll down to find the New Folder folder.

7 Select the New Folder folder, and click on it again to make the name editable.

8 Replace the old name with CDShopCart and press Enter.

9 In the list of folders, find the CDShopCart folder, make sure it is selected, and then click
Add.

The New Web Module dialog box (see Step 3) is displayed, showing the CDShopCart
directory.

10 Click Finish.

The new web module is created in the Explorer. You are prompted that an alternate view
of the web module is installed in the Default Project tab window. Click OK to dismiss this
message.

11 Click the Project tab in the Explorer to view the web module in the Project pane.

12 Open the icons in the web module to reveal what has been created automatically.

A somewhat truncated view of the web module is displayed in the Filesystems pane.

Web module top directory.

WEB-INF directory, as per the J2EE specs, which
references all items in the module.

Classes directory for all servlets, beans, classes, etc.
lib directory for tag libraries and imported JAR files.
Web directory corresponding to the web.xml deployment
descriptor.

Configuration items for the WAR file.

Web module Document Base directory.
Forte for Java, Internet Edition Tutorial

Creating a Web Module 41
13 Click the Filesystems tab in the Explorer to compare the view of the web module in that
pane.

Throughout this tutorial, you will work mainly in the Filesystems pane.

Now you are ready to create the first component of the application, the ProductList JSP
page.
Chapter 3Creating the Basic Tutorial Application

Using Forte for Java Custom Tags42
Using Forte for Java Custom Tags
In this section, you create the ProductList JSP page that fetches and displays the CD
product data. In this tutorial, you use the Forte for Java custom database tags and their tag
libraries to perform the database functions and the custom presentation tags to iterate
through the fetched data.

What is a JSP Tag?
A tag used in JSP pages is only one type of code that is allowed in the body of a JSP file. Here
is a thumbnail description of the allowed types of code and how tags fit in.

The body of a JSP file can contain two types of code: fixed template data and elements.

■ Fixed template data

This is code of a type not known to the JSP container, and passes through the HTTP
response unchanged. Examples of fixed template data are XML and HTML code, which
you will use in the CDShopCart to create common HTML elements, such as headings,
titles, tables, and buttons.

■ Element types

■ Directives

Used to declare global information about the JSP, such as which packages to import
and whether the JSP must join a session.

■ Scripting elements

Allow you to embed Java code within a JSP file.

■ Action elements

XML-style tags that allow you to work with Java objects without having to write Java
code. For example, you can use actions to locate and instantiate Java objects and get
or set the object’s properties.

Tags (Action Elements)
There are standard action elements that are available in any JSP container. These elements
are defined in the JSP specification document. You can also create custom action elements.
Custom action elements are defined in an XML document called a tag library, which is made
available to an individual JSP page by a declaration in a directive element. The tags you will
learn to use for database and presentation in the CDShopCart application are custom tags
that are provided in the Forte for Java IDE.
Forte for Java, Internet Edition Tutorial

Using Forte for Java Custom Tags 43
Forte for Java Tag Libraries
Forte for Java provides three custom tag libraries that work together to create a visual
presentation of row-based dynamic data, and can be used with many different kinds of data
sources, such as JDBC ResultSets, EJBs, JDOs, and vectors or other collections of JavaBeans.
These tag libraries are:

■ ietags.jar (presentation and conditional tags)

■ dbtags.jar (database tags)

■ tptags.jar (transparent persistence tags)

The tag library source files are provided in the IDE. They are found in the
jsptaglibs_src.jar file in the forte4j_home/sources directory.

Where to get more information The Forte for Java tag libraries are described in online help,
in the Forte for Java Tag Libraries folder under the JavaServer Pages and Servlets main folder.
You can find full descriptions of syntax, as well as short examples. A larger demo example
is provided in the forte4j_home/Development/Examples/TagLibDemo directory. The
ReadMe file in this directory tells you how to run the demo.

Tag libraries in general, including how you can make your own custom tags, are described
in Building Web Components.

In the following sections, you will learn how to use database and presentation tags.
Chapter 3Creating the Basic Tutorial Application

Using Forte for Java Custom Tags44
Create the CD Catalog List Page
This section describes how to create the mechanism for retrieving data from the database
you installed in Chapter 1, “Getting Started,” and displaying it in a table for the user. The
page you create looks like this:

Figure 2 CD Catalog List Page

To create this page, perform the following tasks:

1 “Add Forte for Java Tag Libraries to the Web Module” (description follows)

2 “Create the ProductList JSP Page” on page 46

3 “Declare the Tag Libraries” on page 47

4 “Use the JDBC connection Tag to Connect to the Database” on page 47

5 “Use the JDBC Query Tag to Fetch the CD Data” on page 48

6 “Iterate Through the Data With the Presentation Field Tag” on page 49

7 “Create the Add Button for Each CD Row” on page 50

8 “Clean Up With the JDBC cleanup Tag” on page 51
Forte for Java, Internet Edition Tutorial

Using Forte for Java Custom Tags 45
Add Forte for Java Tag Libraries to the Web Module
In this section, you import two of the Forte for Java tag libraries— dbtags.jar (to implement
database actions) and ietags.jar (to implement presentation actions)— to the CDShopCart
web module, because you will use actions implemented by their tags.

➤ To import Forte for Java tag libraries into the web module:

1 In the Explorer, select the CDShopCart web module and choose Tools > Add JSP
TagLibrary > Find in Tag Library Repository.

The JSP Tag Library Repository Browser appears.

2 Select the dbtags and ietags libraries (use Shift or Ctrl when clicking), and click OK to add
the libraries to the web module.

In the Explorer, the lib folder under the WEB-INF folder opens.

3 Check that both tag libraries are there.

The Explorer should look like this:

4 From the toolbar, choose Project > Settings and open the Filesystem Settings entry to see
all the files that are now mounted in your classpath, including the tag libraries.

Imported tag libraries
Chapter 3Creating the Basic Tutorial Application

Using Forte for Java Custom Tags46
Create the ProductList JSP Page
Now you are ready to create the page that uses the tags to retrieve the CD data from the
database and display it in a table. The title of this page is the “CD Catalog List,” and the
mechanism that produces it is the ProductList JSP page.

➤ To create the ProductList JSP page:

1 In the Explorer, right-click the CDShopCart web module and choose New > JSP & Servlet
> JSP (HTML).

2 Type ProductList in the Name field and click Finish.

The ProductList JSP page is displayed in the web module.

And a JSP page skeleton is displayed in the editor.

Note how the JSP editor features color coding and code completion.

New JSP page
Forte for Java, Internet Edition Tutorial

Using Forte for Java Custom Tags 47
Declare the Tag Libraries
To use tags in a JSP, you must first declare the tag library with a taglib directive.

The taglib declaration declares that the page uses the tag library of a given URI, and
specifies the tag prefix that is used in calls to actions in the library. The URI use for both tag
libraries is their location in the web module (/WEB-INF/lib). The prefix is jdbc for the tags
in dbtags.jar and pr for the presentation tags in ietags.jar.

You must put the directive above the body of the JSP, right under the page title. The following
procedure shows how to change the title of the page, and then add the directives for the two
tag libraries.

➤ To declare the tag libraries in the ProductList JSP page:

Change the page title to “CD Catalog List” and add the following directives to import the
dbtags.jar and ietags.jar packages.

JSP tags are based on XML syntax, and have one of two forms:

■ Start tag (the element name) plus possible attribute/attribute value pairs, an optional
body, and a matching end tag

■ Empty tag with possible attributes

In this tutorial, you use both types of syntax. The first tag you will use is the JDBC
connection tag, which is the empty tag type (with lots of attributes). This tag makes the
connection to the database. (See the online help description for these attributes.)

Use the JDBC connection Tag to Connect to the Database
The first JDBC tag you use is the connection tag. This tag creates a JDBC connection to a
database. You have the option of storing the connection in any of four scopes: application,
session, request, or page. The default scope is application. In this JSP, you use the default
scope, because you want the connection to be global, for the whole application.

The connection tag has many attributes (see the online help description), but the
attributes you will use are:

Put the connection tag below the body HTML tag. First, however, add a page title for the
page, and then add the connection specification.

<head><title>CD Catalog List</title></head>

Database tag lib directive <%@taglib uri="/WEB-INF/lib/dbtags.jar" prefix="jdbc" %>

Presentation tag lib directive <%@taglib uri="/WEB-INF/lib/ietags.jar" prefix="pr" %>

jdbc:connection tag <jdbc:connection id="<connection_id>"

driver="<driver_string>"

url="<driver_url>"

user="<user_id>" password="<pwd>" />
Chapter 3Creating the Basic Tutorial Application

Using Forte for Java Custom Tags48
➤ To use the JDBC connection tag:

Below the BODY tag, create a header and the JDBC connection.

■ The following is for a PointBase driver; read further for Oracle or SQLServer driver
specifications.

■ If you are using an Oracle database, use this:

The default Oracle port number is 1521.

■ If you are using a Microsoft SQLServer database with a Weblogic driver, use this:

The default port number for SQLServer is 1433.

