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Decompose a problem instance
Solve component problem instances

Combine components into composite solution
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Some Comments about Divide-and-Conquer

m s this D&C example more efficient than brute force?
No ... it is ©(n)

Divide-and-conquer is not necessarily superior ...

But many times it is, and many of the most efficient
algorithms in CS are D&C

D&C typically involves recursion (at least conceptually)

D&.C is well-suited for parallelization
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The Master Theorem

m More generally, a problem of size n can be partitioned into a
instances of non-overlapping components of size 7 such that a > 1
and b > 1 (* we assume n is a power of b for simplicity)

m Given this, the general divide-and-conquer recurrence can be defined
as: T(n):=aT (4) +f(n)

m This generalization allows us an analysis short-cut:

Master Theorem

If £(n) € ©(n) where d > 0 in the gen-
eral divide-and-conquer recurrence then

O(n9) if a < b9

T(n)e{ O(n?lgn) if a= b
O(nE7)  if a> be
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m More generally, a problem of size n can be partitioned into a
instances of non-overlapping components of size 7 such that a > 1
and b > 1 (* we assume n is a power of b for simplicity)

m Given this, the general divide-and-conquer recurrence can be defined
as: T(n):=aT (4) +f(n)

m This generalization allows us an analysis short-cut:

Master Theorem For example:

If £(n) € ©(n?) where d > 0 in the gen- ™ Recurrence for addition:
eral divide-and-conquer recurrence then A(n) = 2A(n/2) +1

m Since f(n) =1, it is in ©(n°)

O(n9) if a < b?
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log, a H d
S asb m Since a > b9, A(n) € O(n%2) = O(n)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



MERGESORT
©000

Specifying MERGESORT

MERGESORT(A[0...n — 1])

if n>1
B[0...|n/2] —1] «— A[0...|n/2] —1]
Cl0...[n/2] —=1] «—c A[|n/2]...n—1]
MERGESORT(B)
MERGESORT(C)
MERGE(B,C,A)
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Specifying MERGESORT

MERGESORT(A[0...n — 1])

if n>1
B[0...|n/2] —1] «— A[0...|n/2] —1]
Cl0...[n/2] —=1] «—c A[|n/2]...n—1]
MERGESORT(B)
MERGESORT(C)

SR (v (B0...p— 1], C0...q— 1), AD...p+q— 1))

i,j, k0
while /i < p and j < g do
if B[i] < C[j] Alk] <— BIi]; i ++
else Alk] — C[j]; j++
k + +
if i=pAk...p+qg—1] «—C[j...q—1]
else Alk...p+qg—1] «—c Bli...p—1]
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Merging Two Sorted Lists
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Merging Two Sorted Lists

olo| w0

ol ~N|o| o~ T
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How many comparisons?
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Decomposing... 87516324
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Decomposing & Combining

Decomposing... 875163024
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Decomposing & Combining

Decomposing...
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Decomposing & Combining

Combining...
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Analyzing MERGESORT

m We count key comparisons

m Assume wlog that n is a power of 2

m C(n)=2C(n/2)+ M(n), n>1,C(1)=0
m Applying the Mater Theorem:

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



MERGESORT
oooe

Analyzing MERGESORT

m We count key comparisons
m Assume wlog that n is a power of 2
m C(n)=2C(n/2)+ M(n), n>1,C(1)=0
m Applying the Mater Theorem:
ma=2 b=2

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



MERGESORT
oooe

Analyzing MERGESORT

m We count key comparisons

m Assume wlog that n is a power of 2

m C(n)=2C(n/2)+ M(n), n>1,C(1)=0
m Applying the Mater Theorem:

ma=2 b=2
m In worst case: M(n) € ©(n'),sod =1

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



MERGESORT
oooe
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m We count key comparisons
m Assume wlog that n is a power of 2
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Analyzing MERGESORT

m We count key comparisons
m Assume wlog that n is a power of 2
m C(n)=2C(n/2)+ M(n), n>1,C(1)=0
m Applying the Mater Theorem:
ma=2 b=2
In worst case: M(n) € ©(n'),so d =1

