
Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

CS 483 - Data Structures and Algorithm Analysis

Lecture I: Chapter 1

R. Paul Wiegand

George Mason University, Department of Computer Science

January 25, 2006

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Outline

1 Introduction

2 Algorithms & Problems

3 Fundamentals

4 Problem Types

5 Data Structures

6 Homework

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Personal & Course Introduction

Personal Introduction:

Current position &
Research interests
Industry experience
Personal expectations

Course Introduction:

Course title & topic
Degree requirement &
Pre-req’s
Hand out info sheet

Course Syllabus:

Office hours and contact info
Grading, projects, &
homeworks
Cheating
Course schedule

How to succeed:

Be curious & motivated
Read!! (BEFORE class)
Build good habits that work
for you
Ask for help

Syllabus: http://www.cs.gmu.edu/∼pwiegand/cs483

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

http://www.cs.gmu.edu/~pwiegand/cs483

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Motivating the Course

Why this course matters:

Forrest for the trees
Making educated & informed decisions
Need as designer AND implementor
Engineer versus technician

Personal reflections:

“Don’t know Big-O stuff!”
“The JDK comes with a Sort routine...”
Etc.

Key ideas (from Henry Hamburger)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Computational Problems

What is a computational problem?

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Computational Problems

What is a computational problem?
Problem statement

The statement of a problem specifies in general terms the
relationship between input and output
Example Sort a set of numbers in non-decreasing order
(sorting problem)
Input: 〈a1, a2, . . . an〉
Output: 〈a′1, a

′

2, . . . a
′

n
〉 : a′1 ≤ a′2 ≤ · · · ≤ a′

n

Problem instance
A problem instance consists of the input, satisfying whatever
constraints are imposed by the problem statement) needed to
compute a “solution” to the problem.
Example problem instance:
Input: 〈4, 6, 7, 1, 9, 3, 8, 10, 5, 2〉
Output(solution): 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉

Are problems inherently hard (or harder than others)?
R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Algorithms

What is an algorithm?

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Algorithms

What is an algorithm?
Algorithm

A recipe, a list of instructions , a transformation of data ... ?

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Algorithms

What is an algorithm?
Algorithm

A recipe, a list of instructions , a transformation of data ... ?
Cormen et al.: An algorithm is any well-defined computation
procedure that takes some value, or set of values, as input and
produces value, or set of values, as output.
Levitin: An algorithm is a sequence of unambiguous
instructions for solving a problem, i.e., for obtaining a required
output for any legitimate input in a finite amount of time.
In a sense, algorithms are “procedural solutions to problems”

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Algorithms

What is an algorithm?
Algorithm

A recipe, a list of instructions , a transformation of data ... ?
Cormen et al.: An algorithm is any well-defined computation
procedure that takes some value, or set of values, as input and
produces value, or set of values, as output.
Levitin: An algorithm is a sequence of unambiguous
instructions for solving a problem, i.e., for obtaining a required
output for any legitimate input in a finite amount of time.
In a sense, algorithms are “procedural solutions to problems”

Important point about algorithms
Unambiguous instructions
Input range specified carefully
Multiple representations for same algorithm
Multiple algorithms for solving the same problem
Different alg. based on different ideas with different trade-offs

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Example: Greatest Common Divisor

Input: m, n ∈ N, where (m ≥ 0 ∧ n > 0) ∨ (m > 0 ∧ n ≥ 0)

Output: Largest integer that divides both m and n evenly

Euclid(m, n)
while n 6= 0 do

r ← m mod n

m← n

n← r

return m

ConsecutiveInteger(m, n):
step-1: t ← min{m, n}
step-2: if m

t
∈ N

+, goto step-4

step-3: if n

t
∈ N

+, return t

step-4: t ← t − 1, goto step-2

Are these algorithms guaranteed to stop?

Are there different input restrictions?

Look over the “middle-school method” in the book ...

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Steps for Designing Algorithms

Understand the problem

Assess computational resources (memory, speed, etc.)

Decide between an exact or approximate algorithm

Choose appropriate data structures

Specify an algorithm in pseudo-code

Prove correctness

Analyze the algorithm

Implement & test the algorithm

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Issues Surrounding the Design of Algorithms

An algorithm is correct if it produces the required result for
every legitimate input

An exact algorithm produces solutions to problems that are
exactly correct.

An approximate algorithm produces solutions to problems that
are approximately correct.

A data structure is a way to store and organize (related)
information in order to facilitate access and modification.
Algorithm analysis:

Efficiency (time, space): how algorithms scale wrt input size
Simplicity
Generality

Type of problems solved

Range of inputs accepted

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Sorting

Arrange a set of values in a total or partial ordering

Often make use of a key for sorting more complicated data

With key-comparison based sorts, cannot do better than n lg n

time

Sorting algorithms are stable if given two elements with equal
key values at positions i and j such that i < j , after the sort
they will appear in positions i ′ and j ′ such that i ′ < j ′.