Use the JDBC Query Tag to Fetch the CD Data
Now you will use another JDBC tag, query, to query the database. The query tag queries a
database and gets the results. After executing the query, the generated ResultSet is stored
against the resultsID in a pageContext. The ID can be passed to iterator tags to display the
results. The query tag supports the standard SQL statement Select. Because the SQL
statement is specified in the body instead of as an attribute, you can use JSP scripting to
control how the query is created.

The query tag has the more complex tag syntax:

You will put the query tag just following the connection tag.

<body>

Page title <h1> CD Catalog List </h1>

Create a JDBC connection. <jdbc:connection id="jdbcConn"

driver="com.pointbase.jdbc.jdbcUniversalDriver"

Use the PointBase database. url="jdbc:pointbase://embedded/cdshopcart"

user="PUBLIC" password="PUBLIC" />

Oracle JDBC specification driver="oracle.jdbc.driver.OracleDriver"

(thin driver) url="jdbc:oracle:thin:@hostname:port#:SID"

user="userid" password="password"

Microsoft SQLServer driver="weblogic.jdbc.mssqlserver4.Driver"

using a Weblogic driver url="jdbc:weblogic:mssqlserver4:database@hostname:port#"

specification user="userid" password="password"

<jdbc:query id="<stored_query_id>" connection="<connection_id>"
resultsId="<results_id>" resultsScope="<scope>" >

body

</jdbc:query>
Forte for Java, Internet Edition Tutorial

Using Forte for Java Custom Tags 49
➤ To query the database for all the CD data:

Create a query to select all the CD data from the database.

Iterate Through the Data With the Presentation Field Tag
At this point, you need to create a table, and then fill the table cells with the data. You will
use two presentation tags, iterator and field, to iterate through the data you just
fetched.

■ iterator— iterates over rows in a data source Results. It understands the results
interface and several specialized datasource types, including JDBCResultSet,
java.util.Vector, and java.util.Collection.

The syntax you will use is:

■ field— gets the value or the name of a field in the current row of results. Results are
usually obtained from an enclosing row or field iterator, but they can also be specified
directly. In this tutorial, you use the row iterator.

The field that is displayed is determined by the name or index attributes. If the name
attribute is present, then the tag retrieves the named column from the results. If the
index attribute is present, then the tag retrieves the indexed column from the results.
If neither is present, then the field tag must be enclosed in a fieldIterator tag, in
which case it retrieves the current column of the current row of the fieldIterator’s
results.

In this tutorial, you use the name attribute. The syntax is:

In the next procedure, first create a table with HTML tags. Then, use the iterator tag with
the results you specified in the query tag, above. Finally, use the field tag within the HTML
syntax to place the specific column from the results.

Use the “jdbcConn” connection
created above, and put it on
the session.

<jdbc:query id="productQuery" connection="jdbcConn"
resultsId="productDS" resultsScope="session" >

The SQL select statement: SELECT * FROM CD

End of query tag: </jdbc:query>

<pr:iterator results="<results_id>" >

body

</pr:iterator>

<pr:field name="<field_name>"/>
Chapter 3Creating the Basic Tutorial Application

Using Forte for Java Custom Tags50
➤ To use the presentation tags to iterate through the data:

1 Start a table for the CD data.

2 Next, use the iterator and field tags to populate the table.

Create the Add Button for Each CD Row
Each row of the CD table holds the data for a CD. To purchase a CD, the user clicks the Add
button on each row. You will create an HTML form to define the area for user input (clicking
the button), and within this area, you will embed information that will be passed to the
Shopping Cart JSP page. You put this code above the end iterator tag (you created in the
last line, above).

➤ To create the Add button:

1 Create a form for the table within a cell (start above the </pr:iterator> tag you just
created).

<TABLE border=1>

<TR>

Create headings <TH>ID</TH>

for all the <TH>CD Title</TH>

table columns. <TH>Artist</TH>

<TH>Country</TH>

<TH>Price</TH>

</TR>

Start iterating the query
results.

<pr:iterator results="productDS" >

<TR>

Retrieve the value <TD><pr:field name="id"/></TD>

from each field <TD><pr:field name="cdtitle"/></TD>

in the current row <TD><pr:field name="artist"/></TD>

of the results. <TD><pr:field name="country"/></TD>

<TD><pr:field name="price"/></TD>

End iterator tag: </pr:iterator>

<TD>

Start form. <form method=get action="ShopCart.jsp">
Forte for Java, Internet Edition Tutorial

Using Forte for Java Custom Tags 51
2 Specify the embedded information.

3 End the form, the cell, and the row.

4 Below the iterator end tag, end the table.

Clean Up With the JDBC cleanup Tag
The final code you need to add is a cleanup tag. The JDBC cleanup tag frees the resources
being used by other tags on the JSP page. Its syntax is:

See the online help for a fuller description of this tag.

After the cleanup tag, you need only end the body of the JSP.

➤ To perform a cleanup of resources and end the page:

1 Type the following code:

2 Choose File > Save to save your work.

Add product ID. <input type=hidden name=cdId value="<pr:field name="id"/>">

Add product title. <input type=hidden name=cdTitle value="<pr:field
name="cdtitle"/>">

Add product price. <input type=hidden name=cdPrice value="<pr:field name="price"/>">

Add Add button. <input type=submit name=operation value=Add>

</form>

</TD>

</TR>

</pr:iterator>

Add this line: </TABLE>

<jdbc:cleanup scope="<scope>" status="ok|error" />

<jdbc:cleanup scope="session" status="ok" />

</body>

</html>
Chapter 3Creating the Basic Tutorial Application

Using Forte for Java Custom Tags52
Test Run the ProductList JSP Page
Now you must test your typing. Compile the ProductList page, then use the integrated Forte
for Java runtime system and browser to execute the page.

➤ To test run the ProductList JSP page:

1 In the Explorer, select the CDShopCart web module and choose Build > Build All.

Watch the message area in the lower part of the Toolbar for status messages. If all is well,
you see “Finished.” If there are problems, the output window displays an error message,
with the problem line. Fix any problems and redo this step until you see the “Finished …”
message.

2 Test run the ProductList JSP by selecting it and clicking the Execute button in the Toolbar.

Or choose Build > Execute, or right-click ProductList and choose Execute from the
contextual menu.

Forte for Java switches to the Runtime workspace and opens the Execution window. When
the Servlet is running, a message is displayed in the Execution window and the browser
opens. After a few seconds, the CD Catalog List page displays, as in Figure 2 on page 44.

3 Terminate the execution by right-clicking on the process in the Execution window and
choosing Terminate Process.

If you want to re-execute ProductList, note that when you execute the program after the
first time in a session, you must choose Execute (restart server).

4 Return to the Editing workspace, by clicking its tab.

Congratulations! You have successfully created a JSP page, and used Forte for Java custom
tags to open a connection to a database, and retrieve and display data from it. Now you are
ready to create the Shopping Cart page.
Forte for Java, Internet Edition Tutorial

Creating the Shopping Cart Page and Supporting Elements 53
Creating the Shopping Cart Page and Supporting Elements
In this section, you create the mechanism for displaying items selected for purchase from
the CD Catalog List page. You create a bean (CartLineItem) to hold the attributes of the
selected CD row passed as parameters from the ProductList page, and another bean (Cart)
to hold the CartLineItem objects. You then create the ShopCart JSP page to receive the
Cart objects and display them as a row in a table. Create and implement a Delete button for
each item displayed on the ShopCart page. Finally, you place Cancel Order, Resume
Shopping, and Place Order buttons on the page, with their implementations.

To create the ShopCart page and its beans, perform the following tasks:

1 “Create the CartLineItem JavaBeans Component,” which follows

2 “Create the Cart JavaBeans Component” on page 57

3 “Create the ShopCart JSP Page” on page 59

4 “Test Run the Shopping Cart Page” on page 63

The page you create looks like this when a few items have been selected.

Figure 3 Shopping Cart Page
Chapter 3Creating the Basic Tutorial Application

Creating the Shopping Cart Page and Supporting Elements54
Create the CartLineItem JavaBeans Component
In this section, you create a line item bean whose object can hold the parameters passed to
the Shopping Cart page from the CD Catalog List (ProductList) page. To do this, you will
create three properties on the bean with their accessor methods.

➤ To create the CartLineITem JavaBeans component:

1 Open the WEB-INF folder of the CDShopCart web module, right-click the Classes
folder, and choose New > Beans > Bean.

Use the GUI to create the
bean.

2 In the New From Template New Object Name dialog box that appears, type
CartLineItem and click Finish.

3 A message is displayed prompting you to add the new bean to the project; click Yes.

The new CartLineItem bean is displayed in the Explorer, and its code in the Editor.

4 Open the bean and its class to reveal its contents.

Create the cdtitle property. 5 Right-click on Bean Patterns and choose New > Property.

