Outline	Algorithms & Problems	Fundamentals	Problem Types 0000	Data Structures 0000000	

CS 483 - Data Structures and Algorithm Analysis Lecture I: Chapter 1

R. Paul Wiegand

George Mason University, Department of Computer Science

January 25, 2006

George Mason University, Department of Computer Science

Outline	Algorithms & Problems	Fundamentals 00	Problem Types 0000	Data Structures 0000000	

Outline

1 Introduction

- 2 Algorithms & Problems
- 3 Fundamentals
- 4 Problem Types
- 5 Data Structures
- 6 Homework

George Mason University, Department of Computer Science

Outline	Introduction ●0	Algorithms & Problems 000	Fundamentals 00	Problem Types 0000	Data Structures 0000000	

Personal & Course Introduction

- Personal Introduction:
 - Current position & Research interests
 - Industry experience
 - Personal expectations
- Course Introduction:
 - Course title & topic
 - Degree requirement & Pre-req's
 - Hand out info sheet

- Course Syllabus:
 - Office hours and contact info
 - Grading, projects, & homeworks
 - Cheating
 - Course schedule
- How to succeed:
 - Be curious & motivated
 - Read!! (BEFORE class)
 - Build good habits that work for you
 - Ask for help

Syllabus: http://www.cs.gmu.edu/~pwiegand/cs483

Outline	Introduction	Algorithms & Problems	Fundamentals	Problem Types	Data Structures	
	00					

Motivating the Course

Why this course matters:

- Forrest for the trees
- Making educated & informed decisions
- Need as designer AND implementor
- Engineer versus technician
- Personal reflections:
 - "Don't know Big-O stuff!"
 - "The JDK comes with a SORT routine..."
 - Etc.
- Key ideas (from Henry Hamburger)

Outline	Algorithms & Problems	Fundamentals	Problem Types	Data Structures	
	000				

Computational Problems

What is a *computational problem*?

George Mason University, Department of Computer Science

Outline	Algorithms & Problems ●00	Fundamentals 00	Problem Types 0000	Data Structures 0000000	

Computational Problems

What is a *computational problem*?

- Problem statement
 - The statement of a problem specifies in general terms the relationship between input and output
 - Example Sort a set of numbers in non-decreasing order (sorting problem)

```
Input: \langle a_1, a_2, \dots a_n \rangle
```

Output:
$$\langle a_1', a_2', \dots a_n'
angle : a_1' \leq a_2' \leq \dots \leq a_n'$$

Problem instance

- A problem instance consists of the input, satisfying whatever constraints are imposed by the problem statement) needed to compute a "solution" to the problem.
- Example problem instance: Input: (4, 6, 7, 1, 9, 3, 8, 10, 5, 2)
 Output(solution): (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

■ Are problems inherently *hard* (or harder than others)? (=) = ∽ ⊲

Outline	Algorithms & Problems ○●○	Fundamentals 00	Problem Types 0000	Data Structures 0000000	

What is an *algorithm*?

George Mason University, Department of Computer Science

Outline	Algorithms & Problems ○●○	Fundamentals 00	Problem Types 0000	Data Structures 0000000	

What is an *algorithm*?

- Algorithm
 - A recipe, a list of instructions, a transformation of data ... ?

э.

Outline	Algorithms & Problems ○●○	Fundamentals 00	Problem Types 0000	Data Structures 0000000	

What is an *algorithm*?

- Algorithm
 - A recipe, a list of instructions , a transformation of data ... ?
 - Cormen et al.: An algorithm is any well-defined computation procedure that takes some value, or set of values, as input and produces value, or set of values, as output.
 - Levitin: An *algorithm* is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.
 - In a sense, algorithms are "procedural solutions to problems"

Outline	Algorithms & Problems ○●○	Fundamentals 00	Problem Types 0000	Data Structures 0000000	

What is an *algorithm*?

