
Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

CS 483 - Data Structures and Algorithm Analysis
Lecture II: Chapter 2

R. Paul Wiegand

George Mason University, Department of Computer Science

February 1, 2006

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Outline

1 Analysis Framework

2 Asymptotic Notation

3 Nonrecursive Algorithms

4 Recursive Algorithms & Recurrence Relations

5 Empirical Analysis

6 Homework

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Analyzing for Efficiency

Though there are other factors, we concentrate our analysis
on efficiency

Time efficiency— how fast an algorithm runs
Space efficiency— how much memory an algorithm

Input size

Wall-clock time depends on the machine, but algorithms are
machine independent
Typically, algorithms run longer as the size of its input
increases
∴ We are interested in how efficiency scales wrt input size

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Measuring input size

What do we measure to judge the size of the problem?

Sort(a1, a2, · · · , an) Number of list elements

2

6

4

a11 · · · an1

...
. . .

...
a1m · · · anm

3

7

5

2

6

4

b11 · · · bm1

...
. . .

...
b1k · · · bmk

3

7

5
=

Order of matrices?

Total number of elements?

p(x) = anx
n + · · · + a1x + a0

Degree of polynomial?

Total number of coefficients?

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Measuring Running Time

What do we measure to judge the running time on an algorithm?

Could count all operations executed ...

But we typically concern ourselves with the basic operation, the one
contributing the most to the total running time

Sort(a1, a2, · · · , an) Key comparisons

2

6

4

a11 · · · an1

...
. . .

...
a1m · · · anm

3

7

5

2

6

4

b11 · · · bm1

...
. . .

...
b1k · · · bmk

3

7

5
=

Additions?

Multiplications?

In general, we can approximate running time as: T (n) ≈ copC (n)

Example: Given C (n) := 1
2n (n − 1), what is the run-time effect of

doubling the input size?

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Sidebar: Logarithm Basics

If bx = y then logb y = x

We can change bases: loga x = logb x

logb a

0 10 20 30 40 50

0
10

20
30

40
50

x

y

y =x

y =2x

y =log2(x)

logb xy = y logb x

log xy = log x + log y

log x
y

= log x − log y

alogb x = x logb a

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

How Does Your Running Time Grow?

0 20 40 60 80 100

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

x

y

y =x

y =x2

y =x3

y =x4

y =2x We aren’t so interested in running times
on small inputs, but in how running time
scales on very large inputs

We are interested in an algorithm’s order

of growth, ignoring constant factors

1 Constant
log n Logarithmic (sub-linear)
n Linear
n lg n n-log-n
nk , for some constant k Polynomial
kn, for some constant k Exponential
n! Factorial (“Exponential”)

NOTE: Given a nonnegative integer d , we can write a polynomial in the form

p(n) =
Pd

i=0 ai n
i , where ai are constants. We call d the degree of

the polynomial.

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Worst-Case Efficiency

SequentialSearch(A[0 . . . n − 1], K )

i ← 0
while i < n and A[i ] 6= K do

i ← i + 1
if i < n return i

else return −1

Worst case is when K is not in A[]

Search every element, requiring Cworst (n) = n comparisons

Worst case analysis provides an upper bound

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Best-Case Efficiency

SequentialSearch(A[0 . . . n − 1], K )

i ← 0
while i < n and A[i ] 6= K do

i ← i + 1
if i < n return i

else return −1

Best case is when K is in A[0]

Search first element, requiring Cbest (n) = 1 comparisons

Best case analysis provides a lower bound

Generally, best-case efficiency is not as useful...

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Average-Case Efficiency

SequentialSearch(A[0 . . . n − 1], K )

i ← 0
while i < n and A[i ] 6= K do

i ← i + 1
if i < n return i

else return −1

Average case asks a useful question: “What kind of running time to
we expect to get when we don’t know the data?”

Let p ∈ [0, 1] be probability that K ∈ A[]

If successful, let the Pr{K = A[1]} = Pr{K = A[i ]} ∀i ∈ [0, n− 1]

So the Pr{K = A[i ]} = p
n

Cavg (n) =
[

1 · p
n

+ 2 · p
n

+ · · ·+ n · p
n

]

+n·(1−p) p· n+1
2 +(1−p)·n

If p = 1 (i.e., K ∈ A[]), running time is linear

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

O, Ω, Θ: Sets of functions

Informally, we can think of O, Ω, Θ as sets of functions

O (g(n)): set of all functions with the same or smaller order of
growth as g(n)

2n2 − 5n + 1 ∈ O
`

n2
´

2n + n100 − 2 ∈ O (n!)
2n + 6 6∈ O (log n)

Ω (g(n)): set of all functions with the same or larger order of
growth as g(n)

2n2 − 5n + 1 ∈ Ω
`

n2
´

2n + n100 − 2 6∈ Ω(n!)
2n + 6 ∈ Ω (log n)

Θ (g(n)): set of all func. with the same order of growth as g(n)
2n2 − 5n + 1 ∈ Θ

`

n2
´

2n + n100 − 2 6∈ Θ (n!)
2n + 6 6∈ Θ (log n)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

O-Notation, more formally

Definition

O (g(n)) = {t(n) : ∃c , n0 > 0 such that 0 ≤ t(n) ≤ c · g(n) ∀n ≥ n0}.