6 In the New Property Patterns dialog box, enter the following information:

Name: cdtitle
Type: java.lang.String
Generate field: checked
Generate return statement: checked
Generate set statement: checked

The dialog box should look like this:

7 Click OK to accept the information and close the dialog box.
Forte for Java, Internet Edition Tutorial

Creating the Shopping Cart Page and Supporting Elements 55
Create the id property. 8 Similarly, create the id property with the following values:

Name: id
Type: int
Generate field: checked
Generate return statement: checked
Generate set statement: checked

Create the price property. 9 Create the price property with the following values:

Name: price
Type: double
Generate field: checked
Generate return statement: checked
Generate set statement: checked

10 Open the Fields folder (of the CartLineItem bean class) to see the new fields you
created.

11 Open the Methods folder to see the new get and set methods for each field.

12 Double-click on a new field (or a new method) to see the new code that was created in
the Editor.

The parameters passed from the ProductList JSP page are all passed as strings. However,
because neither the id or price properties are strings, you will have to convert them. An
efficient way to do this is to overload the properties’ setter methods and add the proper code.

➤ To overload the setId and setPrice methods:

Overload the setId method to
convert id to a string.

1 Right-click on the Methods folder (of the CartLineItem bean), and choose New
Method…

2 In the Edit new method dialog box that appears, enter the following:

Name: setId
Return Type: void

3 In the Method Parameters box, click the Add button to display the Enter Method
Parameter dialog box.

4 Enter the following values:

Type: java.lang.String
Name: id

5 Click OK.
Chapter 3Creating the Basic Tutorial Application

Creating the Shopping Cart Page and Supporting Elements56
The New Method dialog box should look like this:

6 Click OK to create the method and close the dialog box.

7 Add code to this new method:

Now do the same with the setPrice method.

Create a new setPrice
method.

8 Create a new setPrice method with these values:

Method –
Name: setPrice
Return Type: void

Method Parameter –
Type: java.lang.String
Name: price

public void setId(java.lang.String pId) {

Add this line: int val = Integer.parseInt(pId);

And this line: this.setId(val);

}

Forte for Java, Internet Edition Tutorial

Creating the Shopping Cart Page and Supporting Elements 57
9 Add the following code to this new method:

Compile the bean. 10 Select the CartLineItem bean (not the class) and click the Compile button.

If the bean compiles without errors, you are ready to create the Cart bean. If not, check
your typing and recompile.

You are now ready to create the Cart bean.

Create the Cart JavaBeans Component
The Shopping Cart JSP page instantiates (or finds, if it already exists) a cart object to hold the
CD line item objects that are passed to it by the ProductList JSP page when a user clicks
the Add button. The cart object is based on a Cart JavaBeans component.

➤ To create the Cart bean:

1 Right-click the Classes folder under the WEB-INF folder of the web module and choose
New > Beans > Bean.

2 Name the bean Cart.

Create the lineItems property. 3 Right-click on Bean Patterns and choose New > Property.

4 In the New Property Patterns dialog box, enter the following values:

Name: lineItems
Type: java.util.Vector
Generate field: checked
Generate return statement: checked
Generate set statement: checked

5 Double-click on the new lineItems field (or the new methods) to see the new code that
was created in the Editor.

You need to change the access of the field from “private” to “public.”

6 Open the Fields folder of the Cart class and select the lineItems field.

7 Open its Properties window and change the Modifiers value to public.

Now add code that instantiates a line item object, and a method that returns the element
number of a selected item and another method that removes a line item from the cart.

public void setPrice(java.lang.String pPrice) {

Add this line: double val = Double.parseDouble(pPrice);

And this line: this.setPrice(val);

}

Chapter 3Creating the Basic Tutorial Application

Creating the Shopping Cart Page and Supporting Elements58
➤ To add the required code:

1 Add code to the Cart bean’s constructor to instantiate a new lineItems object, as follows:

Create the findLineItem
method.

2 Right-click on the Cart Methods folder, choose New Method…, and enter the following
values for this method:

Method –
Name: findLineItem
Return Type: int

Method Parameter –
Type: int
Name: pID

3 Add the following code in the Editor to the findLineItem method:

4 Create the removeLineItem method and enter the following values:

Method –
Name: removeLineItem
Return Type: void

Method Parameter –
Type: int
Name: pID

public Cart() {

propertySupport = new PropertyChangeSupport (this);

Add this line: lineItems = new java.util.Vector();

}

public int findLineItem(int pID) {

Start here: System.out.println("Entering Cart.findLineItem()");

Returns the element number int cartSize = (lineItems == null) ? 0 : lineItems.size();

of the item in the cartItems int i ;

as specified by the passed ID. for (i = 0 ; i < cartSize ; i++)

{

if (pID == ((CartLineItem)lineItems.elementAt(i)).getId())

break ;

}

if (i >= cartSize) {

System.out.println("Couldn’t find line item for ID: " + pID);

return -1 ;

}

else

End here: return i ;

}

Forte for Java, Internet Edition Tutorial

Creating the Shopping Cart Page and Supporting Elements 59
5 Add the following code in the Editor to the removeLineItem method:

Compile the Cart bean. 6 Select the Cart bean (not the class) and click the Compile button to compile the Cart
bean.

The bean should compile without errors.

You are ready to create the ShopCart JSP page.

Create the ShopCart JSP Page
Now you are ready to create the page that receives the parameters passed from the CD
Catalog List page and displays some of them (id, title, and price) as a row in a table. This page
also offers mechanisms for deleting an item from the table, returning to the Catalog List
page, and placing the order. The title of this page is “Shopping Cart,” and the mechanism that
produces it is the ShopCart JSP page.

➤ To create the ShopCart JSP page:

1 Create a JSP page by right-clicking the CDShopCart web module and choosing New > JSP
& Servlet > JSP (HTML).

2 Name the JSP page ShopCart and click Finish.

The ShopCart JSP is displayed in the Explorer and in the Editor.

To develop this page, perform the following tasks:

1 “Add Code to Add or Remove an Item From the Shopping Cart Table,” which follows

2 “Use Presentation Tags to Populate the Cart Table” on page 61

3 “Add the Buttons to the Page” on page 62

Add Code to Add or Remove an Item
From the Shopping Cart Table
In this section, you add code that creates the cart items table. You will instantiate a Cart
object and a CartLineItem object, so you must use a directive to import the Cart bean
and the java.util library (the CartLineItem is a type Vector, from this library). You will
use the same presentation tags that you used in the ProductList JSP page, so you must
also add a directive to import these tags.

public void removeLineItem(int pID) {

Start here: System.out.println("Entering cart.removeLineItem()");

Removes a cartItem from the int i = findLineItem(pID);

cartItems list. if (i != -1) lineItems.remove(i);

End here: System.out.println("Leaving cart.removeLineItem()");

}

Chapter 3Creating the Basic Tutorial Application

Creating the Shopping Cart Page and Supporting Elements60
You use a scriptlet to create the cart and either add a line item created with the parameters
passed from the ProductList JSP page, or delete a line item (when you press the Delete
button). If the table is empty, you will forward to a JSP page you haven’t created yet (the
EmptyCart JSP page).

As with the ProductList JSP page, you use iteration tags to organize the table data, and
then use a form to create the table and add a Delete button to each row.

➤ To code the ShopCart JSP page:

1 Add a Page directive to import the java.util library and the Cart bean.

2 Change the page title to “Shopping Cart” and add the directive to import the and
ietags.jar library.

3 Below the BODY tag, create a “Shopping Cart” header for the page.

4 Below the header, use the usebean tag to tell the JSP to use the Cart bean.

Now you must specify what happens when the current operation for the session is “Add.”
This happens when the user clicks the Add button on the ProductList page. The code
gets the cdID, cdTitle, and cdPrice objects and adds them to the myCart object.

5 Begin creating the scriptlet with the following code:

<%@ page contentType="text/html" %>

Add this line: <%@ page import="java.util.*, Cart" %>

Change the title. <head><title>Shopping Cart</title></head>

Presentation tag lib reference. <%@taglib uri="/WEB-INF/lib/ietags.jar" prefix="pr" %>

<body>

Add this line: <h1> Shopping Cart </h1>

Instantiate a Cart object and
place it on the session.

<jsp:useBean id="myCart" scope="session" class="Cart" />

<%

String myOperation = request.getParameter("operation");

session.setAttribute("myLineItems", myCart.getLineItems());

To add an item to the Cart: if (myOperation.equals("Add"))

{

CartLineItem lineItem = new CartLineItem();

lineItem.setId(request.getParameter("cdId"));

lineItem.setCdtitle(request.getParameter("cdTitle"));

lineItem.setPrice(request.getParameter("cdPrice"));

myCart.lineItems.addElement(lineItem);

}

Forte for Java, Internet Edition Tutorial

Creating the Shopping Cart Page and Supporting Elements 61
Now, specify what happens when the current operation for the session is “Delete.” This
happens when the user clicks the Delete button on the ShopCart page.

6 Type the following code:

Finally, you must specify what happens when the Delete action deletes the last row of the
Cart CD table. Use the JSP forward tag to go to the EmptyCart HTML page (which you
will soon create). This last code ends the script you started in Step 5 (though you have to
make a break for the forward tag, then resume before you finally end the scriptlet).

