CS 483 - Data Structures and Algorithm Analysis
Lecture IV: Chapter 4

R. Paul Wiegand

George Mason University, Department of Computer Science

February 15, 2006

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Outline

Outline

Introduction to Divide-And-Conquer

]

The MERGESORT Algorithm

]

The QUICKSORT Algorithm

B

The BINARYSEARCH Algorithm

&

Binary Tree Traversal
Fun With Multiplication

Geometric Problems

~ o

R. Paul Wiegand George Mason University, Department of Computer Science

Homework

CS483 Lecture Il

Introduction
@00

A General Plan for Divide-And-Conquer

Decompose a problem instance
Solve component problem instances

Combine components into composite solution

Example: > 7 ,a;

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Introduction
@00

A General Plan for Divide-And-Conquer

Decompose a problem instance
Solve component problem instances

Combine components into composite solution

Example: > 7 ,a; a0+ +ap1

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Introduction
@00

A General Plan for Divide-And-Conquer

Decompose a problem instance
Solve component problem instances

Combine components into composite solution
Example: > 7 ,a; 20 4+t an_1

ao + - ajn/2-1) alns2) T+ an1

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Introduction
@00

A General Plan for Divide-And-Conquer

Decompose a problem instance
Solve component problem instances

Combine components into composite solution

Example: > 7 ,a; g+ an1
ao+"'\ aln/2-1) %Jr\a_l
ao+--"Fajn/a-1] an/a) T Faln/2-1] a|nj2) + T 330/4—1] a|3n/4) + -+ an-

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Introduction
@00

A General Plan for Divide-And-Conquer

Decompose a problem instance
Solve component problem instances

Combine components into composite solution

Example: > 7 ,a; g+ an1
ao+"'\ aln/2-1) %Jr\a_l
ao+--"Fajn/a-1] an/a) T Faln/2-1] a|nj2) + T 330/4—1] a|3n/4) + -+ an-

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Introduction
@00

A General Plan for Divide-And-Conquer

Decompose a problem instance
Solve component problem instances

Combine components into composite solution

Example: > 7 ,a; g+ an1
ao £ ajn/2—1] alns2) £t ana1
J‘:&2/ \29—’]—- / \Ql
ao+--"Fajn/a—1] an/a) T Falnj2-1] a|nj2) + - TF 33n/4—1] a|3n/4) T+ an-

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Introduction
@00

A General Plan for Divide-And-Conquer

Decompose a problem instance
Solve component problem instances

Combine components into composite solution

Example: > 7 ,a; g+ an1
155
é'o-l-"\'2 aln/2—1| a|nj2] B+ an-1
ao+--"Fap/a—1] a|n/4 +"'-’laLn/2—1J aln/2) + T 3|30 4—1) a|3n/a) T+ an—

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Introduction
@00

A General Plan for Divide-And-Conquer

Decompose a problem instance
Solve component problem instances

Combine components into composite solution

Example: > 7 ,a; 20 588
155
2 +\2 aln/2-1 /2 B F a1
30+ aln/an1) 3pn/e) T 1 ln/2-1) 3ln/2) T 3 30/4-1) 3|3n/a) T+ A1

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Introduction
oeo

Some Comments about Divide-and-Conquer

m s this D&C example more efficient than brute force?

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Introduction
oeo

Some Comments about Divide-and-Conquer

m s this D&C example more efficient than brute force?
No ... it is ©(n)

m Divide-and-conquer is not necessarily superior ...

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Introduction
oeo

Some Comments about Divide-and-Conquer

m s this D&C example more efficient than brute force?
No ... it is ©(n)

Divide-and-conquer is not necessarily superior ...