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0
60

0

x

y

n0

t(n)

c g(n)

I.e., t(n) is in O(g(n)) if t(n) is
bounded above by some
constant multiple of g(n) for all
“large” n

We call O an asymptotic upper

bound

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Ω-Notation, more formally

Definition

Ω (g(n)) = {t(n) : ∃c , n0 > 0 such that 0 ≤ c · g(n) ≤ t(n) ∀n ≥ n0}.

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0
60

0

x

y

n0

t(n)

c g(n)

I.e., t(n) is in O(g(n)) if t(n) is
bounded below by some
constant multiple of g(n) for all
“large” n

We call O an asymptotic lower

bound

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Θ-Notation, more formally

Definition

For any two functions t(n) and g(n) we have t(n) ∈ Θ (g(n)) if and only
if t(n) ∈ O (g(n)) and t(n) ∈ Ω (g(n)).

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0
60

0

x

y

n0

t(n)

c2 g(n)

c1 g(n)

I.e., t(n) is in O(g(n)) if t(n) is
bounded below by some
constant multiple of g(n), c1,
and bounded above by some
constant multiple of g(n), c2,
for all “large” n

We sometimes call such a
bound tight

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

A Useful Asymptotic Propery

Theorem

If t1(n) ∈ O(g1(n)) and t2(n) ∈ O(g2(n)) then

t1(n) + t2(n) ∈ O (max{g1(n), g2(n)}).

Review the proof in the book (p. 56)

Advantage: We can restrict our analysis to one part of an algorithm
if we know the other(s) to have a lower order of growth (e.g.,
CountingSort p. 24)

Advantage: We can “front-load” an algorithm without increasing
the time complexity as long as the preparation step has no greater
an order of growth than main part (e.g., shuffling data before
QuickSort)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Comparing Orders of Growth

One common way to compare two algorithms is by taking the limit of the ratios
of their running times:

Comparing t(n) and f (n):

limn→∞

t(n)
f (n) =







0 if t(n) is of smaller order than f (n)
c if t(n) is of the same order as f (n)
∞ if t(n) is of greater order than f (n)

Example: Compare the orders of growth of lg n and
√

n:

lim
n→∞

lg n√
n

(given)

lim
n→∞

d
dn

lg n

d
dn

√
n

(L’Hopital’s Rule)

lim
n→∞

lg e
1
n

1
2
√

n

(derivation)

lim
n→∞

2 lg e

1
n
1√
n

(algebra)

lim
n→∞

2 lg e

√
n

n
= 0

∴ lg n is of smaller order than
√

n

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

General Analysis Plan

1 How will you measure input size? What algorithmic parameter is it?

2 What is the algorithm’s basic operation? (Is it in the inner-most
loop?)

3 Does the # of times the basic operation is executed depend on
something other than the input size (e.g., ordering of the input)? If
so, you have to consider worst, best, and average cases separately.

4 Specify a summation of the # times basic operation is executed

5 Find a closed-form solution if possible, determine the order of
growth from the formula

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Example: Matrix Multiplication

MatrixMultiply(A[0 . . . n − 1, 0 . . .n − 1], B[0 . . . n − 1, 0 . . .n − 1])

for i ← 0 to n − 1 do

for j ← 0 to n − 1 do

C [i , j ]← 0
for k ← 0 to n− 1 do

C [i , j ]← C [i , j ] + A[i , k ] ∗ B[k , j ]
return C

1 Input size measure: n, the order of the matrices

2 Basic operation: Multiplication

3 Dependency of op: Depends only on input size

4 Summation: M(n) =
∑n−1

i=0

∑n−1
j=0

∑n−1
k=0 1

5 Find the order: M(n) ∈ O
(

n3
)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Example: Binary Digits

Binary(n)

count ← 1
while n > 1 do

count ← count + 1
n ←

⌊

n
2

⌋

return count

1 Input size measure: n, the integer given

2 Basic operation: the n > 1 comparison

3 Dependency of op: Depends only on input size

4 Summation: Here it is actually a recurrence relation, but we know
the answer: B(n) = ⌊lg n⌋+ 1

5 Find the order: B(n) ∈ O (lg n)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Example: Factorial

Factorial(n)

if n = 0 return 1
else return Factorial((n − 1) · n)

n indicates input size, we count multiplications

F (n) = F (n − 1) · n, for n > 0

We call such equations recurrence relations

This defines a sequence, but to make it unique we need an initial

condition (i.e., if n = 0 return 1)

Recurrence relations can be useful analyzing some nonrecursive
algorithms, too (e.g., Binary)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

General Analysis Plan

1 How will you measure input size? What algorithmic parameter is it?

2 What is the algorithm’s basic operation? (Is it in the inner-most
loop?)

3 Does the # of times the basic operation is executed depend on
something other than the input size (e.g., ordering of the input)? If
so, you have to consider worst, best, and average cases separately.