7 Type the following code:

Use Presentation Tags to Populate the Cart Table
Next, you will use the iterator and field tags to iterate through the passed data, much as you
did in “Iterate Through the Data With the Presentation Field Tag” on page 49.

➤ To use the presentation tags to iterate through the data:

1 Start a table for the purchase candidate data.

2 Use the iterator and field tags to populate the table:

To remove an item: if (myOperation.equals("Delete"))

{

String s = request.getParameter("cdId");

System.out.println(s);

int idVal = Integer.parseInt(s)

myCart.removeLineItem(idVal);

}

When the last item is removed if (((Vector)session.getAttribute("myLineItems")).size() == 0)

from the Cart, {

(end scriptlet temporarily) %>

forward to the EmptyCart page <jsp:forward page="EmptyCart.html" />

(begin scriptlet again). <%

}

End script. %>

<TABLE border=1>

<TR>

Create the <TH>ID</TH>

table headings. <TH>CD Title</TH>

<TH>Price</TH>

</TR>

Start the row iterator. <pr:iterator results="myLineItems" >

<TR>
Chapter 3Creating the Basic Tutorial Application

Creating the Shopping Cart Page and Supporting Elements62
3 Create a Delete button for each row, as in“Create the Add Button for Each CD Row” on
page 50.

Add the Buttons to the Page
Finally, add the Resume Shopping, Place Order, and Cancel Order buttons to the page bottom.

➤ To add the buttons to the page:

1 Add the following code to the ShopCart JSP page.

Retrieve the value from each <TD><pr:field name="id"/></TD>

field in the current row. <TD><pr:field name="cdtitle"/></TD>

of the results. <TD><pr:field name="price"/></TD>

<TD>

Start form. <form method=get action="ShopCart.jsp">

Add product id. <input type=hidden name=cdId value="<pr:field name="id"/>">

Add product title. <input type=hidden name=cdTitle value="<pr:field
name="cdtitle"/>">

Add product price. <input type=hidden name=cdPrice value="<pr:field name="price"/>">

Add Delete button. <input type=submit name=operation value=Delete>

End form. </form>

End cell. </TD>

End row. </TR>

End iterator from line 44. </pr:iterator>

End table. </TABLE>

<p>

Create the <form method=get action="ProductList.jsp">

Resume Shopping button. <input type=submit value="Resume Shopping">

</form>

Create the <form method=get action="PlaceOrder.jsp">

Place Order button. <input type=submit value="Place Order">

</form>

Create the <form method=get action="CancelOrder.jsp">

Cancel Order button. <input type=submit value="Cancel Order">

</form>

</body>

End the page. </html>
Forte for Java, Internet Edition Tutorial

Creating the Shopping Cart Page and Supporting Elements 63
Test Run the Shopping Cart Page
You don’t test run the Shopping Cart page directly. You test run the ProductList page and
navigate (by means of the Add button) to the Shopping Cart page.

➤ To test run the application so far:

1 Select the CDShopCart web module and choose Build > Build All.

Everything should compile successfully.

2 Right-click the ProductList JSP page and choose Execute (restart server).

After a few seconds, the CD Catalog List page is displayed.

3 Click one of the Add buttons to navigate to the Shopping Cart page.

The Shopping Cart page should appear something like this.

4 Use the Resume Shopping button to return to the CD Catalog List page.

Note Using the Back button on the ICE Browser produces unexpected results, because it does
not cache the pages the way Netscape or Internet Explorer do. If you are using either
Netscape or IE, you can use the Back button as well as the Resume Shopping button.

5 Terminate the execution by right-clicking on the process in the Execution window and
choosing Terminate Process.

6 Return to the Editing workspace by clicking the Editing tab of the Explorer window.

Congratulations! You have almost finished the CDShopCart application. You only have to
create the EmptyCart and PlaceOrder pages, and you’re done!
Chapter 3Creating the Basic Tutorial Application

Creating the Three Message Pages64
Creating the Three Message Pages
In this section, you create a JSP page that displays when a user empties the cart and two
more that display when the user clicks the Place Order and Cancel Order buttons,
respectively.

The three pages you create in this section are:

■ “Empty Cart Page,” which follows

■ “Place Order JSP Page” on page 65

■ “Cancel Order JSP Page” on page 67

Empty Cart Page
When an iterator tag finds an empty vector, it throws an exception (rather than creating an
empty table). We have dealt with this by testing for this case (lines 28 through 33 in “Add
Code to Add or Remove an Item From the Shopping Cart Table” on page 59) and then
handling it by displaying the Empty Cart page. This page contains a Resume Shopping
button, to allow the user to return to the application.

Note For alternative ways to handle the empty vector situation, see the examples distributed with
Forte for Java, Internet Edition. They are found in the examples folder in the Development
file system.

The Empty Cart page looks like this.

Figure 4 Empty Cart Page
Forte for Java, Internet Edition Tutorial

Creating the Three Message Pages 65
➤ To create the Empty Cart page:

1 Create an HTML page by right-clicking the CDShopCart web module and choosing New
> Other > HTML File.

2 Name it EmptyCart and click Finish.

The file is displayed in the browser.

3 Close the browser.

4 To view the source file in the Editor, right-click the EmptyCart HTML file and choose
Open.

5 Add the following HTML code to the page:

Place Order JSP Page
This and the CancelOrder page are very simple pages, and present only one of many ways
you can resolve these actions. Because programming these pages demonstrates little more
of the Forte for Java features than you have already seen, we have chosen the simplest
possible resolution.

<HTML>

Create a title. <head><title>Empty Cart</title></head>

<body>

Add a heading. <h1> Empty Cart </h1>

Add a message. Your shopping cart is empty.

Add a space <p>

Add a button to return <form method=get action="ProductList.jsp">

to the Catalog page. <input type=submit value="Resume Shopping">

</form>

</body>

</HTML>
Chapter 3Creating the Basic Tutorial Application

Creating the Three Message Pages66
The Place Order page displays when the user clicks the Place Order button on the Shopping
Cart page. Displaying this page ends the session. The page looks like this:

Figure 5 Place Order Page

➤ To create the Place Order page:

1 Create a JSP page by right-clicking the CDShopCart web module and choosing New > JSP
& Servlet > JSP (HTML).

2 Name it PlaceOrder and click Finish.

3 Change the page title to “Place Order” and add code as follows:

<%@page contentType="text/html"%>

<html>

Change the title. <head><title>Place Order</title></head>

<body>

Add a heading. <h1> Place Order </h1>

<%

Invalidate the session. session.invalidate();

%>

Enter the message. Your order has been placed. Thank you for shopping.

Add a space. <p>

Add a button to return <form method=get action="ProductList.jsp">

to the Catalog page. <input type=submit value="Resume Shopping">

</form>

</body>

</html>
Forte for Java, Internet Edition Tutorial

Creating the Three Message Pages 67
Cancel Order JSP Page
The Cancel Order page displays when the user clicks the Cancel Order button on the
Shopping Cart page. Displaying this page ends the session. The page looks like this:

Figure 6 Cancel Order Page

➤ To create the Cancel Order page:

1 Create a JSP page by right-clicking the CDShopCart web module and choosing New > JSP
& Servlet > JSP (HTML).

2 Name it CancelOrder and click Finish.

3 Change the page title to “Cancel Order” and add code as follows:

<%@page contentType="text/html"%>

<html>

Change the title. <head><title>Cancel Order</title></head>

<body>

<h1> Cancel Order </h1>

<%

Invalidate the session. session.invalidate();

%>

Enter the message. Your order has been cancelled. Thank you for shopping.

Add a space. <p>

Add a button to return <form method=get action="ProductList.jsp">

to the Catalog page. <input type=submit value="Resume Shopping">
Chapter 3Creating the Basic Tutorial Application

Creating the Three Message Pages68
Test Run the Three Message Pages
As with the Shopping Cart page, you test run the message pages by running the ProductList
page, adding CD items to the Shopping Cart, and then performing the appropriate action that
displays each message page.

➤ To test the message pages:

1 Select the CDShopCart web module and choose Build > Build All.

Everything should compile successfully.

2 Right-click the ProductList JSP page and choose Execute (restart server).

After a few seconds, the CD Catalog List page is displayed.

3 Click one of the Add buttons to navigate to the Shopping Cart page.

4 To test the Empty Cart page, click the Delete button on the item you just put into the cart.

The Empty Cart page should appear.

5 Click the Resume Shopping button to return to the CD Catalog List page.

6 Add one or more CDs to the cart.

7 Test the Cancel Order page by clicking the Cancel Order button.

8 When the page appears, click the Resume Shopping button to return to the Catalog page.

9 Add another CD to the cart.

10 When the Shopping Cart page appears, make sure that the CD you added is the only one
in the cart.

There should be only this CD in the cart because the Cancel Order ended the previous
session.

11 Add more CDs to the cart, and then test the Place Order button.

12 When the Place Order page appears, click the Resume Shopping button to return to the
Catalog page.

13 Add another CD to the cart.

As with Step 10, because the Place Order page ended the session, only one CD should be
in the cart.