Sorting algorithms are called in place sorts if they do not
require more than a constant amount of memory beyond what
is stored in the list.

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Searching & String Processing

Searching
Find a given value, called a search key, in a set of values
A variety of algorithms exist (sequential search, binary search,
etc.)
Sometimes data are stored in data structures that make them
more conducive for searching (hash maps, red-black trees, etc.)
Engineers have to pay attention to applications where the
underlying data may change frequently relative to the number
of searches.

String Processing
A string is a sequence of characters from some well-defined
alphabet (e.g., binary strings)
Large class of problems dealing with the handling of strings
An example problem is string matching: Find the positions of
a substring in a master string.

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Graph & Combinatorial Problems

Graph Problems

A graph is a collection of vertices, some of which are
connected by edges
Traditional examples: graph traversal, finding shortest-path,
finding minimum spanning tree, etc.
Can be computationally very hard
Examples of hard graph problems:

Traveling salesperson problem

Graph coloring problem

Combinatorial Problems

Problems in which one must find a combinatorial object that
satisfies certain constraints and has some desired property
Tend to be the hardest types of computational problems
Many graph problems are combinatorial problems

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Graph & Combinatorial Problems

Graph Problems

A graph is a collection of vertices, some of which are
connected by edges
Traditional examples: graph traversal, finding shortest-path,
finding minimum spanning tree, etc.
Can be computationally very hard
Examples of hard graph problems:

Traveling salesperson problem

Find the shortest tour that vis-

its all connected vertices exactly

once

Graph coloring problem

Combinatorial Problems

Problems in which one must find a combinatorial object that
satisfies certain constraints and has some desired property
Tend to be the hardest types of computational problems
Many graph problems are combinatorial problems

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Graph & Combinatorial Problems

Graph Problems

A graph is a collection of vertices, some of which are
connected by edges
Traditional examples: graph traversal, finding shortest-path,
finding minimum spanning tree, etc.
Can be computationally very hard
Examples of hard graph problems:

Traveling salesperson problem

Graph coloring problem
Assign the smallest number of

colors to vertices of a graph so

that no two adjacent vertices are

the same colorCombinatorial Problems

Problems in which one must find a combinatorial object that
satisfies certain constraints and has some desired property
Tend to be the hardest types of computational problems
Many graph problems are combinatorial problems

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Geometric & Numerical Problems

Geometric Problems

Geometric problems deal with geometric objects (e.g., points,
lines, polygons, etc.)
For example:

Closest-pair problem

Convex hull problem

These are different than graph problems!

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Geometric & Numerical Problems

Geometric Problems

Geometric problems deal with geometric objects (e.g., points,
lines, polygons, etc.)
For example:

Closest-pair problem

Given n points, find the pair

of points with the minimum

distance between them

Convex hull problem

These are different than graph problems!

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Geometric & Numerical Problems

Geometric Problems

Geometric problems deal with geometric objects (e.g., points,
lines, polygons, etc.)
For example:

Closest-pair problem

Convex hull problem Given n points in a set, find

the smallest convex poly-

gon that contains all these

points.

These are different than graph problems!

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Geometric & Numerical Problems

Geometric Problems

Geometric problems deal with geometric objects (e.g., points,
lines, polygons, etc.)
For example:

Closest-pair problem

Convex hull problem

These are different than graph problems!

Numerical Problems

Problems involving continuous mathematical objects
For example:

Solving systems of equations

Computing derivatives & definite integrals

Optimizing numerical functions, etc.

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Linear Data Structures: Elementary data structures

The following are two elementary data structures useful for produce more ab-
stract linear data structures called lists (a finite sequence of data items)

array — A sequence of n items of the same data type stored
contiguously in memory and accessible using an index

Pre-established, fixed size
Constant time access, insertion and deletion can be
challenging
Example: bit string, 1 0 0 1 1 0 1

linked list — A sequence of zero or more nodes, each containing data
and pointer(s) to other node(s)

Not necessarily fixed in size
Linear time access, insertion and deletion are simpler
Linked lists can be single-linked or doubly-linked

Linked lists can have a header, which stores useful
information (e.g., length)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Linear Data Structures: Advanced data structures

The following are two special types of lists.

stack — A list in which insertions and deletions can only be
done at one end

LIFO – last in, first out
May be implemented by an array or a linked list
Basic operations: Push,Pop

queue — A list in which elements are accessed & deleted from
one end (front) and inserted at the other end (rear)

FIFO – first in, first out
May be implemented by an array or a linked list
Basic operations: Enqueue, Dequeue

Position in a queue can be determined using a
priority (priority queues)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Graphs: Simple

Graphs are collections of points called vertices and line segments,
called edges, connecting (some of the) vertices

Formally: G := 〈V , E 〉, where V is a finite set of labels
corresponding to vertices (e.g., V := {a, b, c}) and E is a finite set
of pairs of these items (e.g., E := {(a, b), (a, c)}

Undirected graph: Edges are unordered, i.e., (a, b) = (b, a)