"
ma=b? 0.7
[ ]

C(n) € ©(nlgn)
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Specifying QUICKSORT

QUICKSORT(A[/...r])

if [>r
s «— PARTITION(A[/. .. r])
QUICKSORT(A[/...s — 1)
QUICKSORT(A[s+1...r)
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Specifying QUICKSORT

QUICKSORT(A[/. .. r])

if I>r
s «— PARTITION(A[/..... r]) PARTITION(A[/ ... r])
QUICKSORT(A[/...s — 1) ALl
QUICKSORT(A[s +1...r) ip ‘_l [/

je—r+1

repeat
repeat i+ + until p > A[/]
repeat j — — until p < A[j]
Swap(A[i], A[j])

until />

Swap(A[i], A[j])

Swap(A[/], A[j])
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Decomposing & Combining

57816324
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Decomposing & Combining

57816324
3 \ 5\687
1 3 4 6 7
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12345678 Combining...

(It's already combined!)
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Analyzing QUICKSORT

In QUICKSORT, the size of the split depends on the result of the
PARTITION function...

m Best case:

m Worst case:

m Average case:
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Analyzing QUICKSORT

In QUICKSORT, the size of the split depends on the result of the
PARTITION function...

m Best case:
m lIdeally, the partition splits the sublist in half
] Cbest(n) = 2Cbest(n/2) +nforn>1, Cbest(l) =0

m Worst case:

m Average case:
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Analyzing QUICKSORT

In QUICKSORT, the size of the split depends on the result of the
PARTITION function...

m Best case:
m lIdeally, the partition splits the sublist in half
B Chest(n) = 2Chest(n/2) 4+ n for n > 1, Cpest(1) =0
m By the Master Theorem: Cpes:(n) € ©(nlgn)

m Worst case:

m Average case:
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Analyzing QUICKSORT

In QUICKSORT, the size of the split depends on the result of the
PARTITION function...

m Best case:
m lIdeally, the partition splits the sublist in half
B Chest(n) = 2Chest(n/2) 4+ n for n > 1, Cpest(1) =0
m By the Master Theorem: Cpes:(n) € ©(nlgn)
m Worst case:
B But the partition might split only one item in the sublist...
B This happens when the sublist is already in increasing order
B This degenerates the tree into a list, pulling one item at a time and
calling PARTITION on the remaining n — 1 items

m Average case:

George Mason University, Department of Computer Science
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In QUICKSORT, the size of the split depends on the result of the
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B Chest(n) = 2Chest(n/2) 4+ n for n > 1, Cpest(1) =0
m By the Master Theorem: Cpes:(n) € ©(nlgn)
m Worst case:
B But the partition might split only one item in the sublist...
B This happens when the sublist is already in increasing order
B This degenerates the tree into a list, pulling one item at a time and
calling PARTITION on the remaining n — 1 items
B Cuorst(n) =(n+1)+n+(n—1)+---3 € 0(n?)
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Analyzing QUICKSORT

In QUICKSORT, the size of the split depends on the result of the
PARTITION function...

m Best case:
m lIdeally, the partition splits the sublist in half
] Cbest(n) = 2Cbest(n/2) +nforn>1, Cbest(l) =0
m By the Master Theorem: Cpes:(n) € ©(nlgn)
m Worst case:
B But the partition might split only one item in the sublist...
B This happens when the sublist is already in increasing order
B This degenerates the tree into a list, pulling one item at a time and
calling PARTITION on the remaining n — 1 items
B Cuorst(n) =(n+1)+n+(n—1)+---3 € 0(n?)
m Average case:
B Assume the partition is unbiased wrt position
B sc[0,n—1],Pr{s} = %Vs
B Cog(n) = 2305 [(n+1) + Cavg(s) + Cag(n — 1 = 5)],

n

Cavg(o) =0, Cavg(l) =0
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Analyzing QUICKSORT

