Introduction to Robotics
Localization

Erion Plaku

Department of Electrical Engineering and Computer Science
Catholic University of America
Linear Dynamical Discrete-Time System with Noise

\[x(k + 1) = F(k)x(k) + G(k)u(k) + v(k) \]
\[y(k) = H(k)x(k) + w(k) \]

- \(x(k) \in \mathbb{R}^n \) denotes the system state at time \(t_k = t_0 + Tk \)
 - \(t_0 \) denotes the initial time, \(T \) denotes the time step
- \(u(k) \in \mathbb{R}^m \) denotes the control input, e.g., velocity commands, torques, forces
- \(y(k) \in \mathbb{R}^p \) denotes the system output, e.g., values reported by sensors
- \(F(k) \in \mathbb{R}^{n \times n} \) encodes the system dynamics
- \(G(k) \in \mathbb{R}^{n \times m} \) describes how the inputs drive the dynamics
- \(H(k) \in \mathbb{R}^{p \times n} \) describes how states are mapped into outputs
 - assumed to be full row rank for all \(k \), although it may not be square
- \(v(k) \in \mathbb{R}^n \) denotes the process noise
 - assumed to be white Guassian noise with zero mean and covariance matrix \(V(k) \)
- \(w(k) \in \mathbb{R}^p \) denotes the measurement noise
 - assumed to be white Guassian noise with zero mean and covariance matrix \(W(k) \)
Linear Kalman Filter

Linear Dynamical Discrete-Time System with Noise

\[x(k + 1) = F(k)x(k) + G(k)u(k) + v(k) \]
\[y(k) = H(k)x(k) + w(k) \]

Objective: Determine the “best” estimate of \(x(k) \) given a previous estimate \(x(k - 1) \) together with the known input \(u(k) \) and output \(y(k) \)

Challenges

- Presence of the unknown and unmeasurable noise vectors \(v(k) \) and \(w(k) \)
- State cannot in general be directly determined from the outputs because \(H(k) \) may not be invertible

Approach: State estimate is constructed using the time history of the known signals \(y(k) \) and \(u(k) \) together with the known parameters \(F(k), G(k), H(k), V(k), W(k) \)
A Simple Observer

Assume that there is no noise, i.e.,

\[x(k+1) = F(k)x(k) + G(k)u(k) \]

\[y(k) = H(k)x(k) \]

Notation: \(\hat{x}(k_1|0\ldots k_2) \) with \(k_1 \geq k_2 \) denotes the value of the state estimate at time step \(k_1 \) given the output values \(y(0), \ldots, y(k_2) \)

Observer follows a two-step process:

1. Prediction

\[\hat{x}(k+1|0\ldots k) = F(k)\hat{x}(k|0\ldots k) + G(k)u(k) \]

2. Update

- Given the output \(y(k+1) \), the system state is constrained to lie on the hyperplane

\[\Omega = \{ x \in \mathbb{R}^n : y(k+1) = H(k+1)x \} \]

- Choose the next estimate \(\hat{x}(k+1|0\ldots k+1) \) to be the point in \(\Omega \) that has the shortest distance to the prediction \(\hat{x}(k+1|0\ldots k) \), i.e.,

\[\hat{x}(k+1|0\ldots k+1) = \arg\min_{x \in \Omega} ||x, \hat{x}(k+1|0\ldots k)|| \]

Why? \(\hat{x}(k+1|0\ldots k) \) is close to the actual state, and the actual state must be in \(\Omega \)
Computing the Update

\[\Omega = \{ x : y(k + 1) = H(k + 1)x \} \]

1. A vector \(a \in \mathbb{R}^n \) is parallel to \(\Omega \)
 \[\iff x + a \in \Omega, \forall x \in \Omega \]
 \[\iff H(k + 1)a = 0 \]

 Gives rise to the null-space, i.e.,

 \[\text{NullSpace} (H(k + 1)) = \{ a \in \mathbb{R}^n : H(k + 1)a = 0 \} \]

2. A vector \(b \in \mathbb{R}^n \) is orthogonal to \(\Omega \)
 \[\iff a^T b = 0, \forall a \in \text{NullSpace} (H(k + 1)) \]
 \[\iff b \in \text{RowSpace} (H(k + 1)) \]

Therefore,

\[\Delta x \text{ is orthogonal to } \Omega \iff \Delta x = H(k + 1)^T \gamma, \text{ for some } \gamma \in \mathbb{R}^p \]

\[\Delta x = \hat{x}(k + 1 | 0 \ldots k + 1) - \hat{x}(k + 1 | 0 \ldots k) \]