14 To stop the application, right-click on the message in the Execution window and choose
Terminate Process.

</form>

</body>

</html>
Forte for Java, Internet Edition Tutorial

Chapter 4
Adding Transparent Persistence
to the Tutorial Application
This chapter teaches you some basic techniques for using Transparent Persistence to interact
with a database, by showing you how to use it to save a customer’s order. You must already
have created the basic CDShopCart application, as described in Chapter 3, “Creating the Basic
Tutorial Application,” before you can begin this chapter.

The topics covered in this chapter are:

■ “Overview of Transparent Persistence” on page 70

■ “Creating the Persistence-Capable Classes” on page 73

■ “Creating the Persistence-Aware Bean” on page 82

■ “Modifying the PlaceOrder Page to Call CheckOutBean” on page 89

■ “Test Running the New CDShopCart Application” on page 90

Overview of Transparent Persistence70
Overview of Transparent Persistence
Forte for Java Transparent Persistence is a preview of the Transparent Persistence technology
described in the Java Data Objects Specification, which is available for public review at
http://java.sun.com/aboutJava/communityprocess/review/jsr012/index.html.
The book Programming Persistence provides details of what portion of this technology is
offered in Forte for Java, Internet Edition.

The purpose of Transparent Persistence is to let you access information from a data store as
Java objects, so that you can manipulate the data using the Java programming language,
rather than SQL or some other data store-specific language. Transparent Persistence does
this by mapping tables in a database schema to Java classes, and then enhancing them to be
persistence-capable.

You use standard Java language operations and Transparent Persistence method calls on
these persistence-capable classes to access the database. When you compile and run your
application, the Transparent Persistence runtime system automatically performs and
manages persistence operations.

You create persistence-capable classes from database schema tables by two methods: by
automatically generating class definitions from specific tables within the schema, or by
custom mapping existing classes to specific tables within the schema.

Persistence-capable classes can have both persistent fields and transient fields. Persistent
fields represent persistent data and are managed by the Transparent Persistence runtime
environment. The runtime environment synchronizes the field’s value with the data store,
flushes class values to the data store, and so on, in accordance with current transaction
status and concurrency management strategy.

Transient fields are normal Java language constructs, managed by application logic, and
don’t participate in the Transparent Persistent mechanism. The application can use them for
such things as values derived from persistent values, values used in a transaction that don’t
need to be saved to the data store, and so on.

For more information All aspects of Transparent Persistence are fully described in the
book Programming Persistence. There is also online help on Transparent Persistence, in the
Transparent Persistence folder and its subfolders. You can also browse Javadoc
documentation of Transparent Persistent methods in the Javadoc pane of the Forte for Java
Explorer.

How You Use Transparent Persistence
Using Transparent Persistence in development of an application has two steps. In the first
step, you create the persistence-capable classes from the database schema. In the second
step, you use methods of Transparent Persistence classes and runtime environment objects
to work with the data.
Forte for Java, Internet Edition Tutorial

Overview of Transparent Persistence 71
The basic sequence for calling Transparent Persistence methods is as follows:

1 Create or obtain a Persistence Manager Factory.

The Persistence Manager Factory is the factory from which you create Persistence
Managers to manage the database operations. The Persistence Manager Factory creates a
database connection template for its Persistence Managers.

2 Create a Persistence Manager.

A Persistence Manager Factory must exist before you can create a Persistence Manager.
Each session usually creates its own Persistence Manager, which uses the database
connection defined by the Persistence Manager Factory (although it can override this
connection). Use the Persistence Manager is the factory for creating transaction objects
and query objects. The query class provides a set of methods that serve the same purpose
as database query functions.

3 (Optional) Create a Connection Factory.

This is required only if you want to implement connection pooling. See the book
Programming Persistence for more information.

4 Create an instance of the Transaction class.

Use Persistence Manager methods to create the Transaction object, and use
Transaction methods for all transaction operations on instances managed by the
Persistence Manager.

5 Use the Transparent Persistence API to connect to the database and start and end
transactions.

All the business logic of your application (queries and updates to the database) is
enclosed within the context of the transaction and the database on which the transaction
has been started.

6 Invoke the business logic of your application.

As the application queries the database, modifies records, and adds new records, it creates
a set of persistent instances that represent the data it needs. The Persistence Manager
manages all the database interactions for this set of instances.

7 Commit or abort the transaction.

Commit the transaction to save your updates to the database. Abort the transaction to
roll back the database to what it was before your transaction began. After commit, deleted
objects become transient.

8 Perform additional transactions.

You can use the same transaction object and execute additional logic, or repeat the logic
that you have just executed. Or, you can create and use another transaction object.

9 Close the database and exit the application.
Chapter 4Adding Transparent Persistence to the Tutorial Application

Overview of Transparent Persistence72
Using Transparent Persistence in the CDShopCart Application
The CDShopCart application you created in Chapter 3, “Creating the Basic Tutorial
Application” allows a user to create an order, but when the user clicks the Place Order button,
it only displays a message about the order being placed. It doesn’t actually save the order to
the database. In this chapter, you add components that save the order.

The main steps in fulfilling the Place Order function are:

1 Create persistence-capable classes to generate and keep track of sequence numbers,
assign them to each order item, then store the order and identifying numbers.

In “Creating the Persistence-Capable Classes” on page 73, you use the tables you installed
in the database in Chapter 1, “Getting Started.”

2 Enhance the persistence-capable classes.

Enhancing is the process by which Transparent Persistence automatically generates all of
the necessary JDBC statements for the classes. You can enhance classes either by running
them in the IDE or by packaging them. In “Enhance the Persistence-Capable Classes” on
page 80, you package them in a JAR file within the CDShopCart web module.

3 Create a bean component to encapsulate all the Transparent Persistence technology for
writing the order to the database.

In “Creating the Persistence-Aware Bean” on page 82, you create the CheckOutBean bean
that performs the following actions:

a Creates a Persistence Manager Factory.

b Creates a Persistence Manager.

Usually, you create the Persistence Manager Factory at the application level, and the
Persistence Manager at the session level. Creating both with the same component is
a simplification required by this small application.

c Opens the database connection.

d Creates an instance of the Transaction class.

e Invokes the logic that assigns the identifying numbers to each order and its items.

f Commits the transaction, which saves the updates to the database.

g Returns the order number to the PlaceOrder JSP page.

4 Modify the PlaceOrder page to use CheckOutBean to place the order and get the order
number it displays as part of the new message that the order has been placed.

You perform this action in “Modifying the PlaceOrder Page to Call CheckOutBean” on
page 89.

5 Test run the entire application.

You do this in “Test Running the New CDShopCart Application” on page 90.
Forte for Java, Internet Edition Tutorial

Creating the Persistence-Capable Classes 73
Creating the Persistence-Capable Classes
Before mapping any Java classes to a database schema, you must capture the schema. This
creates a working copy in your Filesystem that you can use without a live connection to the
database. From this schema, you generate the persistence-capable classes from the three
tables you created for the CDShopCart application. You then compile the package and
enhance it.

In this section, perform the following procedures:

1 “Capture the Database Schema,” which follows

2 “Generate the Persistence-Capable Classes” on page 76

3 “Enhance the Persistence-Capable Classes” on page 80

Capture the Database Schema
The captured schema must be stored in a package. Later, you enhance the classes by
packaging them in a JAR file, after which, you must unmount the original package so that it
will not be in your CLASSPATH (all mounted directories are in your CLASSPATH). You do this
because you want the application to use the enhanced classes (in the JAR file) rather than
the unenhanced ones (in the package). Therefore, you must first mount a directory on your
filesystem to hold the package.

You mount the directory, create the package in the directory, and then start the Database
Schema wizard to capture the schema. You will not create the package in the CDShopCart
web module, because only the JAR file that you package it in needs to be contained in the
web module.

➤ To capture the tutorial database schema:

1 Create a directory somewhere on your file system.

In this example, this directory is the forSchema directory.

2 Mount this directory by choosing File > Mount Filesystem.

The forSchema folder appears in the Forte for Java Explorer.

3 Right-click the forSchema folder and choose New Package from the pop-up menu.

4 Name the package CDPackage and click OK.

5 When the prompt appears for you to add the new package to the current project, click Yes.
Chapter 4Adding Transparent Persistence to the Tutorial Application

Creating the Persistence-Capable Classes74
The new package appears in the Explorer.

6 Right-click on the CDPackage package and choose New > Databases > DB Schema.

The Database Schema wizard appears.

7 On the first page of the wizard, type cdschema for the name of the schema, find
CDPackage in the Explorer pane, and select it, as shown.

8 Click Next to go to the next page of the wizard.

New CDPackage package

Type cdschema

Select CDPackage

Make sure CDPackage
shows
Forte for Java, Internet Edition Tutorial

Creating the Persistence-Capable Classes 75
9 On the second page, enter the following values:

New Connection: enabled
Name: PointBase Embedded Server (use the drop-down list)
Driver: com.pointbase.jdbc.jdbcUniversalDriver
Database URL: jdbc:pointbase://embedded/cdshopcart
User: PUBLIC
Password: PUBLIC (displayed as asterisks)

If you are using Oracle or Microsoft SQLServer, enter instead the same data that you used
in “Use the JDBC connection Tag to Connect to the Database” on page 47.