In QUICKSORT, the size of the split depends on the result of the
PARTITION function...

m Best case:
m lIdeally, the partition splits the sublist in half
] Cbest(n) = 2Cbest(n/2) +nforn>1, Cbest(l) =0
m By the Master Theorem: Cpes:(n) € ©(nlgn)
m Worst case:
B But the partition might split only one item in the sublist...
B This happens when the sublist is already in increasing order
B This degenerates the tree into a list, pulling one item at a time and
calling PARTITION on the remaining n — 1 items
B Cuorst(n) =(n+1)+n+(n—1)+---3 € 0(n?)
m Average case:
B Assume the partition is unbiased wrt position
B sc[0,n—1],Pr{s} = %Vs
B Cog(n) = 2305 [(n+1) + Cavg(s) + Cag(n — 1 = 5)],
Cag(0) =0, Gag(1l) =0
B Cag € O(ninn)
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Analyzing QUICKSORT

In QUICKSORT, the size of the split depends on the result of the
PARTITION function...

m Best case:
m lIdeally, the partition splits the sublist in half
B Chest(n) = 2Chest(n/2) 4+ n for n > 1, Cpest(1) =0
m By the Master Theorem: Cpes:(n) € ©(nlgn)
m Worst case:
B But the partition might split only one item in the sublist...
B This happens when the sublist is already in increasing order
B This degenerates the tree into a list, pulling one item at a time and
calling PARTITION on the remaining n — 1 items
B Cuorst(n) =(n+1)+n+(n—1)+---3 € 0(n?)

m Average case: Some fixes include:
B Assume the partition is unbiased wrt position Randomizing input order
msc[0,n—1],Pr{s} = %Vs median-of-three partitioning

B Cag(n) =200 [(n+1) + Cavg(s) + Cag(n —1—5)],

Cavg(o) =0, Cavg(l) =0
m Cog € O(ninn)
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Specifying BINARYSEARCH

BINARYSEARCH(A[0...n —1,K])

/—0

r«—n-—1

while / <r do
m — [ 5]
if K =A[m] return m
else if K <A[mlr«— m-—1
else [«— m+1

return —1

37 | Fm

OO N OO B W DN RO
N
w

100 | «—r
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BINARYSEARCH
0

Specifying BINARYSEARCH

return —1

BINARYSEARCH(A[0...n — 1, K]) (1) ;;
0 2] 30
r—n-—1
while /< r do 3135
m— || L
if K = A[m| return m [ — | 5] 43
else if K <A[mlr«— m-—1 6| 51
else [ «— m+1 m-17]| 64
8
9

100 | «—r
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BINARYSEARCH
0

Specifying BINARYSEARCH

else if K <A[mlr«— m-—1
else | «— m+1
return —1

BINARYSEARCH(A[0...n — 1, K]) (1) ;;
LA 2130
r<—n-—
while /< r do 31 35
m— | 5] 4137
if K = A[m| return m | — 5] 43 | Fm
6
7
8
9

100

R. Paul Wiegand George Mason University, Department of Computer Science
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BINARYSEARCH
0

Specifying BINARYSEARCH

else | «— m+1
return —1

BINARYSEARCH(A[0...n — 1, K]) (1) ;;
LA 2130
r<—n-—
while /< r do 31 35
m— | 5] 4] 37
if K = A[m| return m 5| 43
else if K<A[m]r<—m_]_ | — |6 51 P—
7
8
9

100
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BINARYSEARCH
0

Specifying BINARYSEARCH

else | «— m+1
return —1

BINARYSEARCH(A[0...n — 1, K]) (1) ;;
LA 2130
r<—n-—
while /< r do 31 35
m— | 5] 4] 37
if K = A[m| return m 5| 43
else if K<A[m]r<—m_]_ | — |6 51 P—
7
8
9