\(\Delta x \) must be orthogonal to \(\Omega \)

\[a^T \Delta x = 0 \text{ for any } a \text{ that is parallel to } \Omega \]
Let ν denote the innovation error, i.e.,

$$\nu = y(k + 1) - H(k + 1)\hat{x}(k + 1|0 \ldots k)$$

Assume for now that γ can be written as a linear function of ν, i.e.,

$$\gamma = K\nu,$$ for some $K \in \mathbb{R}^{p \times p}$

Then

$$\Delta x = H(k + 1)^T\gamma = H(k + 1)^T K\nu = H(k + 1)^T K (y(k + 1) - H(k + 1)\hat{x}(k + 1|0 \ldots k))$$

Now we need to find K such that

$$y(k + 1) = H(k + 1)(\hat{x}(k + 1|0 \ldots k) + \Delta x) \implies$$

$$H(k + 1)\Delta x = y(k + 1) - H(k + 1)\hat{x}(k + 1|0 \ldots k) = \nu \implies$$

$$H(k + 1)H(k + 1)^T K\nu = \nu \implies$$

$$K = \left(H(k + 1)H(k + 1)^T\right)^{-1}$$

Does the inverse exist?
A Simple Observer: Putting it all together

Prediction

\[\hat{x}(k + 1|0\ldots k) = F(k)\hat{x}(k|0\ldots k) + G(k)u(k) \]

Update

\[\hat{x}(k + 1|0\ldots k + 1) = \hat{x}(k + 1|0\ldots k) + \Delta x \]
\[= \hat{x}(k + 1|0\ldots k) + H(k + 1)^T K \nu \]

- \[K = (H(k + 1)H(k + 1)^T)^{-1} \]
- \[\nu = (y(k + 1) - H(k + 1)\hat{x}(k + 1|0\ldots k)) \]

What are some problems with the simple observer?

- Update is always perpendicular to \(\Omega \)
- Estimate errors in direction parallel to \(\Omega \) are never corrected
- As a result, estimate \(\hat{x} \) will not in general converge to actual state \(x \)
Before improving the simple observer . . . some statistics

Probability density function:

\[Pr[a \leq X \leq b] = \int_{x=a}^{b} f(x) \, dx \]

Expected value for a random vector \(X : S \to \mathbb{R}^n \):

\[E(X) = \int_{x \in \mathbb{R}^n} xf(x) \, dx \]

Variance of a scalar random variable:

\[Var(X) = E \left((X - E(X))^2 \right) = E(X^2) - (E(X))^2 \]

Covariance among two scalar random variables:

\[Cov(X, Y) = E \left((X - E(X))(Y - E(Y)) \right) = E(XY) - E(X)E(Y) \]

Covariance matrix:

\[Cov(X) = E((X - E(X))(X - E(X))^T), \text{ i.e., } Cov_{ij}(X) = Cov(X_i, X_j) \]

Multivariate gaussian distribution with mean \(\bar{X} \) and covariance matrix \(P \):

\[f(x; \bar{X}, P) = \frac{1}{\sqrt{(2\pi)^n |P|}} e^{-\frac{1}{2}(x - \bar{X})P^{-1}(x - \bar{X})^T} \]
Assume that there is process noise but no measurement noise, i.e.,

\[x(k + 1) = F(k)x(k) + G(k)u(k) + v(k) \]

\[y(k) = H(k)x(k) \]

Recall that
- \(H(k) \): assumed to be full row rank for all \(k \), although it may not be square
- \(v(k) \): assumed to be white Gaussian noise with zero mean and covariance matrix \(V(k) \)

 white here means \(v(k) \) is independent of \(v(k - 1) \) for all \(k \)

Objective is to generate both
- a state vector estimate \(\hat{x}(k|0\ldots k) \) and
- a covariance matrix estimate \(P(k|0\ldots k) \)

Hence
- Prediction will generate \(\hat{x}(k + 1|0\ldots k) \) and \(P(k + 1|0\ldots k) \)
- Update will generate the next estimate given \(\hat{x}(k + 1|0\ldots k + 1) \) and \(P(k + 1|0\ldots k + 1) \)
Predicted state vector:

\[\hat{x}(k+1|0\ldots k) = F(k)\hat{x}(k|0\ldots k) + G(k)u(k) + E(v(k)) = F(k)\hat{x}(k|0\ldots k) + G(k)u(k) \]