Directed graph: Edges are ordered and thus imply a direction

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Graphs: Simple

Graphs are collections of points called vertices and line segments,
called edges, connecting (some of the) vertices

Formally: G := 〈V , E 〉, where V is a finite set of labels
corresponding to vertices (e.g., V := {a, b, c}) and E is a finite set
of pairs of these items (e.g., E := {(a, b), (a, c)}

Undirected graph: Edges are unordered, i.e., (a, b) = (b, a)

Directed graph: Edges are ordered and thus imply a direction

a

b c

a

b c

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Graphs: Simple

Graphs are collections of points called vertices and line segments,
called edges, connecting (some of the) vertices

Formally: G := 〈V , E 〉, where V is a finite set of labels
corresponding to vertices (e.g., V := {a, b, c}) and E is a finite set
of pairs of these items (e.g., E := {(a, b), (a, c)}

Undirected graph: Edges are unordered, i.e., (a, b) = (b, a)

Directed graph: Edges are ordered and thus imply a direction

a

b c

a

b c

Complete—every pair of vertices is
connected by an edge
Dense— most vertices are connected
Sparse— few vertices are connected

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Graphs: Representation

adjacency matrix — Enumerate vertices in {1 . . . n}, create an n× n

matrix of boolean values indicating whether an edge exists
between the specified vertices

Undirected graphs result in symmetric matrices
Easily determine if an edge exists, requires space
Good for dense graphs

a b c

a 0 1 1
b 1 0 0
c 1 0 0

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Graphs: Representation

adjacency matrix — Enumerate vertices in {1 . . . n}, create an n× n

matrix of boolean values indicating whether an edge exists
between the specified vertices

Undirected graphs result in symmetric matrices
Easily determine if an edge exists, requires space
Good for dense graphs

a b c

a 0 1 1
b 1 0 0
c 1 0 0

adjacency list — Create a linked list for each vertex containing the
vertices to which that vertex is connected

Somewhat more difficult to determine edge existence,
more compact in space
Good for sparse graphs

a → b → c

b → a

c → a

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Graphs: Weights, Paths, & Cycles

We refer to a weighted graph when there are costs or values
associated with the edges in a graph

Adjacency matrix: Use numeric values in cells of the matrix,
special character for no-edge (e.g., ∞)
Adjacency list: Attach values to nodes in the linked list

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Graphs: Weights, Paths, & Cycles

We refer to a weighted graph when there are costs or values
associated with the edges in a graph

Adjacency matrix: Use numeric values in cells of the matrix,
special character for no-edge (e.g., ∞)
Adjacency list: Attach values to nodes in the linked list

Properties of graphs:
A path a sequence of adjacent vertices connected by an edge
A path is called simple if all edges are distinct
Path length is the total number of vertices in the sequence
A directed path is a sequence of vertices in which every
consecutive pair of vertices is connected by an edge directed
from the vertex listed first the next one
A graph is connected if a path exists for every pair of vertices
A cycle is a simple path of positive length that starts and ends
with the same vertex
A graph is said to be acyclic if it admits no cycles

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Graphs: Trees

What is a tree? What is a forrest?

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Graphs: Trees

A (free) tree is a connected, acyclic graph. A forest is multiple trees, or an
unconnected, acyclic graph.

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Graphs: Trees

A (free) tree is a connected, acyclic graph. A forest is multiple trees, or an
unconnected, acyclic graph.

|E | = |V | − 1

For every two vertices, there’s always exactly one simple path
between them

∴ we can select an arbitrary vertex to be the root

For any v ∈ T , all vertices on the path between the root and v are
called ancestors

The last edge on that path before v is called the parent, v is the
child of that node, etc.

A vertex with no children is called a leaf

A vertex with all its descendants is called a subtree

The depth v is the length of the simple path from the root to v

The height of a tree is the length of the longest simple path from
the root to a leafR. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Sets & Dictionaries

What is a set?

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Sets & Dictionaries

A set is an unordered collection (possibly empty) of distinct items.

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Sets & Dictionaries

A set is an unordered collection (possibly empty) of distinct items.

We can implement a set as a bit vector over the universal set

We can implement a set with a list structure (with insertion
constraints)

A multiset or bag is a set without the uniqueness constraint (an
unordered collection of objects)

Basic operations of a multiset: Search, Insert, Delete

A basic data structure that accomplishes these operations is a
dictionary

Sometimes we need to dynamically partition some n-element set
into a collection of disjoint sets.

Sometimes we need to take the union or intersection of sets

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

Outline Introduction Algorithms & Problems Fundamentals Problem Types Data Structures Homework

Assignments

Section 1.1: Problems 5, 7, 9

Section 1.2: Problems 4, 5, 7

Section 1.3: Problems 1, 4, 8, 9⋆

Section 1.4: Problems 2, 4, 6⋆, 9

⋆Challenge problem

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture I

	Outline
	Introduction
	Algorithms & Problems
	Fundamentals
	Problem Types
	Data Structures
	Homework