4 Specify a recurrence relation for the # times basic operation is
executed

5 Solve the recurrence relation, determine the order of growth of its
solutions

Back substitution, induction
Recurrence trees
Masters Theorem

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Solving Recurrences: Back Substitution & Induction

Start with a large / difficult input, substitute it into the equation

Continue for a few steps and note the pattern

Use this intuition to posit a guess for the form of the solution

Make use the of asymptotic definition to setup an inequality

Use induction to show that solution works by showing that the
inequality holds for all values of n.

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Example: Binary (v2)

Binary′ (n)

if n = 1 return 1
else return Binary′ (⌊n/2⌋) + 1

Relation: B(n) = B
(⌊

n
2

⌋)

+1

B(2k ) = B
“

2k−1
”

+ 1

=
h

B
“

2k−2
”

+ 1
i

+ 1 = B(2k−2) + 2

· · ·
= B

“

2k−k
”

+ k = k

Guess: B(n) ∈ O(lg n)

From the definition from O, we want
to prove that B(n) ≤ c lg n

B(⌊n/2⌋) ≤ B (⌊n/2⌋) + 1

≤ c lg ⌊n/2⌋ + 1

= c lg n − c lg 2 + 1

= c lg n − K ≤ c lg n

We also have to show that the base
case holds.

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

General Analysis Plan

1 Choose an appropriate experimental design

2 Decide on the efficiency metric and the measurement unit (count
vs. time)

3 How will input space be sampled? (range, size, etc.)

4 Implement the algorithm

5 Generate a sample of inputs

6 Run the algorithm on the sample inputs, record results

7 Analyze the results

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

What Are We Measuring?

Counter

Identify & count basic operations as program runs
Requires additions to the code
Sometimes you can use a profiler to help identify the basic
operation

Time

Measure the length of time it takes for the algorithm to
complete the task
May be done in implementation or (sometimes) using OS
commands
Times can be inaccurate

Small inputs may clock in below threshold of timer precision
On a multiprocessing OS, you will need to consider how much
CPU time the user got, etc.
Times on different machines may differ

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Obtaining Statistics

Sample the input space

Counts & times can vary on different inputs of the same size
Times can vary in the same input
For some kinds of algorithms, counts can too (e.g.,
RandomizedQuickSort)
Choose an input range that makes sense for your purposes

Report the results

Aggregate (average, median, etc.) results across runs for each
input size (and possibly for the same input)
Tabulate or graph the data, typically as size versus time (p.89)
Fit a function to the data

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Obtaining Statistics (2)

Be careful what you conclude

Constants terms and factors can be misleading when input
sizes are relatively small
When possible, use a regression method to be as statistically
certain as possible
Remember: Empiricism is about belief (don’t conclude too
much)

10 15 20 25 30

50
10

0
15

0

Input Size

T
im

e 
/ C

ou
nt

5.7 n + −5

50 100 150 200

0
50

0
10

00
15

00

Input Size

T
im

e 
/ C

ou
nt

nlog2n

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Assignments

This week’s assignments:

Section 2.1: Problems 2, 6, and 9
Section 2.2: Problems 2, 5, and 6
Section 2.3: Problems 2 and 4
Section 2.4: Problems 1, 8, 9, and 10⋆

Section 2.5: Problem 6
Section 2.6: Problems 1, 6, and 8

⋆Challenge problem

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Analysis Framework Asymptotics Nonrecursive Alg Recursive Alg Empiricism Homework

Project I: Analysis of Simple Sorting
Write a paper comparing and contrasting
BubbleSort, MergeSort, and
ShellSort. Discuss the advantages and
disadvantages of each in the context of
efficiency of computational running-time
with respect to input size. For
BubbleSort, include a proof of correctness
for the algorithm.

In addition, implement the three algorithms
and conduct an empirical analysis. Describe
how you chose to measure input size and
running times, including your motivation for
those choices. Be as clear and detailed as
possible about all of these choices. For
example, if you choose to count operations,
explain which operation you will be counting
and why. Additionally, the report should
contain graphs and/or tables of input size
versus running time and a discussion for how
the data matches the formal running time.

Submit the project electronically by
sending me an email message with
attached gzipped tar file. The tarball
should include:

1 The report in text, PS, PDF,
HTML, or RTF format (do NOT
send me a Word document);

2 Any graphs non-embedded graphics
in non-proprietary formats such as
PS, JPEG, PNG, etc. (do NOT
send me an Excel spreadsheet);

3 Source code, but not binaries;

4 Notes for compiling the sources, if
necessary;

5 Any relevant data files.

The project will be due by midnight

March 8.

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II


	Outline
	Analysis Framework
	Asymptotic Notation
	Nonrecursive Algorithms
	Recursive Algorithms & Recurrence Relations
	Empirical Analysis
	Homework