Predicted covariance matrix:

\[
P(k + 1|0\ldots k) = E \left((x(k + 1) - \hat{x}(k + 1|0\ldots k))(x(k + 1) - \hat{x}(k + 1|0\ldots k))^T \right)
\]

substituting \(x(k + 1) \) and \(\hat{x}(k + 1|0\ldots k) \) yields

\[
= E \left(F(k)(x(k) - \hat{x}(k|0\ldots k))(x(k) - \hat{x}(k|0\ldots k))^T F(k)^T \right) + 2F(k)(x(k) - \hat{x}(k|0\ldots k))v(k)^T + v(k)v(k)^T
\]

\[
= F(k)E \left((x(k) - \hat{x}(k|0\ldots k))(x(k) - \hat{x}(k|0\ldots k))^T \right) F(k)^T + E \left(v(k)v(k)^T \right)
\]

\[
= F(k)P(k|0\ldots k)F(k)^T + V(k)
\]
Observing with Probability Distributions: Update Step

Chose \(\hat{x}(k + 1|0\ldots k + 1) \) to be the most likely point in the set

\[
\Omega = \{ x \in \mathbb{R}^n : y(k + 1) = H(k + 1)x \}
\]

Choose \(x \in \Omega \) that maximizes the Gaussian distribution with mean \(\hat{x}(k + 1|0\ldots k) \) and covariance matrix \(P(k + 1|0\ldots k) \), i.e.,

\[
f(x) = \exp \left(-\frac{1}{2} (x - \hat{x}(k + 1|0\ldots k)) P(k + 1|0\ldots k)^{-1} (x - \hat{x}(k + 1|0\ldots k))^T \right) \frac{1}{\sqrt{(2\pi)^n |P(k + 1|0\ldots k)|}}
\]

Choose \(x \in \Omega \) that minimizes

\[
(x - \hat{x}(k + 1|0\ldots k)) P(k + 1|0\ldots k)^{-1} (x - \hat{x}(k + 1|0\ldots k))^T
\]

Define new inner product and (Mahalanobis) distance in \(\mathbb{R}^n \) as

\[
\langle x_1, x_2 \rangle_M = x_1^T P(k + 1|0\ldots k)^{-1} x_2
\]

\[
||x||_M^2 = \langle x, x \rangle_M = x^T P(k + 1|0\ldots k)^{-1} x
\]

Let \(\Delta x = \hat{x}(k + 1|0\ldots k + 1) - \hat{x}(k + 1|0\ldots k) \).
So we want to find \(\hat{x}(k + 1|0\ldots k + 1) \) such that

1. \(||\Delta x||_M \) is minimized
2. \((\hat{x}(k + 1|0\ldots k) + \Delta x) \in \Omega \)
Observing with Probability Distributions: Update Step (cont.)

\[||\Delta x||_M \text{ is minimized} \]
\[\implies \Delta x \text{ is orthogonal to } \Omega \text{ according to inner product } \langle \cdot, \cdot \rangle_M \]
\[\implies \text{For all } a \in \text{NullSpace}(H(k+1)) \]
\[aP(k+1|0\ldots k)^{-1}(\Delta x) = 0 \]
\[\implies \Delta x \in \text{ColumnSpace}(P(k+1|0\ldots k)H(k+1)^T) \]
\[\implies \text{For some } \gamma \in \mathbb{R}^p \]
\[\Delta x = P(k+1|0\ldots k)H(k+1)^T \gamma \]

Let \(\nu \) denote the innovation error, i.e.,
\[\nu = y(k+1) - H(k+1)\hat{x}(k+1|0\ldots k) \]

Assume that \(\gamma \) can be written as a linear function of \(\nu \), i.e.,
\[\gamma = K\nu, \text{ for some } K \in \mathbb{R}^{p \times p} \]

Then \(\Delta x = P(k+1|0\ldots k)H(k+1)^T K\nu \)
\[(\hat{x}(k+1|0 \ldots k) + \Delta x) \in \Omega \]

\[\Rightarrow y(k+1) = H(k+1)(\hat{x}(k+1|0 \ldots k) + \Delta x) \]

\[\Rightarrow H(k+1)\Delta x = \nu \]

\[\Rightarrow H(k+1)P(k+1|0 \ldots k)H^T K \nu = \nu \]

(since also \(\Delta x = P(k+1|0 \ldots k)H^T K \nu \))

\[\Rightarrow K = (H(k+1)P(k+1|0 \ldots k)H(k+1)^T)^{-1} \]

Let

\[R = P(k+1|0 \ldots k)H(k+1)^T K \]

Then, the update for the state vector estimate is

\[\hat{x}(k+1|0 \ldots k + 1) = \hat{x}(k+1|0 \ldots k) + \Delta x \]

\[= \hat{x}(k+1|0 \ldots k) + P(k+1|0 \ldots k)H(k+1)^T K \nu \]

\[= \hat{x}(k+1|0 \ldots k) + R \nu \]

