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When is an Algorithm “Correct”?

Recall the definition of a correct algorithm: One returns the correct
solution for every valid instance of a problem

There are a variety of ways to prove correctness

Correctness proofs are easy for some algorithms, hard for others

But there’s a standard way to prove correctness for many common
algorithms using loops or recursion: Identify and prove a loop
invariance property

There is a good discussion of this on pp. 17–19 of Introduction to
Algorithms (2nd edition), by Cormen et al. [These notes come from
that text]
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The Loop Invariance Property

We need to define a key property of the data manipulated by the
main loop of an algorithm

The property must help us understand why the algorithm is
correct
We must show that the property holds in the initial case, is
maintained each iteration, and that when the loop terminates
the property yields correctness

Determining this property in general can be difficult

But for simple, common algorithms the property is often the key
defining feature of the algorithm
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From Loop Invariance to Correctness

Initialization — The loop invariance must be true prior to the first
iteration of the loop

Maintenance — If the property holds prior to an iteration of the loop, it
must still hold after the iteration is complete

Termination — When the loop terminates, the invariant provides a
useful property that helps demonstrate that the algorithm
is correct

To prove correctness, we must prove the above about the loop
invariance property
The first two pieces are similar to induction. When they hold, the
loop invariant is true prior to every iteration of the loop
The termination is where is differs from induction and is the most
important piece. We are not showing that the loop invariant holds
ad infinitum, but rather that it results in a correct answer after a
finite number of steps
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Reminder: SelectionSort

SelectionSort(A[0 . . . n − 1])

for i ←− 0 to n − 2 do

min←− i

for j ←− i + 1 to n − 1 do

if A[j ] < A[min], min←− j

Swap(A[i ],A[min])

Loop Invariant:
At the start of each iteration of the outer-
most for loop, the sublist A[0 . . . i−1] con-
sists of the i − 1 smallest elements orig-
inally in A in sorted order. The sublist
A[i . . . n − 1] contain the remaining ele-
ments in A.
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What Does the Loop Invariant Mean?

Essentially, the loop invariant says that at each step, the data set can be divided
into two parts:

The part to the left of i is a sorted
sublist from elements in A

The part from i to the right on
which the algorithm is still working

Loop Invariant:
At the start of each iteration of the outer-
most for loop, the sublist A[0 . . . i−1] con-
sists of the i − 1 smallest elements orig-
inally in A in sorted order. The sublist
A[i . . . n − 1] contain the remaining ele-
ments in A.
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Proving the Partition Loop Invariant

Initialization — At the first iteration, i = 0, the sublist to the left of i is empty. It
is reasonable to say that an empty sublist is ordered and obeys the
loop invariant.

Maintenance — At the start of any arbitrary iteration, no element from 0 to i − 1
can ever be disturbed again. During the step, the inner for loop will
find the smallest element in A[i + 1 . . . n− 1] and will swap it for the
A[i ] element. This element is swapped into the i th position. The
new A[i ] element cannot be smaller than any element in
A[0 . . . i − 1] because the loop invariant is true prior to the start of
the iteration, so it will simultaneously be the smallest element from i

to the right and no smaller than any element to its left. The loop
invariant is preserved.

Termination — When the last iteration of the algorithm terminates, the loop
counter will be on n − 2. If the i th element is smaller, it will be
exchanged with the n − 1st element. Given that the sublist to the
left of i is already sorted and neither A[n − 2] nor A[n − 1] can be
smaller than any item in A[0 . . . n − 2] because of the loop invariant,
the combined list will be in sorted order. If the i th element is not

smaller, the list is already sorted.
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Wait ... What Did We Just Prove?

Recall: The sorting problem is to take a list of unordered
items and order them by value

We showed that the SelectionSort algorithm will, at each
step, preserve the property that items to the left of the main
index are in sorted order and not greater than any item to the
right.

If this property holds at initialization, is maintained each step,
and terminates properly, SelectionSort must be a correct
implementation of an algorithm for solving the sorting problem
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Reminder: QuickSort and Partition

QuickSort(A[l . . . r ])

if l > r

s ←− Partition(A[l . . . r ])
QuickSort(A[l . . . s − 1)
QuickSort(A[s + 1 . . . r)

Partition(A[l . . . r ])

p ←− A[l ]
i ←− l

j ←− r + 1
repeat

repeat i + + until p ≥ A[i ]
repeat j −− until p ≤ A[j ]
Swap(A[i ],A[j ])

until i ≥ j

Swap(A[i ],A[j ])
Swap(A[l ],A[j ])

Loop Invariant (for Partition):
At the start of the first repeat loop in the
Partition function, the following holds for
any array index k:

k ∈ (l , i ]⇒ A[k] ≤ p

k ∈ [j , r ]⇒ A[k] ≥ p
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What Does the Loop Invariant Mean?

Essentially, the loop invariant says that at each step, the data set can be divided
into three parts:

The part to the left of i (except l) is
never greater than the pivot value

The part to the right of j is never
less than the pivot value

The part in the middle on which the
algorithm is still working

Loop Invariant (for Partition):
At the start of the first repeat loop in the
Partition function, the following holds for
any array index k:

k ∈ (l , i ]⇒ A[k] ≤ p

k ∈ [j , r ]⇒ A[k] ≥ p
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Proving the Partition Loop Invariant

Initialization — Prior to the first iteration of the the loop, i = l and j = r + 1.
There are no values at r + 1 and we excuse the case where i = l .

Maintenance — The invariant holds prior to the step so everything to the left of i

(except l) obeys the first condition of the variant and everything to
the right of j obeys the second condition. The first repeat loop
inside the main loop will skip past all consecutive values from that
point forward that are less than p, so we only need to consider the
case when A[i ] ≤ p. Likewise with A[j . . . r ], we only need to
consider when A[j ] ≥ p. Under that condition, the two are
swapped —the previous A[i ] value now resides in the right-hand
portion of the data list, and the previous A[j ] value now resides in
the left-hand portion. The invariant is preserved

Termination — The exception, on the final iteration, occurs when i ≥ j . This can
only occur once because of the until condition of the main loop and
is corrected immediately after the loop terminates. The pivot point
is moved to the partition point by swapping it with the A[j ] value.
Since j is now less than or equal to i , it resides in the left-hand set
... so A[j ] ≤ p, obeying the first condition of the variant.
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Wait ... What Did We Just Prove?

Recall: We want the Partition function to select a pivot
value and divide the sublist such that all values to the left of
that pivot point are no greater than the pivot and all values to
the right are no less than the pivot

We just proved that the algorithm implemented in the book is
correct: For all valid input lists, it performs the above function
correctly

We did not prove that QuickSort is correct ...

But to prove that QuickSort is correct, we must show that
Partition is correct
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