100

R. Paul Wiegand George Mason University, Department of Computer Science
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Analyzing BINARY SEARCH

m Best case:

B Key is at the midpoint in the list
B Cpesr € O(1), constant time
B Very unlikely...

m Worst case:

m Average case:
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m Best case:
B Key is at the midpoint in the list
B Cpest € O(1), constant time
B Very unlikely...

m Worst case:

m If the key is not in the list ...
L] Cworst(n) = Cworst(LgJ) +1 for n > 1, Cworst(l) =1

m Average case:
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Analyzing BINARY SEARCH

m Best case:

B Key is at the midpoint in the list
B Cpesr € O(1), constant time
B Very unlikely...

m Worst case:

m If the key is not in the list ...
| Cworst(n) = Cworst(LgJ) + 1 for n> 1, Cworst(l) =1
B By the Master Theorem: Cuorst(n) € ©(lg n)

m Average case:
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BINARYSEARCH
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Analyzing BINARY SEARCH

m Best case:

B Key is at the midpoint in the list
B Cpesr € O(1), constant time
B Very unlikely...

m Worst case:

m If the key is not in the list ...
| Cworst(n) = Cworst(LgJ) + 1 for n> 1, Cworst(l) =1
B By the Master Theorem: Cuorst(n) € ©(lg n)

m Average case:

B Not substantially worse than the worst case, actually
B Cog € O(lgn)

R. Paul Wiegand George Mason University, Department of Computer Science
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Binary Trees
@00

Binary Trees

m Binary tree, T —a finite set of nodes that is
either empty or consists of a root and two
disjoint binary trees T, and Tg, called the left
and right subtree, respectively

m Note that the very definition recursively
divides the tree into smaller, similar structures

Ty Tr

m Many tree-related problems are solved by
applying D&C methods

m In particular, many tree-related problems
require an algorithm to traverse a tree

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Binary Trees
oeo

The HEIGHT Algorithm

HEIGHT(T)

if T =( return -1
else return max{HEIGHT(T.),HEIGHT(TR)}+1

m Measure problem size by the number of nodes in a given tree, n(T)
m The counts for MAXIMUM and addition operations will be the same
m So, A(n(T)) = A(n(TL)) + A(n(Tgr)) + 1, for n(T) >0, A(0) =0
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if T =( return -1
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m The counts for MAXIMUM and addition operations will be the same
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m Can draw tree's extension by replacing empty
subtrees with special nodes
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The HEIGHT Algorithm

if T =( return -1
else return max{HEIGHT(T.),HEIGHT(TR)}+1

m Measure problem size by the number of nodes in a given tree, n(T)
m The counts for MAXIMUM and addition operations will be the same
m So, A(n(T)) = A(n(TL)) + A(n(Tgr)) + 1, for n(T) >0, A(0) =0

m Can draw tree's extension by replacing empty
subtrees with special nodes

m Special nodes are external nodes

m Original nodes are internal nodes
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Binary Trees
oeo

The HEIGHT Algorithm

if T =( return -1
else return max{HEIGHT(T.),HEIGHT(TR)}+1

m Measure problem size by the number of nodes in a given tree, n(T)
m The counts for MAXIMUM and addition operations will be the same
m So, A(n(T)) = A(n(TL)) + A(n(Tgr)) + 1, for n(T) >0, A(0) =0

m Can draw tree's extension by replacing empty
subtrees with special nodes

m Special nodes are external nodes
m Original nodes are internal nodes

m HEIGHT makes one addition per internal
How many external nodes7 does a tree node, one comparison per internal and
with n internal nodes have? external node
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Binary Trees
oeo

The HEIGHT Algorithm

if T =( return -1
else return max{HEIGHT(T.),HEIGHT(TR)}+1

m Measure problem size by the number of nodes in a given tree, n(T)
m The counts for MAXIMUM and addition operations will be the same
m So, A(n(T)) = A(n(TL)) + A(n(Tgr)) + 1, for n(T) >0, A(0) =0

m Can draw tree's extension by replacing empty
subtrees with special nodes

m Special nodes are external nodes
m Original nodes are internal nodes

m HEIGHT makes one addition per internal
How many external nodes? does a tree node, one comparison per internal and
with n internal nodes have? x =n+1 external node

R. Paul Wiegand George Mason University, Department of Computer Science
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Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root

George Mason University, Department of Computer Science
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Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root
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Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal: Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,

subtree then root

subtree
(2]
ORRO.