The wizard should look like this:

10 Click Finish.

A progress window appears. The new database schema appears in the CDPackage
package.
Chapter 4Adding Transparent Persistence to the Tutorial Application

Creating the Persistence-Capable Classes76
11 Open the package and the schema, to see the captured tables, as shown.

If you have more tables in your schema, they all will appear in the Explorer.

You are now ready to generate the persistence-capable classes.

Generate the Persistence-Capable Classes
In this section, you generate the persistence-capable classes from some of the tables in the
database schema that you just captured.

➤ To generate persistence-capable classes:

1 Right-click the cdschema icon just under the CDPackage package, and choose Generate
Java… from the pop-up menu.

This displays the Generate Java wizard.

2 Click the Add All Tables to add the CD, CdOrder, OrderItem, and Sequence tables to the
right pane of the dialog box.

Note If your schema has additional tables, use the Add button to add only these tables.
Forte for Java, Internet Edition Tutorial

Creating the Persistence-Capable Classes 77
The Generate Java wizard window should look like this:

3 Click on CdOrder label under Java Classes, change the name to Order, and press Enter.

This exercise demonstrates that you can change the class name and still preserve the
mapping to the table.
Chapter 4Adding Transparent Persistence to the Tutorial Application

Creating the Persistence-Capable Classes78
Instead of pressing Enter, you can click somewhere else in the dialog box, just don’t leave
the cursor in the field. The Generate Java wizard window should look like this:

4 Click Next.

The wizard displays a confirmation window that it will generate the classes you want.

New label
text of
“order”
Forte for Java, Internet Edition Tutorial

Creating the Persistence-Capable Classes 79
5 Click Finish.

The IDE displays a window that the classes were generated.

6 Click Close to close the message window.

7 In the Explorer, open one of the newly generated classes and observe that the fields were
generated from the table’s columns and that each has get and set methods.

Each generated class is associated with an Oid (object ID) class. This is used to identify
an instance of a persistence-capable class uniquely. Each instance of the persistence-
capable class is associated with an instance of the Oid class that holds its identifier.

8 Compile CDPackage by right-clicking it and choosing Compile.

You are ready to enhance the persistence-capable classes.

Object ID class

Indicates a relationship to the Orderitem table
(because the OrderItem table has a foreign key to the
Id column of this table)
Chapter 4Adding Transparent Persistence to the Tutorial Application

Creating the Persistence-Capable Classes80
Enhance the Persistence-Capable Classes
For a class to use the Transparent Persistence capabilities, it must implement the
com.sun.forte4j.persistence.PersistenceCapable interface. This interface
allows persistence-capable classes to interact with the runtime environment and declares a
set of methods that allow you to check and reset the status of instances of these classes.
Code that implements the PersistenceCapable interface is generated by the process known
as enhancing the class.

You can enhance persistence-capable classes either by packaging them in a JAR file or by
running them in the Forte for Java IDE. For the CDShopCart application, package the
CDPackage package into a JAR file in the CDShopCart web module.

➤ To enhance the persistence-capable classes:

1 Right-click on CDPackage and choose Tools > Add to JAR to display the JAR Packager
wizard.

2 Click the browse button for the field at the top of the wizard window to display the
Choose Target Archive dialog box.

3 Choose the /CDShopCart/WEB-INF/lib folder and enter CDclasses.jar for the
class name, as shown:

4 Click OK to apply this information.

Find lib folder

Name the file CDclasses.jar
Forte for Java, Internet Edition Tutorial

Creating the Persistence-Capable Classes 81
5 In the JAR Packager wizard, make sure CDPackage is listed as the chosen content.

6 Click Create JAR to create the JAR file and close the JAR Packager dialog box.

The CDPackage JAR file appears in the Explorer in the WEB-INF/lib folder:

You must now remove the forSchema Filesystem, so that the CDPackage package will
not be in the CLASSPATH. When it is removed and you run the application, the IDE
executes the enhanced persistence-capable classes, not the unenhanced classes in the
CDPackage package.

7 To remove the forSchema Filesystem, select it and choose File > Unmount Filesystem.

The forSchema Filesystem is removed from the Explorer (and from the CLASSPATH).

You are now ready to create the bean that encapsulates the Transparent Persistence, the
CheckOutBean bean.

CDPackage
should
appear

New JAR file
Chapter 4Adding Transparent Persistence to the Tutorial Application

Creating the Persistence-Aware Bean82
Creating the Persistence-Aware Bean
In this section, you create the component that encapsulates the Transparent Persistence
functionality. This is the CheckOutBean bean. It creates a Persistence Manager Factory to
specify the properties of the database connection. It then creates a Persistence Manager. You
use the Persistence Manager’s methods to create transaction objects and query objects.
You use the query class’s methods to perform the database query functions.

Create the CheckOutBean
Create the CheckOutBean bean with the following general procedures:

1 “Create the Bean and Initialize the Persistence Manager Factory and the Persistence
Manager,” which follows.

2 “Create a Method to Fetch a CD Based on an ID” on page 83.

3 “Create a Method to Add an Order and Line Items for Each Item in the Cart” on page 85

4 “Add a Method to Get a Sequence Number for the Next Order” on page 87.

Create the Bean and Initialize the Persistence Manager
Factory and the Persistence Manager
In a larger application, you would create a Persistence Manager Factory at the application
level, and then create a Persistence Managers for each session. For this small illustration, you
create both the Persistence Manager Factory and the Persistence Manager in a session.

➤ To create the CheckOutBean bean:

1 Open the WEB-INF folder of the CDShopCart web module, right-click the Classes
folder, and choose New > Beans > Bean.

2 In the New From Template New Object Name dialog box that appears, type in
CheckOutBean and click Finish.

3 When a message is displayed prompting you to add the new bean to the project, click Yes.

The new CheckOutBean bean is displayed in the Explorer, and its code in the Editor.

4 In the Editor, type the following code to add three new import statements:

You need the com.sun.forte4j.persistence library to use Transparent Persistence,
the java.util library because you will use a Collection, and CDPackage for the
persistence-capable classes you just created.

import com.sun.forte4j.persistence.*;

import java.util.*;

import CDPackage.*;
Forte for Java, Internet Edition Tutorial

Creating the Persistence-Aware Bean 83
5 Delete the first three statements of class CheckOutBean, all of which begin with the
modifier “private,” and replace them with the following code that declares a Persistence
Manager object.

6 Replace the code from the CheckOutBean’s constructor, and add the following code to
initialize the Persistence Manager Factory.

In the above code, use the Persistence Manager Factory’s methods
(setConnectionUserName, and so forth) to specify the database connection to be used
by the Persistence Manager.

If you are using a different database, replace the values above for the standard JDBC
connect string for your database.

The setOptimistic statement specifies concurrency control to be default for all
Persistent Manager transactions.

7 Type the following code to the constructor just below the code you just entered to create
the Persistence Manager:

For more information Information on Persistent Manager Factory creation and methods, as
well as Persistence Manager creation and methods is provided in the book Programming
Persistence, in the Javadoc (in the Javadoc pane of the Explorer), and in online help – in the
Programming with Persistence-Capable Classes folder under Transparent Persistence.

Create a Method to Fetch a CD Based on an ID
In this section, create a getCD method that instantiates a Query object and uses its
methods to fetch a CD based on the Id passed by the PlaceOrder page.

➤ To use query methods to fetch a CD:

1 Delete all of the remaining default code in the CheckOutBean.

2 In the Explorer, right-click on CheckOutBean’s Methods folder and choose New Method.

private PersistenceManager pm;

CheckOutBean’s constructor: public CheckOutBean() {

Instantiates a new Persistence
Manager Factory:

PersistenceManagerFactory pmf = new
PersistenceManagerFactoryImpl();

Specify the JDBC connection: pmf.setConnectionUserName("PUBLIC");

pmf.setConnectionPassword("PUBLIC");

(Do not break this line!) pmf.setConnectionDriverName(
"com.pointbase.jdbc.jdbcUniversalDriver");

pmf.setConnectionURL("jdbc:pointbase://embedded/cdshopcart");

pmf.setOptimistic(false);

this.pm = pmf.getPersistenceManager();
Chapter 4Adding Transparent Persistence to the Tutorial Application

Creating the Persistence-Aware Bean84
3 In the New Method dialog box, enter the following values:

Method –
Name: getCd
Return type: Cd
Access: public

Parameter –
Type: long
Name: id

4 Click OK to create the method.

5 In the Editor, type the following code in the method body:

public Cd getCd(long id) {

Start here: Create a query. Query q = this.pm.newQuery();

Bind result class (Cd) to query
instance.

q.setClass(Cd.class);

Define the input collection for
the query.

q.setCandidates(pm.getExtent(Cd.class, false));

Bind the query filter to the
query instance.

q.setFilter("id == CDid");

Define a parameter for the
placeholder.

String param = "Long CDid";

Bind the parameter to the
query statement.

q.declareParameters(param);

Execute the query and return
the filtered collection.