Update for the covariance matrix estimate

\[P(k+1|0 \ldots k + 1) = P(k+1|0 \ldots k) - RH(k+1)P(k+1|0 \ldots k) \]
Observing with Probability Distributions: Putting it all together

Prediction

\[\hat{x}(k + 1|0 \ldots k) = F(k)\hat{x}(k|0 \ldots k) + G(k)u(k) \]
\[P(k + 1|0 \ldots k) = F(k)P(k|0 \ldots k)F(k)^T + V(k) \]

Update

\[\hat{x}(k + 1|0 \ldots k + 1) = \hat{x}(k + 1|0 \ldots k) + R\nu \]
\[P(k + 1|0 \ldots k + 1) = P(k + 1|0 \ldots k) - RH(k + 1)P(k + 1|0 \ldots k) \]

where

\[\nu = y(k + 1) - H(k + 1)\hat{x}(k + 1|0 \ldots k) \]
\[R = P(k + 1|0 \ldots k)H(k + 1)^T (H(k + 1)P(k + 1|0 \ldots k)H(k + 1)^T)^{-1} \]

What are some problems with this observer?

- Since we assumed no sensor noise, the update equations can cause the covariance matrix estimate to become singular
- But if covariance matrix is singular, Gaussian distribution and Mahalanobis distance are not defined since they rely on the inverse matrix
to address these problems...the kalman filter
Linear Kalman Filter

\[
x(k+1) = F(k)x(k) + G(k)u(k) + v(k)
\]
\[
y(k) = H(k)x(k) + w(k)
\]

Recall that

- \(v(k), w(k)\): white Gaussian noise with zero mean and covariance matrix \(V(k), W(k)\)

Prediction (no changes from before)

\[
\hat{x}(k+1|0\ldots k) = F(k)\hat{x}(k|0\ldots k) + G(k)u(k)
\]
\[
P(k+1|0\ldots k) = F(k)P(k|0\ldots k)F(k)^T + V(k)
\]

Update: Changes due to the sensor noise term \(w(k)\)

- Before, we knew that the constrained the next state estimate to be in \(\Omega\), so we used the equation \(y(k+1) = H(k+1)\hat{x}(k+1|0\ldots k+1)\) to find \(\hat{x}(k+1|0\ldots k+1)\)
- Now we only know that the output is drawn from a Gaussian distribution in \(\mathbb{R}^p\) with mean \(y(k+1)\) and covariance matrix \(W(k)\)
- So will first look for the most likely output \(y^*\) given the prediction \((\hat{x}(k+1|0\ldots k), P(k+1|0\ldots k))\) together with the measured output \(y(k+1)\)
- After that, we can introduce the constraint \(y^* = H(k+1)\hat{x}(k+1|0\ldots k+1)\) and proceed as before
Project the prediction into output space

State space distribution with mean $\hat{x}(k + 1|0 \ldots k)$ and covariance matrix $P(k + 1|0 \ldots k)$ projects into a Gaussian distribution in the output space \mathbb{R}^p with mean

$$\hat{y} = H(k + 1)\hat{x}(k + 1|0 \ldots k)$$

and covariance matrix

$$\hat{W} = E\left[(\hat{y} - y(k + 1))(\hat{y} - y(k + 1))^T \right]$$

$$= E\left[H(k + 1)(\hat{x}(k + 1|0 \ldots k) - x(k + 1))(\hat{x}(k + 1|0 \ldots k) - x(k + 1))^T H(k + 1)^T \right]$$

$$= H(k + 1)P(k + 1|0 \ldots k)H(k + 1)^T$$
y* is then the most likely point in the output space \mathbb{R}^p given

- (\hat{y}, \hat{W}): Gaussian distribution that results from projection the state prediction
- $(y(k + 1), W(k + 1))$: Gaussian distribution that results from taking the measurement

y^* will be the peak of the function that results from taking their product (since distributions (\hat{y}, \hat{W}) and $(y(k + 1), W(k + 1))$ are independent)

Theorem: The product of two Gaussians (z_1, C_1) and (z_2, C_2) is proportional to a third Gaussian (z_3, C_3), where

$$z_3 = z_1 + C_1(C_1 + C_2)^{-1}(z_2 - z_1)$$

$$C_3 = C_1 - C_1(C_1 + C_2)^{-1}C_1$$

Then

$$y^* = \hat{y} + \hat{W}(\hat{W} + W(k + 1))^{-1}(y(k + 1) - \hat{y})$$

We can also define

$$\Omega^* = \{x \in \mathbb{R}^n : y^* = H(k + 1)x\}$$

and proceed to find $\Delta x = \hat{x}(k + 1|0 \ldots k + 1) - \hat{x}(k + 1|0 \ldots k)$ that