In general, traversals are ©(n), but not all binary tree operations
require full traversal of the tree (e.g., FIND, INSERT, etc.)

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il




Multiplication
[ ele}

Multiplication of Two-Digit Integers

m Pen-and-paper multiplication:

m If there are n digits in first integer, m in the second, this
requires nm digit multiplications

m In the worst case, n = m, so M(n) € O(n?)
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Multiplication of Two-Digit Integers

m Pen-and-paper multiplication:
m If there are n digits in first integer, m in the second, this
requires nm digit multiplications
m In the worst case, n = m, so M(n) € O(n?)
m But consider a simple 2-digit example 23 x 14:
m We can break these down by digit
m When multiplied: (2 10t +3- 100) . (1 101 + 4 - 100)
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[ ele}

Multiplication of Two-Digit Integers

m Pen-and-paper multiplication:
m If there are n digits in first integer, m in the second, this
requires nm digit multiplications
m In the worst case, n = m, so M(n) € O(n?)
m But consider a simple 2-digit example 23 x 14:
m We can break these down by digit
m When multiplied: (2 10t +3- 100) . (1 101 + 4 - 100)
m Rearranged: (2-1)10%2+ (3-1+2-4)10* + (3 -4)10°
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Multiplication
[ ele}

Multiplication of Two-Digit Integers

m Pen-and-paper multiplication:
m If there are n digits in first integer, m in the second, this

requires nm digit multiplications
In the worst case, n = m, so M(n) € O(n?)

m But consider a simple 2-digit example 23 x 14:

R. Paul Wiegand

We can break these down by digit

When multiplied: (2 10t +3- 100) . (1 101 + 4 - 100)
Rearranged: (2-1)10%+ (3-1+2-4)10 + (3-4)10°
Notice: (3-1+2-4)=(24+3)-(14+4)—(2-1)—(3-4)

George Mason University, Department of Computer Science
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Multiplication
[ ele}

Multiplication of Two-Digit Integers

m Pen-and-paper multiplication:

m If there are n digits in first integer, m in the second, this

requires nm digit multiplications

m In the worst case, n = m, so M(n) € O(n?)
m But consider a simple 2-digit example 23 x 14:

m We can break these down by digit

m When multiplied: (2 10t +3- 100) . (1 101 + 4 - 100)

m Rearranged: (2-1)10%2+ (3-1+2-4)10* + (3 -4)10°

m Notice: (3-1+2-4)=(2+3)-(1+4)—(2-1)—(3-4)
m For any pair of two-digit numbers (a = ajap, b = b1 by):

c = a'b:C2'102+C1'101+C0, where
G = a1 b

o = ap-boy

a = (a1+a0) (b1 + b)) — (&2 + )

R. Paul Wiegand George Mason University, Department of Computer Science
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Multiplication
[ ele}

Multiplication of Two-Digit Integers

m Pen-and-paper multiplication:

m If there are n digits in first integer, m in the second, this

requires nm digit multiplications

m In the worst case, n = m, so M(n) € O(n?)
m But consider a simple 2-digit example 23 x 14:

m We can break these down by digit

m When multiplied: (2 10t +3- 100) . (1 101 + 4 - 100)

m Rearranged: (2-1)10%2+ (3-1+2-4)10* + (3 -4)10°

m Notice: (3-1+2-4)=(2+3)-(1+4)—(2-1)—(3-4)
m For any pair of two-digit numbers (a = ajap, b = b1 by):

c = a'b:C2'102+C1'].01+C0, where
We saved one o — a2
multiplication! 2 = 1

G = a 0

a = (a+ ao@th + b)) — (2 + @)
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Multiplication
oeo