Collection result = (Collection)q.execute(new Long(id));

Iterate through the result to
find the specified CD.

Iterator i = result.iterator();

Cd theCd = null;

if (i.hasNext()) {

theCd = (Cd)i.next();

}

Return the specified CD to the
caller.

return theCd;

}

Forte for Java, Internet Edition Tutorial

Creating the Persistence-Aware Bean 85
There are three required statements in any query:

■ The class of the result (set by the setClass method)

■ The collection of candidate instances (set by the setCandidates method)

This is either a java.util.Collection, or an extent of instances in the data store

■ The query filter (set by the setFilter method)

Here id is a field in the persistence-capable class CD, where CDid denotes the query
parameter name.

The net effect of these Query methods is approximately the same as the SQL statement
SELECT * FROM CD WHERE ID = ?.

For more information on Query methods See the book Programming Persistence for a
description of the methods of the Query interface. For brief descriptions, find the Query
interface under the Persistence folder in the Javadoc tab of the Explorer.

Create a Method to Add an Order and Line
Items for Each Item in the Cart
In this section, create the checkout method to perform the following tasks:

1 Start a transaction.

2 Get an order sequence number and associated date from the CdOrder table.

3 Generate line item and product numbers for each line item and product in the Cart order
passed to the method.

4 Commit this data to the database.

5 Return the order sequence number.

➤ To create the checkout method:

1 In the Explorer, right-click the CheckOutBean’s Methods folder and choose New
Method.

2 In the New Method dialog box, type the following values:

Name: checkout
Return type: int
Access: public

This method needs to take the Cart order as its parameter.

3 Click the Add button under the Method Parameters pane and add the following
parameter:

Type: Cart
Name: myCart

4 Click OK to create the method.
Chapter 4Adding Transparent Persistence to the Tutorial Application

Creating the Persistence-Aware Bean86
5 Type the following code into the body of the checkout method to start the transaction:

6 Type the following code to create the order:

Next, for each item in the cart, add code that adds a line item to the order.

7 Type the following code next:

8 Then, type this code to update the order:

9 Finally, type this code to commit this transaction and return the order number:

Use a Persistence Manager
method to create the
transaction.

Transaction tx = pm.currentTransaction();

Begin the transaction. tx.begin();

Get the next Order sequence
number.

int ordNum = this.getSequenceNumber("CDORDER", 1);

Create a new order. Order ord = new Order();

Set the primary key. ord.setId(ordNum);

Set the current date. ord.setOrderdate(new Date());

Tell the Persistence Manager to
mark for database update.

pm.makePersistent(ord);

Initialize the Line Item number. int itemNum = 1;

Create a new hash list to store
all Line Items.

HashSet itemList = new HashSet();

Iterator i = myCart.lineItems.iterator();

while (i.hasNext()) {

Next item in the cart. CartLineItem c = (CartLineItem)i.next();

Create a new line item. Orderitem item = new Orderitem();

Set the primary key. item.setOrderid(ordNum);

item.setLineitemid(itemNum++);

item.setCd(getCd(c.getId()));

Add to the collection. itemList.add(item);

Tell the Persistence Manager to
mark for database update.

pm.makePersistent(item);

}

Update the ORDER to contain
all the line items.

ord.setOrderitems(itemList);

tx.commit();

return ordNum;
Forte for Java, Internet Edition Tutorial

Creating the Persistence-Aware Bean 87
Add a Method to Get a Sequence Number
for the Next Order
This is the final method to create in the CheckOutBean.

➤ To create the getSequenceNumber method:

1 In the Explorer, right-click on CheckOutBean’s Methods folder and choose New Method.

2 In the New Method dialog box, enter the following values:

Method –
Name: getSequenceNumber
Return type: int
Access: public

Parameter –
Type: java.lang.String
Name: tableName

3 Click OK to create the parameter, and click the Add button again.

4 Add the following parameter:

Type: int
Name: amount

5 Click OK to create the method.

6 Type the following code in the body of the method to initialize the key:

7 Then, type the following code to query the database to retrieve the sequence number for
the Cart order stored there.

The sequenceQuery within the getSequence() method generates a new primary key
for the given table. This provides unique primary keys for the CDShopCart application.

int key = 0;

Create a new query. Query sequenceQuery = pm.newQuery();

Bind the result class (Sequence)
to the query instance.

sequenceQuery.setClass(Sequence.class);

Define the input collection. sequenceQuery.setCandidates(pm.getExtent(Sequence.class, false));

The filter: tablename is the
field and name is the
parameter name.

sequenceQuery.setFilter("tablename == name");

Define the parameter. String param = "String name";

Bind the parameter to the
query statement.

sequenceQuery.declareParameters(param);
Chapter 4Adding Transparent Persistence to the Tutorial Application

Creating the Persistence-Aware Bean88
Note If you are using an Oracle database, use a Long instead of Integer in the next-to-last
line.

8 Right-click on the CheckOutBean bean and choose Compile to compile the bean.

Execute the query and return
the filtered collection.

Collection result = (Collection)sequenceQuery.execute(tableName);

Iterator i = result.iterator();

Sequence s = (Sequence)i.next();

Allow the Persistence Manager
to update the next key.

key = s.getNextpk().intValue();

s.setNextpk(new Integer(key + amount));

Return key to caller. return key;
Forte for Java, Internet Edition Tutorial

Modifying the PlaceOrder Page to Call CheckOutBean 89
Modifying the PlaceOrder Page to Call CheckOutBean
The only task left is to modify the PlaceOrder JSP page to call the CheckOutBean bean and
display the order number that it returns. Do this by adding the following elements:

1 usebean tags to allow the Cart and CheckOutBean beans to be used by the page.

2 Declare an order number.

3 Set the order number to the one returned by the CheckOutBean.

4 Modify the displayed message to include the order number.

➤ To modify the PlaceOrder JSP page:

1 Under the H1 heading tag, add the following usebean tags:

2 Under these statements, and within the Java scriptlet, add the two noted statements:

3 And finally, modify the displayed message to use the ordNum, changing the one line into
two lines:

4 Right-click on the PlaceOrder JSP page and choose Compile.

Use the Cart bean. <jsp:useBean id="myCart" scope="session" type="Cart" />

Use the CheckOutBean bean. <jsp:useBean id="checker" scope="session" class="CheckOutBean" />

Add this declaration: <%! int ordNum; %>

<%

Set the ordNum to the order
number returned by the
checkout method.

ordNum = checker.checkout(myCart);

session.invalidate();

%>

Your order has been placed. For future reference, your order
number is <%=ordNum%>.

Thank you for shopping.
Chapter 4Adding Transparent Persistence to the Tutorial Application

Test Running the New CDShopCart Application90
Test Running the New CDShopCart Application
As with the basic CDShopCart application you tested (see “Test Run the Three Message Pages”
on page 68), test run the application by running the ProductList page, adding CD items to
the Shopping Cart, and then performing various actions that result in displaying various
pages. Here, you choose the specific actions that place an order. This calls the
CheckOutBean under the covers, but the results— the generated order number in the
PlaceOrder page’s message— prove that the CheckOutBean did its work.

➤ To test the message pages:

1 Select the CDShopCart web module and choose Build > Build.

Everything should compile successfully.

2 Right-click the ProductList JSP page and choose Execute (restart server).

After a few seconds, the CD Catalog List page is displayed.

3 Click one of the Add buttons to navigate to the Shopping Cart page.

4 Click the Resume Shopping button to return to the CD Catalog List page.

5 Add more CDs to the cart as you wish, and then test the Place Order button.

6 When the Place Order page appears, it should look something like this:

Congratulations! You have completed the CDShopCart tutorial!
Forte for Java, Internet Edition Tutorial

Index
A
Add JSP TagLibrary command 45

artist
column of CD table 14
value displayed on shopping cart 50

B
beans directory, description 20

bin directory, description 20

C
CancelOrder JSP page, description 31

Cancel Order page 67

Cart bean
adding the findLineItem method 58
adding the lineItems property 57
adding the removeLineItem method 58
coding the constructor 58
creating 57
description 31

CartLineItem bean
adding the properties 54
creating 54
description 31
setId and setPrice overloading 55

CDCatalog_xx.sql files 14

CdOrder table
as persistence-capable class 79
description 14

CDShopCart application pages
Cancel Order 67
CD Catalog List 44
Empty Cart 64
Place Order 66, 90
Shopping Cart 53

CDShopCart tutorial
application scenarios 24
architecture 30
capturing a database schema 73
creating a Persistence Manager 83
creating a Persistence Manager Factory 83
creating persistence-capable classes 73
creating the Cart bean 57
creating the CartLineItem bean 54
creating the CDShopCart web module 38
creating the CheckOutBean bean 82
creating the Empty Cart page 64
creating the Place Order page 65
creating the ProductList JSP page 46
creating the ShopCart JSP page 59
enhancing persistence-capable classes 80
functional description 24
functional specs 25
importing tag libraries 42, 45
installing the database table 15
location of the application 20
location of the documentation 20
requirements, database 13
requirements, Forte for Java 12
test running ProductList JSP 52
test running Transparent Persistence 90
using Transparent Persistence