- Algorithm
 - A recipe, a list of instructions , a transformation of data ... ?
 - Cormen et al.: An algorithm is any well-defined computation procedure that takes some value, or set of values, as input and produces value, or set of values, as output.
 - Levitin: An *algorithm* is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.
 - In a sense, algorithms are *"procedural solutions to problems"*
- Important point about algorithms
 - Unambiguous instructions
 - Input range specified carefully
 - Multiple representations for same algorithm
 - Multiple algorithms for solving the same problem
 - Different alg. based on different ideas with different trade-offs

Outline	Algorithms & Problems	Fundamentals	Problem Types	Data Structures	
	000		0000	000000	

Example: Greatest Common Divisor

Input: $m, n \in \mathbb{N}$, where $(m \ge 0 \land n > 0) \lor (m > 0 \land n \ge 0)$ **Output:** Largest integer that divides both *m* and *n* evenly

EUCLID(m, n)	~	- ()
while $n \neq 0$ do	Consecu	JTIVEINTEGER (m, n) :
millo n - o do	step-1:	$t \leftarrow \min\{m, n\}$
$r \leftarrow m \mod n$	step-2:	if $\frac{m}{t} \in \mathbb{N}^+$, goto step-4
$m \leftarrow n$	step-3:	if $rac{\dot{n}}{t} \in \mathbb{N}^+$, return t
$n \leftarrow r$	step-4:	$t \leftarrow t-1$, goto step-2
return <i>m</i>	_	

- Are these algorithms guaranteed to stop?
- Are there different input restrictions?
- Look over the "middle-school method" in the book ...

・ 何 ト ・ ヨ ト ・ ヨ ト

Outline	Algorithms & Problems	Fundamentals	Problem Types	Data Structures	
		● 0			

Steps for Designing Algorithms

- Understand the problem
- Assess computational resources (memory, speed, etc.)
- Decide between an exact or approximate algorithm
- Choose appropriate *data structures*
- Specify an algorithm in pseudo-code
- Prove correctness
- Analyze the algorithm
- Implement & test the algorithm

Outline	Algorithms & Problems	Fundamentals ○●	Problem Types 0000	Data Structures 0000000	

Issues Surrounding the Design of Algorithms

- An algorithm is *correct* if it produces the required result for *every* legitimate input
- An exact algorithm produces solutions to problems that are exactly correct.
- An approximate algorithm produces solutions to problems that are approximately correct.
- A data structure is a way to store and organize (related) information in order to facilitate access and modification.
- Algorithm analysis:
 - Efficiency (time, space): how algorithms *scale* wrt input size
 - Simplicity
 - Generality
 - Type of problems solved
 - Range of inputs accepted

Outline		Algorithms & Problems	Fundamentals 00	Problem Types ●000	Data Structures 0000000	
Sorti	ng					

- Arrange a set of values in a total or partial ordering
- Often make use of a key for sorting more complicated data
- With key-comparison based sorts, cannot do better than n lg n time
- Sorting algorithms are stable if given two elements with equal key values at positions i and j such that i < j, after the sort they will appear in positions i' and j' such that i' < j'.</p>
- Sorting algorithms are called *in place* sorts if they do not require more than a constant amount of memory beyond what is stored in the list.

Outline	Algorithms & Problems	Fundamentals 00	Problem Types ○●○○	Data Structures 0000000	

Searching & String Processing

- Searching
 - Find a given value, called a *search key*, in a set of values
 - A variety of algorithms exist (sequential search, binary search, etc.)
 - Sometimes data are stored in data structures that make them more conducive for searching (hash maps, red-black trees, etc.)
 - Engineers have to pay attention to applications where the underlying data may change frequently relative to the number of searches.
- String Processing
 - A string is a sequence of characters from some well-defined alphabet (e.g., binary strings)
 - Large class of problems dealing with the handling of strings
 - An example problem is *string matching*: Find the positions of a substring in a master string.