- minimizes $||\Delta x||_M$ and
- satisfies $\hat{x}(k + 1|0 \ldots k + 1) \in \Omega^*$
1. $||\Delta x||_M$ is minimized

$\implies \Delta x$ is orthogonal to Ω^* according to inner product $\langle \cdot, \cdot \rangle_M$

\implies For some $\gamma \in \mathbb{R}^p$: $\Delta x = P(k + 1|0 \ldots k)H(k + 1)^T \gamma$

Let ν be the innovation error

$$\nu = y^* - H(k + 1)\hat{x}(k + 1|0 \ldots k)$$

Assume that γ can be written as

$$\gamma = K\nu, \quad \text{for some } K \in \mathbb{R}^{p \times p}$$

Then $\Delta x = P(k + 1|0 \ldots k)H(k + 1)^T K\nu$

2. $(\hat{x}(k + 1|0 \ldots k) + \Delta x) \in \Omega$

$\implies y^* = H(k + 1)(\hat{x}(k + 1|0 \ldots k) + \Delta x)$

$\implies H(k + 1)\Delta x = \nu$

$\implies H(k + 1)P(k + 1|0 \ldots k)H^T K\nu = \nu$

$\implies K = (H(k + 1)P(k + 1|0 \ldots k)H(k + 1)^T)^{-1}$
Therefore, from (1) and (2),

\[\Delta x = P(k + 1|0 \ldots k)H(k + 1)^T K \nu \]

where

- \(K = (H(k + 1)P(k + 1|0 \ldots k)H(k + 1)^T)^{-1} \)
- \(\nu = y^* - H(k + 1)\hat{x}(k + 1|0 \ldots k) \)
- \(y^* = \hat{y} + \hat{W}(\hat{W} + W(k + 1))^{-1}(y(k + 1) - \hat{y}) \)
- \(\hat{W} = H(k + 1)P(k + 1|0 \ldots k)H(k + 1)^T \)
- \(\hat{y} = H(k + 1)\hat{x}(k + 1|0 \ldots k) \)

Some simplifications:

\[
K \nu = K(y^* - H(k + 1)\hat{x}(k + 1|0 \ldots k))
\]
\[
= K\hat{W}(\hat{W} + W(k + 1))^{-1}(y(k + 1) - \hat{y})
\]
\[
= (\hat{W} + W(k + 1))^{-1}(y(k + 1) - \hat{y})
\]

Therefore, (with the shorthand notation \(H \equiv H(k + 1), P \equiv P(k + 1|0 \ldots k) \))

\[\Delta x = PH^T(HPH^T + W(k + 1))^{-1}(y(k + 1) - H\hat{x}(k + 1|0 \ldots k)) \]
Linear Kalman Filter: Putting it all together

Prediction

\[
\hat{x}(k+1|0\ldots k) = F(k)\hat{x}(k|0\ldots k) + G(k)u(k)
\]

\[
P(k+1|0\ldots k) = F(k)P(k|0\ldots k)F(k)^T + V(k)
\]

Update

\[
\hat{x}(k+1|0\ldots k+1) = \hat{x}(k+1|0\ldots k) + \Delta x
\]

\[
= \hat{x}(k+1|0\ldots k) + PH^T(HPH^T + W(k+1))^{-1}(y(k+1) - H\hat{x}(k+1|0\ldots k))
\]

\[
P(k+1|0\ldots k+1) = E\left[(x(k+1) - \hat{x}(k+1|0\ldots k+1))(x(k+1) - \hat{x}(k+1|0\ldots k))\right]
\]

where \(H \equiv H(k+1), P \equiv P(k+1|0\ldots k) \)
Consider a mobile robot constrained to move along a straight line.

Robot state $x = (x_r, v_r)^T$

- x_r: robot position
- v_r: robot velocity

Input control u: real-valued force applied to the robot. According to Newton’s law

$$\frac{dv_r}{dt} = \frac{u}{m}$$

Approximated by the discrete time equation (T discretization rate (in seconds))

$$\frac{v_r(k + 1) - v_r(k)}{T} = \frac{u(k)}{m}$$

Therefore,

$$x(k + 1) = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ \frac{T}{m} \end{bmatrix} u(k) + \nu(k)$$

where $\nu(k)$ is white Gaussian noise with zero mean and covariance matrix V

Suppose sensor measures velocity. Then,

$$y(k + 1) = [0, 1] x(k) + w(k)$$

where $w(k)$ is white Gaussian noise with zero mean and covariance matrix W