Multiplication of Large Integers

m We can generalize this method using D&C
m Let the digits of a and b be partitioned s.t.:
B a=aja) — a=a -10"2 + 5
m b= bby=b=by-10"2 + b
m Using the same trick:
c = a b= (al .10/ +a0) : (b1 1072 + bo)

= (31~b1)~10n—|—(31~bo+ao-b1)-10"/2+(ao~bo)
¢ 10"+ ¢ - 1072 + co, where

C = ai- b1
Cho = ao- bo
a = (ai+ao)- (b1+bo)—(c2+ co)

R. Paul Wiegand George Mason University, Department of Computer Science
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Multiplication
ooe

Divide-and-Conquer Multiplication

m Analysis of this is
straightforward:

m We count multiplications

B We divide digits in half each
time, apply multiplication
three times when combining

B Recurrence: M(n) =3M (§)
forn>1, M(1)=1

B M(n) € © (n'83 ~ n!-58)

m For small to moderate sized
input, the standard
multiplication method is faster

R. Paul Wiegand
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Multiplication
ooe

Divide-and-Conquer Multiplication

m Similar methods can be applied for

= Analysis of this is matrix multiplication (Strassen’s
straightforward: Method, in book)
m We count multiplications B Use algebra to reduce (by one) the

B We divide digits in half each

time, apply multiplication

three times when combining =
B Recurrence: M(n) =3M (§)

forn>1, M(1)=1
B M(n) € © (n'83 ~ n!-58) -

eight multiplications performed when
working with two 2 X 2 matrices
Accrue 18 addition operations, whereas
traditional matrix multiplication
requires only 4
Partition complete matrix into four
. submatrices, recursively apply method
m For small to moderate sized m Count additions

input, the standard B Recurrence: A(n) = 7A () + 18 (2)?

multiplication method is faster forn>1, A(1)=0
B A(n) € © (n'87 ~ n?8)

R. Paul Wiegand George Mason University, Department of Computer Science
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Geometrics
[ ]

D& C and the Closest Pair Problem

o
E

Order the points by x-axis
Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
split (M(n) € O(n))

m Pass the winning pair up
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D& C and the Closest Pair Problem
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Combine by checking within § of
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Geometrics
[ ]

D& C and the Closest Pair Problem

Order the points by x-axis

Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
split (M(n) € O(n))

m Pass the winning pair up
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Geometrics
[ ]

D& C and the Closest Pair Problem

Order the points by x-axis
Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
> * split (M(n) € O(n))
m Pass the winning pair up

0 2 4 6 8 10
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Geometrics
[ ]

D& C and the Closest Pair Problem

Order the points by x-axis
Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
> * split (M(n) € O(n))
Pass the winning pair up
m Recurrence: T(n) =2T (g) + M(n)
/ .\ \\ m So T(n)e?

0 2 4 6 8 10
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Geometrics
[ ]

D& C and the Closest Pair Problem

Order the points by x-axis
Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
split (M(n) € O(n))

Pass the winning pair up

m Recurrence: T(n) =2T (§) + M(n)

/ '\ \ m So T(n) € O(nlgn)
\ \ / . QUICKHULL is similar,
. see book!
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Assignments

Homework
[ ]

m This week's assignments:

Section 4.1:
Section 4.2:
Section 4.3:
Section 4.4:
Section 4.5:
Section 4.6:

*Challenge problem

R. Paul Wiegand

Problems 5, 6, and 7
Problems 1, 6, and 8
Problems 1, 3, and 6
Problems 2, 4, and 6
Problems 2 and 6
Problems 8 and 9

George Mason University, Department of Computer Science
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