(overview) 72

CD table, description 14

92 Section D
cdtitle
column of CD table 14
creating the property 54

CheckOutBean bean
checkout method, creating 85
creating 82
description 31
getCD method, creating 83
getSequenceNumber method, creating 87
getSequenceNumber method, using 86
using in Place Order page 89

command-line switches, Forte for Java 19

Compile command 57

country, column of CD table 14

D
Database requirements 13

databases
capturing a schema 73
location of JDBC driver 13, 20
PointBase home directory 20

database tags, using 48, 49

dbtags.jar
description 43, 46
importing 45, 47
See also database tags

Development directory, description 20

docs directory, description 20

E
Empty Cart page 64

creating 64
description 31

enhancing persistence-capable classes 80

F
findLineItem method, creating 58

Forte for Java
command-line switches 19
descriptions of subdirectories 20
exiting 19
requirements 12
starting on Solaris, Linux, and other UNIX

software 18
starting on Windows 18

H
HTML pages

creating 64
viewing source 65

I
ICE Browser

limitation with Back button 63
version in Forte for Java 12

id
column of CdOrder table 14
column of CD table 14
creating the property 55
field in persistence-capable class CD 85

ide.cfg file 19

ide.log file, location 21

ietags.jar
description 43, 46
importing 45, 47
See also pr tags
Forte for Java, Internet Edition Tutorial

93Section J
J
JAR Packager wizard 80

JavaBeans components
adding a method 55, 58
adding a property 57
creating 57

Java Data Objects Specification, where to obtain 70

Javadoc
directory in Forte for Java 20
for Transparent Persistence 70
using in Forte for Java 10

javadoc directory, description 20

JDBC drivers, where to put 13, 20

JSP code
elements (description) 42
fixed template data (description) 42
tags (description) 42

JSP pages
creating 59
test running 52

jsptaglibs_src.jar file (Forte for Java tab libraries
source) 43

L
lib directory, description 20

lineItemID
column of OrderItem table 14
setting the key value 86

lineItems property, creating 57

M
Microsoft SQLServer, installing a database table 17

modules directory, description 20

N
New Bean command 54, 82

New Folder button 39

New HTML File command 65

New JSP command 59

New Method command 55, 58

New Property command 54

newQuery method 84

nextPK
column of Sequence table 14
setting the value 88

O
Oid class, description 79

Oracle, installing a database table 17

orderID
column of CdOrder table 14
column of OrderItem table 14
setting the key value 86

OrderItem table
as persistence-capable class 79
description 14

P
patch directory, location and description 20

persistence-capable classes
creating 73
enhancing 80
function in Transparent Persistence 70
generating 76
object ID (Oid) class function 79
persistent and transient fields 70
Index

94 Section Q
Persistence Manager
creating 83
creating a query object 84
creating transactions 86
See also pm methods
See also Query interface methods

Persistence Manager Factory
creating 83
See also pmf methods

PlaceOrder JSP page
creating 65
description 31
modifying for Transparent Persistence 89

Place Order page 65, 66, 90

pmf methods
getPersistenceManager 83
setConnectionDriverName 83
setConnectionPassword 83
setConnectionURL 83
setConnectionUserName 83
setOptimistic 83

pm methods
currentTransaction 86
makePersistent 86
newQuery 84, 87

PointBase
home directory 20
installing a database table 15
version in Forte for Java 12

pr (presentation) tags, using 49, 50, 61

price
column of CD table 14
creating the property 55

productID
column of OrderItem table 14

ProductList JSP page
creating 46
description 31
displaying in a browser 44
test running 52
user view 26

Q
Query

creating 84
executing 84

Query interface methods
declareParameters 84, 87
execute 84, 88
setCandidates 84, 87
setClass 84, 87
setFilter 84, 87

R
removeLineItem method, creating 58

runide.exe or runidew.exe, See Forte for Java, starting on
Windows

runide.sh, See Forte for Java, starting on Solaris

runide_multiuser.exe or runidew_multiuser.exe, See
Forte for Java, starting on Windows

S
Sequence table

as persistence-capable class 79
description 14

setId method, overloading 55

setPrice method, overloading 56

ShopCart JSP page
coding the body 60
creating 59
creating the buttons 62
description 31
displaying in a browser 53
test running 63

Shopping Cart page 53

sources directory, description 20

system directory, description 21
Forte for Java, Internet Edition Tutorial

95Section T
T
tableName

column of Sequence table 14
field in persistence-capable class Sequence 87
used in query 88

tag libraries
Forte for Java tag libraries 42, 45
general description 42
importing 45
location of source files 43
where to find an example demo 43
where to find online information 43

teamware directory, description 21

Tomcat, version in Forte for Java 12

tptags.jar, description 43

Transaction class 71

transactions
committing 86
creating 86
in Transparent Persistence 70

Transparent Persistence
for more information 70
Java Data Objects Specification, where to obtain 70
Javadoc documentation on 70
overview 70
transactions 70
using (in CDShopCart) 72
using (overview) 70
See also Persistence Manager
See also Persistence Manager Factory
See also Query interface methods

W
WAR file, definition 38

web.xml file, description 38

web applications
definition 30
See also web modules

Web Browser global property, setting 13

web browsers, setting the default 13

web component, definition 30

WEB-INF directory
creating a JAR file in 80
description 38

web modules
creating 38
description 33
directory hierarchy 38
executing 52
performing a Build All 52
screenshot of parts 40
where to find more information 30
Index

96 Section W
Forte for Java, Internet Edition Tutorial

	Contents
	Preface
	Organization of This Manual
	Conventions
	Forte for Java, Internet Edition Documentation Set
	Documentation Set
	Online Help
	Javadoc

	1 Getting Started
	Software Requirements for the Tutorial
	What You Need to Run the Forte for Java IDE
	What You Need to Create and Run the Tutorial
	Using Alternate Database Software
	Using Alternate Web Browsers

	Installing the Tutorial Database Table
	Installing the Tables in a PointBase Database
	Installing the Table in Other Databases

	Starting the Forte for Java Development Environment
	Single-User and Multiuser Modes
	Starting Forte for Java on Solaris™ 7/8, Linux Redhat 6.2, and other UNIX™ Software
	Starting Forte for Java on Microsoft Windows
	Command-Line Switches
	Exiting Forte for Java

	Forte for Java, Internet Edition Directory Structure

	2 Introduction to the Tutorial
	Functionality of the Tutorial Application
	Application Scenarios
	Application Functional Specification

	User’s View of the Tutorial Application
	Architecture of the Tutorial Application
	Application Elements
	Service Component Details

	Overview of Tasks for Creating the Tutorial Application
	Creating the Basic Application
	Creating a Web Module
	Using Forte for Java Tag Libraries
	Creating the Supporting Elements
	Test Running the Application

	Adding Transparent Persistence
	Creating the Persistence-Capable Classes
	Saving the Order to the Database
	Using the Results to Place the Order
	Test Running the Whole Application

	End Comments

	3 Creating the Basic Tutorial Application
	Creating a Web Module
	What Is a Web Module?
	Create the CDShopCart Web Module

	Using Forte for Java Custom Tags
	What is a JSP Tag?
	Tags (Action Elements)
	Forte for Java Tag Libraries

	Create the CD Catalog List Page
	Add Forte for Java Tag Libraries to the Web Module
	Create the ProductList JSP Page
	Declare the Tag Libraries
	Use the JDBC connection Tag to Connect to the Database
	Use the JDBC Query Tag to Fetch the CD Data
	Iterate Through the Data With the Presentation Field Tag
	Create the Add Button for Each CD Row
	Clean Up With the JDBC cleanup Tag

	Test Run the ProductList JSP Page

	Creating the Shopping Cart Page and Supporting Elements
	Create the CartLineItem JavaBeans Component
	Create the Cart JavaBeans Component
	Create the ShopCart JSP Page
	Add Code to Add or Remove an Item From the Shopping Cart Table
	Use Presentation Tags to Populate the Cart Table
	Add the Buttons to the Page

	Test Run the Shopping Cart Page

	Creating the Three Message Pages
	Empty Cart Page
	Place Order JSP Page
	Cancel Order JSP Page
	Test Run the Three Message Pages

	4 Adding Transparent Persistence to the Tutorial Application
	Overview of Transparent Persistence
	How You Use Transparent Persistence
	Using Transparent Persistence in the CDShopCart Application

	Creating the Persistence-Capable Classes
	Capture the Database Schema
	Generate the Persistence-Capable Classes
	Enhance the Persistence-Capable Classes

	Creating the Persistence-Aware Bean
	Create the CheckOutBean
	Create the Bean and Initialize the Persistence Manager Factory and the Persistence Manager
	Create a Method to Fetch a CD Based on an ID
	Create a Method to Add an Order and Line Items for Each Item in the Cart
	Add a Method to Get a Sequence Number for the Next Order

	Modifying the PlaceOrder Page to Call CheckOutBean
	Test Running the New CDShopCart Application

	Index