But many times it is, and many of the most efficient
algorithms in CS are D&C

D&C typically involves recursion (at least conceptually)

D&.C is well-suited for parallelization

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Introduction
ooe

The Master Theorem

m More generally, a problem of size n can be partitioned into a
instances of non-overlapping components of size 7 such that a > 1
and b > 1 (* we assume n is a power of b for simplicity)

m Given this, the general divide-and-conquer recurrence can be defined
as: T(n):=aT (4) +f(n)

m This generalization allows us an analysis short-cut:

Master Theorem

If £(n) € ©(n) where d > 0 in the gen-
eral divide-and-conquer recurrence then

O(n9) if a < b9

T(n)e{ O(n?lgn) if a= b
O(nE7) if a> be

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Introduction
ooe

The Master Theorem

m More generally, a problem of size n can be partitioned into a
instances of non-overlapping components of size 7 such that a > 1
and b > 1 (* we assume n is a power of b for simplicity)

m Given this, the general divide-and-conquer recurrence can be defined
as: T(n):=aT (4) +f(n)

m This generalization allows us an analysis short-cut:

Master Theorem For example:

If £(n) € ©(n?) where d > 0 in the gen- ™ Recurrence for addition:
eral divide-and-conquer recurrence then A(n) = 2A(n/2) +1

O(n9) if a < b9
T(n)e{ O(n?lgn) if a= b
O(nE7) if a> be

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Introduction
ooe

The Master Theorem

m More generally, a problem of size n can be partitioned into a
instances of non-overlapping components of size 7 such that a > 1
and b > 1 (* we assume n is a power of b for simplicity)

m Given this, the general divide-and-conquer recurrence can be defined
as: T(n):=aT (4) +f(n)

m This generalization allows us an analysis short-cut:

Master Theorem For example:

If £(n) € ©(n?) where d > 0 in the gen- ™ Recurrence for addition:
eral divide-and-conquer recurrence then A(n) = 2A(n/2) +1
o(n?) i 2 < b m Since f(n) =1, it is in ©(n°)
n i
T(n)e < O(nelgn) ifa= b mSoa=2 b=2andd=0
O(n'°es3) if a > b4

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Introduction
ooe

The Master Theorem

m More generally, a problem of size n can be partitioned into a
instances of non-overlapping components of size 7 such that a > 1
and b > 1 (* we assume n is a power of b for simplicity)

m Given this, the general divide-and-conquer recurrence can be defined
as: T(n):=aT (4) +f(n)

m This generalization allows us an analysis short-cut:

Master Theorem For example:

If £(n) € ©(n?) where d > 0 in the gen- ™ Recurrence for addition:
eral divide-and-conquer recurrence then A(n) = 2A(n/2) +1

m Since f(n) =1, it is in ©(n°)

O(n9) if a < b?
T(n)e < O(nelgn) ifa= b mSoa=2 b=2andd=0
log, a H d
Sl Hasb m Since a> b?, A(n) € ?

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Introduction
ooe

The Master Theorem

m More generally, a problem of size n can be partitioned into a
instances of non-overlapping components of size 7 such that a > 1
and b > 1 (* we assume n is a power of b for simplicity)

m Given this, the general divide-and-conquer recurrence can be defined
as: T(n):=aT (4) +f(n)

m This generalization allows us an analysis short-cut:

Master Theorem For example:

If £(n) € ©(n?) where d > 0 in the gen- ™ Recurrence for addition:
eral divide-and-conquer recurrence then A(n) = 2A(n/2) +1

m Since f(n) =1, it is in ©(n°)

O(n9) if a < b?
T(n)e < O(nelgn) ifa= b mSoa=2 b=2andd=0
log, a H d
S asb m Since a > b9, A(n) € O(n%2) = O(n)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
©000

Specifying MERGESORT

MERGESORT(A[0...n — 1])

if n>1
B[0...|n/2] —1] «— A[0...|n/2] —1]
Cl0...[n/2] —=1] «—c A[|n/2]...n—1]
MERGESORT(B)
MERGESORT(C)
MERGE(B,C,A)

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

MERGESORT
©000

Specifying MERGESORT

MERGESORT(A[0...n — 1])

if n>1
B[0...|n/2] —1] «— A[0...|n/2] —1]
Cl0...[n/2] —=1] «—c A[|n/2]...n—1]
MERGESORT(B)
MERGESORT(C)

SR (v (B0...p— 1], C0...q— 1), AD...p+q— 1))

i,j, k0
while /i < p and j < g do
if B[i] < C[j] Alk] <— BIi]; i ++
else Alk] — C[j]; j++
k + +
if i=pAk...p+qg—1] «—C[j...q—1]
else Alk...p+qg—1] «—c Bli...p—1]