Outline	Algorithms & Problems	Fundamentals 00	Problem Types 00●0	Data Structures 0000000	

Graph & Combinatorial Problems

Graph Problems

- A graph is a collection of vertices, some of which are connected by edges
- Traditional examples: graph traversal, finding shortest-path, finding minimum spanning tree, etc.
- Can be computationally very hard
- Examples of hard graph problems:
 - Traveling salesperson problem
 - Graph coloring problem
- Combinatorial Problems
 - Problems in which one must find a combinatorial object that satisfies certain constraints and has some desired property
 - Tend to be the hardest types of computational problems
 - Many graph problems are combinatorial problems

Graph & Combinatorial Problems

Graph Problems

- A graph is a collection of vertices, some of which are connected by edges
- Traditional examples: graph traversal, finding shortest-path, finding minimum spanning tree, etc.
- Can be computationally very hard
- Examples of hard graph problems:
 - Traveling salesperson problem ✓
 - Graph coloring problem
- Combinatorial Problems
 - Problems in which one must find a combinatorial object that satisfies certain constraints and has some desired property
 - Tend to be the hardest types of computational problems
 - Many graph problems are combinatorial problems

Find the shortest tour that visits all connected vertices exactly once

Outline	Algorithms & Problems	Fundamentals 00	Problem Types 00●0	Data Structures 0000000	

Graph & Combinatorial Problems

Graph Problems

- A graph is a collection of vertices, some of which are connected by edges
- Traditional examples: graph traversal, finding shortest-path, finding minimum spanning tree, etc.
- Can be computationally very hard
- Examples of hard graph problems:
 - Traveling salesperson problem
 - Graph coloring problem___
- Combinatorial Problems

Assign the smallest number of colors to vertices of a graph so that no two adjacent vertices are the same color

- Problems in which one must find a combinatorial object that satisfies certain constraints and has some desired property
- Tend to be the hardest types of computational problems
- Many graph problems are combinatorial problems

Outline	Algorithms & Problems 000	Fundamentals 00	Problem Types 000●	Data Structures 0000000	

Geometric Problems

- Geometric problems deal with geometric objects (e.g., points, lines, polygons, etc.)
- For example:
 - Closest-pair problem
 - Convex hull problem
- These are different than graph problems!

Outline	Algorithms & Problems	Fundamentals 00	Problem Types 000●	Data Structures 0000000	

Geometric Problems

- Geometric problems deal with geometric objects (e.g., points, lines, polygons, etc.)
- For example:
 - Closest-pair problem____
 - Convex hull problem
- These are *different* than graph problems!

Given *n* points, find the pair of points with the minimum distance between them

George Mason University, Department of Computer Science

Outline	Algorithms & Problems	Fundamentals	Problem Types	Data Structures	

Geometric Problems

 Geometric problems deal with geometric objects (e.g., points, lines, polygons, etc.)

For example:

- Closest-pair problem
- Convex hull problem____

• These are *different* than graph problems!

Given n points in a set, find the smallest convex polygon that contains all these points.

Outline	Algorithms & Problems	Fundamentals 00	Problem Types 000●	Data Structures 0000000	

Geometric Problems

- Geometric problems deal with geometric objects (e.g., points, lines, polygons, etc.)
- For example:
 - Closest-pair problem
 - Convex hull problem
- These are different than graph problems!
- Numerical Problems
 - Problems involving continuous mathematical objects
 - For example:
 - Solving systems of equations
 - Computing derivatives & definite integrals
 - Optimizing numerical functions, etc.

Linear Data Structures: Elementary data structures

The following are two elementary data structures useful for produce more abstract linear data structures called *lists* (a finite sequence of data items)

- array A sequence of *n* items of the same data type stored contiguously in memory and accessible using an *index*
 - Pre-established, fixed size
 - Constant time access, insertion and deletion can be challenging
 - Example: bit string, 1001101
- - Not necessarily fixed in size
 - Linear time access, insertion and deletion are simpler
 - Linked lists can be *single-linked* or *doubly-linked*
 - Linked lists can have a *header*, which stores useful information (e.g., length)

Outline	Algorithms & Problems	Fundamentals 00	Problem Types 0000	Data Structures 0●00000	

Linear Data Structures: Advanced data structures

The following are two special types of lists.

- $\mathsf{stack}\ -\!\!\!-\!\!\!\mathsf{A}$ list in which insertions and deletions can only be done at one end
 - LIFO last in, first out
 - May be implemented by an array or a linked list
 - Basic operations: PUSH,POP
- queue A list in which elements are accessed & deleted from one end (front) and inserted at the other end (rear)
 - FIFO first in, first out
 - May be implemented by an array or a linked list
 - Basic operations: ENQUEUE, DEQUEUE
 - Position in a queue can be determined using a priority (priority queues)

Outline		Algorithms & Problems	Fundamentals 00	Problem Types 0000	Data Structures 00●0000	
Grap	hs: Sim	ple				

- Graphs are collections of points called *vertices* and line segments, called *edges*, connecting (some of the) vertices
- Formally: G := ⟨V, E⟩, where V is a finite set of labels corresponding to vertices (e.g., V := {a, b, c}) and E is a finite set of pairs of these items (e.g., E := {(a, b), (a, c)}
- Undirected graph: Edges are unordered, i.e., (a, b) = (b, a)
- Directed graph: Edges are ordered and thus imply a direction

- 4 回 ト - 4 回 ト

Outline		Algorithms & Problems	Fundamentals 00	Problem Types 0000	Data Structures 00●0000	
Grap	hs: Sim	ple				

- Graphs are collections of points called *vertices* and line segments, called *edges*, connecting (some of the) vertices
- Formally: G := ⟨V, E⟩, where V is a finite set of labels corresponding to vertices (e.g., V := {a, b, c}) and E is a finite set of pairs of these items (e.g., E := {(a, b), (a, c)}
- Undirected graph: Edges are unordered, i.e., (a, b) = (b, a)
- Directed graph: Edges are ordered and thus imply a direction

Outline		Algorithms & Problems	Fundamentals 00	Problem Types 0000	Data Structures 000000	
Grap	hs: Sim	ple				

- Graphs are collections of points called vertices and line segments, called edges, connecting (some of the) vertices
- Formally: G := ⟨V, E⟩, where V is a finite set of labels corresponding to vertices (e.g., V := {a, b, c}) and E is a finite set of pairs of these items (e.g., E := {(a, b), (a, c)}
- Undirected graph: Edges are unordered, i.e., (a, b) = (b, a)
- Directed graph: Edges are ordered and thus imply a direction

- Complete—every pair of vertices is connected by an edge
- Dense most vertices are connected
- *Sparse*—few vertices are connected

George Mason University, Department of Computer Science

- 4 週 ト 4 ヨ ト 4 ヨ ト

Outline	Algorithms & Problems	Fundamentals 00	Problem Types 0000	Data Structures 000●000	

Graphs: Representation

	adja	cenc	cy ma	atrix — Enumerate vertices in $\{1 \dots n\}$, create an $n \times n$
				matrix of boolean values indicating whether an edge exists
	а	b	С	between the specified vertices
а	0	1	1	
b	1	0	0	Undirected graphs result in symmetric matrices
c	1	0	0	Easily determine if an edge exists, requires space

Good for dense graphs

Outline	Algorithms & Problems	Fundamentals 00	Problem Types 0000	Data Structures 000●000	

Graphs: Representation

	adjacency matrix — Enumerate vertices in $\{1 \dots n\}$, create an $n \times n$							
	а	b	С	between the specified vertices				
а	0	1	1					
b	1	0	0	Undirected graphs result in symmetric matrices				
С	1	0	0	 Easily determine if an edge exists, requires space Good for dense graphs 				
	adja	cenc	cy list	- Create a linked list for each vertex containing the vertices to which that vertex is connected				
a -	$\rightarrow b$	\rightarrow	С	Somewhat more difficult to determine edge existence.				