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

MERGESORT
000

Merging Two Sorted Lists

olo| w0

ol ~N|o| o~ T

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
000

Merging Two Sorted Lists

B A C
1 1 j— 13
2 | —i 4
5 6
7 9
8

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
000

Merging Two Sorted Lists

B A C
1 1 j— 13
2 2 4
5 | «i 6
7 9
8

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
000

Merging Two Sorted Lists

Jj—

W N+~ D

Olo| w0

ol ~N|o| o~ T

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
000

Merging Two Sorted Lists

AWINRD
Ol o | WA

ol ~N|o| o~ T

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
000

Merging Two Sorted Lists

olo| w0

ol ~N|o| o~ T
gl slw R D

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
000

Merging Two Sorted Lists

olo| w0

Jj—

ol ~N|o| o~ T

o|a| & w| |~ D>

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
000

Merging Two Sorted Lists

Ol Wl O

Jj—

ol ~N|o| o~ T

~N|ola|slwi R D

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
000

Merging Two Sorted Lists

Ol Wl O

Jj—

ol ~N|o| o~ T

o N o g K| w| | —| D

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
000

Merging Two Sorted Lists

olo| w0

ol ~N|o| o~ T

O~ G| W N —D

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
000

Merging Two Sorted Lists

olo| w0

ol ~N|o| o~ T

O~ G| W N —D

How many comparisons?

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
000

Merging Two Sorted Lists

olo| w0

ol ~N|o| o~ T

O~ G| W N —D

How many comparisons?
n—1

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Decomposing & Combining

Decomposing... 87516324

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
foYe] Yo

Decomposing & Combining

Decomposing... 875163024

T~

875 6324

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
foYe] Yo

Decomposing & Combining

Decomposing... 875163024

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
foYe] Yo

Decomposing & Combining

Decomposing...

)

87516324

-
\/4

8/8\7 /6 3 2 \4

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
foYe] Yo

Decomposing & Combining

Combining...

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Combining...

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

\3 / Combining...
12345678

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
oooe

Analyzing MERGESORT

m We count key comparisons

m Assume wlog that n is a power of 2

m C(n)=2C(n/2)+ M(n), n>1,C(1)=0
m Applying the Mater Theorem:

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
oooe

Analyzing MERGESORT

m We count key comparisons
m Assume wlog that n is a power of 2
m C(n)=2C(n/2)+ M(n), n>1,C(1)=0
m Applying the Mater Theorem:
ma=2 b=2

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
oooe

Analyzing MERGESORT

m We count key comparisons

m Assume wlog that n is a power of 2

m C(n)=2C(n/2)+ M(n), n>1,C(1)=0
m Applying the Mater Theorem:

ma=2 b=2
m In worst case: M(n) € ©(n'),sod =1

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
oooe

Analyzing MERGESORT

m We count key comparisons
m Assume wlog that n is a power of 2
m C(n)=2C(n/2)+ M(n), n>1,C(1)=0
m Applying the Mater Theorem:
ma=2 b=2

m In worst case: M(n) € ©(n'),sod =1
ma=b?s0.7?

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

MERGESORT
oooe

Analyzing MERGESORT

m We count key comparisons
m Assume wlog that n is a power of 2
m C(n)=2C(n/2)+ M(n), n>1,C(1)=0
m Applying the Mater Theorem:
ma=2 b=2
In worst case: M(n) € ©(n'),so d =1

"
ma=b? 0.7
[]

C(n) € ©(nlgn)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
€000

Specifying QUICKSORT

QUICKSORT(A[/...r])

if [>r
s «— PARTITION(A[/. .. r])
QUICKSORT(A[/...s — 1)
QUICKSORT(A[s+1...r)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
€000

Specifying QUICKSORT

QUICKSORT(A[/. .. r])

if I>r
s «— PARTITION(A[/..... r]) PARTITION(A[/ ... r])
QUICKSORT(A[/...s — 1) ALl
QUICKSORT(A[s +1...r) ip ‘_l [/

je—r+1

repeat
repeat i+ + until p > A[/]
repeat j — — until p < A[j]
Swap(A[i], A[j])

until />

Swap(A[i], A[j])

Swap(A[/], A[j])