Somewhat more difficult to determine edge existence
 more compact in space
 Good for sparse graphs

а

b

Outline	Algorithms & Problems	Fundamentals 00	Problem Types 0000	Data Structures 0000●00	

Graphs: Weights, Paths, & Cycles

- We refer to a *weighted graph* when there are costs or values associated with the edges in a graph
 - Adjacency matrix: Use numeric values in cells of the matrix, special character for no-edge (e.g., ∞)
 - Adjacency list: Attach values to nodes in the linked list

Graphs: Weights, Paths, & Cycles

- We refer to a weighted graph when there are costs or values associated with the edges in a graph
 - Adjacency matrix: Use numeric values in cells of the matrix, special character for no-edge (e.g., ∞)
 - Adjacency list: Attach values to nodes in the linked list
- Properties of graphs:
 - A *path* a sequence of adjacent vertices connected by an edge
 - A path is called *simple* if all edges are distinct
 - Path *length* is the total number of vertices in the sequence
 - A directed path is a sequence of vertices in which every consecutive pair of vertices is connected by an edge directed from the vertex listed first the next one
 - A graph is connected if a path exists for every pair of vertices
 - A cycle is a simple path of positive length that starts and ends with the same vertex
 - A graph is said to be *acyclic* if it admits=no cycles = > < = > > = ∽ <<

Outline	Algorithms & Problems 000	Fundamentals 00	Problem Types 0000	Data Structures 00000●0	

Graphs: Trees

What is a tree? What is a forrest?

George Mason University, Department of Computer Science

Outline	Algorithms & Problems 000	Fundamentals 00	Problem Types 0000	Data Structures 00000●0	

Graphs: Trees

A (free) *tree* is a connected, acyclic graph. A *forest* is multiple trees, or an unconnected, acyclic graph.

George Mason University, Department of Computer Science

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Outline	Algorithms & Problems	Fundamentals 00	Problem Types 0000	Data Structures 00000●0	

Graphs: Trees

A (free) *tree* is a connected, acyclic graph. A *forest* is multiple trees, or an unconnected, acyclic graph.

- |E| = |V| 1
- For every two vertices, there's always *exactly one* simple path between them
- ∴ we can select an arbitrary vertex to be the *root*
- For any $v \in T$, all vertices on the path between the root and v are called *ancestors*
- The last edge on that path before v is called the *parent*, v is the *child* of that node, etc.
- A vertex with no children is called a *leaf*
- A vertex with all its descendants is called a *subtree*
- The *depth* v is the length of the simple path from the root to v

Outline	Algorithms & Problems	Fundamentals 00	Problem Types 0000	Data Structures 000000●	

Sets & Dictionaries

What is a set?

・ロト・日本・モト・モー しょうのく

George Mason University, Department of Computer Science

Outline	Algorithms & Problems	Fundamentals 00	Problem Types 0000	Data Structures 000000●	

Sets & Dictionaries

A set is an unordered collection (possibly empty) of distinct items.

ৰ্বাচ ব্টি চব্বট চব্ট চব্ট চব্ব তি চব্ব George Mason University, Department of Computer Science

Outline	Algorithms & Problems	Fundamentals 00	Problem Types 0000	Data Structures 000000●	

Sets & Dictionaries

A set is an unordered collection (possibly empty) of distinct items.

- We can implement a set as a bit vector over the *universal set*
- We can implement a set with a list structure (with insertion constraints)
- A *multiset* or *bag* is a set without the uniqueness constraint (an unordered collection of objects)
- Basic operations of a multiset: SEARCH, INSERT, DELETE
- A basic data structure that accomplishes these operations is a dictionary
- Sometimes we need to dynamically partition some *n*-element set into a collection of disjoint sets.
- Sometimes we need to take the union or intersection of sets

Outline	Algorithms & Problems	Fundamentals 00	Problem Types 0000	Data Structures 0000000	Homework ●

Assignments

- Section 1.1: Problems 5, 7, 9
- Section 1.2: Problems 4, 5, 7
- Section 1.3: Problems 1, 4, 8, 9*
- Section 1.4: Problems 2, 4, 6*, 9

*Challenge problem

George Mason University, Department of Computer Science