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
0®00

PARTITION

AN W O R0 NG D

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
0®00

PARTITION

BN W O R| oo NG D

R. Paul Wiegand

George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
0®00

PARTITION

AN W O R| oo NG D

R. Paul Wiegand

George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
0®00

PARTITION

~N|[N w| oo oD

R. Paul Wiegand

George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
0®00

PARTITION

~N|[N w| oo oD

R. Paul Wiegand

George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
0®00

PARTITION

~N|[N w| oo oD

R. Paul Wiegand

George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
0®00

PARTITION

~N|oo|w|lo| RN oD

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
0®00

PARTITION

~N|oo|w|lo| RN oD

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
0®00

PARTITION

~|oo|w|lo| RN oD

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
0®00

PARTITION

~N|oo|w|lo| RN oD

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
0®00

PARTITION

~N|oo|o|w| Rk N oD

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
0®00

PARTITION

~N|oo|o|w| Rk N oD

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
0®00

PARTITION

~N|joo|o|w| RN oD

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
0®00

PARTITION

~N| oo G| = o] | W D

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
0®00

PARTITION

How many comparisons?

~N| oo G| = o] | W D

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
0®00

PARTITION

How many comparisons?

—i n

~N| oo G| = o] | W D

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Decomposing & Combining

Decomposing... 57816324

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
00®0

Decomposing & Combining

Decomposing... 57816324

342 5\687

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
00®0

Decomposing & Combining

Decomposing... 57816324

AN

1 3 4

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
0000

Decomposing & Combining

Decomposing... 57816324
N AN
1\2 °

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
00®0

Decomposing & Combining

57816324
3 \ 5\687
1 3 4 6 7
1\2 8
12345678 Combining...

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
00®0

Decomposing & Combining

57816324
3 \ 5\687
1 3 4 6 7
1\2 8
12345678 Combining...

(It's already combined!)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
foleleY }

Analyzing QUICKSORT

In QUICKSORT, the size of the split depends on the result of the
PARTITION function...

m Best case:

m Worst case:

m Average case:

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
foleleY }

Analyzing QUICKSORT

In QUICKSORT, the size of the split depends on the result of the
PARTITION function...

m Best case:
m lIdeally, the partition splits the sublist in half
] Cbest(n) = 2Cbest(n/2) +nforn>1, Cbest(l) =0

m Worst case:

m Average case:

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
ocooe

Analyzing QUICKSORT

In QUICKSORT, the size of the split depends on the result of the
PARTITION function...

m Best case:
m lIdeally, the partition splits the sublist in half
B Chest(n) = 2Chest(n/2) 4+ n for n > 1, Cpest(1) =0
m By the Master Theorem: Cpes:(n) € ©(nlgn)

m Worst case:

m Average case:

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
foleleY }

Analyzing QUICKSORT

In QUICKSORT, the size of the split depends on the result of the
PARTITION function...

m Best case:
m lIdeally, the partition splits the sublist in half
B Chest(n) = 2Chest(n/2) 4+ n for n > 1, Cpest(1) =0
m By the Master Theorem: Cpes:(n) € ©(nlgn)
m Worst case:
B But the partition might split only one item in the sublist...
B This happens when the sublist is already in increasing order
B This degenerates the tree into a list, pulling one item at a time and
calling PARTITION on the remaining n — 1 items

m Average case:

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

QUICKSORT
foleleY }

Analyzing QUICKSORT

In QUICKSORT, the size of the split depends on the result of the
PARTITION function...

m Best case:
m lIdeally, the partition splits the sublist in half
B Chest(n) = 2Chest(n/2) 4+ n for n > 1, Cpest(1) =0
m By the Master Theorem: Cpes:(n) € ©(nlgn)
m Worst case:
B But the partition might split only one item in the sublist...
B This happens when the sublist is already in increasing order
B This degenerates the tree into a list, pulling one item at a time and
calling PARTITION on the remaining n — 1 items
B Cuorst(n) =(n+1)+n+(n—1)+---3 € 0(n?)
m Average case:

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
foleleY }

Analyzing QUICKSORT

In QUICKSORT, the size of the split depends on the result of the
PARTITION function...

m Best case:
m lIdeally, the partition splits the sublist in half
] Cbest(n) = 2Cbest(n/2) +nforn>1, Cbest(l) =0
m By the Master Theorem: Cpes:(n) € ©(nlgn)
m Worst case:
B But the partition might split only one item in the sublist...
B This happens when the sublist is already in increasing order
B This degenerates the tree into a list, pulling one item at a time and
calling PARTITION on the remaining n — 1 items
B Cuorst(n) =(n+1)+n+(n—1)+---3 € 0(n?)
m Average case:
B Assume the partition is unbiased wrt position
B sc[0,n—1],Pr{s} = %Vs
B Cog(n) = 2305 [(n+1) + Cavg(s) + Cag(n — 1 = 5)],

n

Cavg(o) =0, Cavg(l) =0

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
foleleY }

Analyzing QUICKSORT

In QUICKSORT, the size of the split depends on the result of the
PARTITION function...

m Best case:
m lIdeally, the partition splits the sublist in half
] Cbest(n) = 2Cbest(n/2) +nforn>1, Cbest(l) =0
m By the Master Theorem: Cpes:(n) € ©(nlgn)
m Worst case:
B But the partition might split only one item in the sublist...
B This happens when the sublist is already in increasing order
B This degenerates the tree into a list, pulling one item at a time and
calling PARTITION on the remaining n — 1 items
B Cuorst(n) =(n+1)+n+(n—1)+---3 € 0(n?)
m Average case:
B Assume the partition is unbiased wrt position
B sc[0,n—1],Pr{s} = %Vs
B Cog(n) = 2305 [(n+1) + Cavg(s) + Cag(n — 1 = 5)],
Cag(0) =0, Gag(1l) =0
B Cag € O(ninn)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

QUICKSORT
ocooe

Analyzing QUICKSORT

In QUICKSORT, the size of the split depends on the result of the
PARTITION function...

m Best case:
m lIdeally, the partition splits the sublist in half
B Chest(n) = 2Chest(n/2) 4+ n for n > 1, Cpest(1) =0
m By the Master Theorem: Cpes:(n) € ©(nlgn)
m Worst case:
B But the partition might split only one item in the sublist...
B This happens when the sublist is already in increasing order
B This degenerates the tree into a list, pulling one item at a time and
calling PARTITION on the remaining n — 1 items
B Cuorst(n) =(n+1)+n+(n—1)+---3 € 0(n?)

m Average case: Some fixes include:
B Assume the partition is unbiased wrt position Randomizing input order
msc[0,n—1],Pr{s} = %Vs median-of-three partitioning

B Cag(n) =200 [(n+1) + Cavg(s) + Cag(n —1—5)],

Cavg(o) =0, Cavg(l) =0
m Cog € O(ninn)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

BINARYSEARCH
0

Specifying BINARYSEARCH

BINARYSEARCH(A[0...n —1,K])

/—0

r«—n-—1

while / <r do
m — [5]
if K =A[m] return m
else if K <A[mlr«— m-—1
else [«— m+1

return —1

37 | Fm

OO N OO B W DN RO
N
w

100 | «—r

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

BINARYSEARCH
0

Specifying BINARYSEARCH

return —1

BINARYSEARCH(A[0...n — 1, K]) (1) ;;
0 2] 30
r—n-—1
while /< r do 3135
m— || L
if K = A[m| return m [— | 5] 43
else if K <A[mlr«— m-—1 6| 51
else [«— m+1 m-17]| 64
8
9

100 | «—r

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

BINARYSEARCH
0

Specifying BINARYSEARCH

else if K <A[mlr«— m-—1
else | «— m+1
return —1

BINARYSEARCH(A[0...n — 1, K]) (1) ;;
LA 2130
r<—n-—
while /< r do 31 35
m— | 5] 4137
if K = A[m| return m | — 5] 43 | Fm
6
7
8
9

100

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

BINARYSEARCH
0

Specifying BINARYSEARCH

else | «— m+1
return —1

BINARYSEARCH(A[0...n — 1, K]) (1) ;;
LA 2130
r<—n-—
while /< r do 31 35
m— | 5] 4] 37
if K = A[m| return m 5| 43
else if K<A[m]r<—m_]_ | — |6 51 P—
7
8
9

100

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

BINARYSEARCH
0

Specifying BINARYSEARCH

else | «— m+1
return —1

BINARYSEARCH(A[0...n — 1, K]) (1) ;;
LA 2130
r<—n-—
while /< r do 31 35
m— | 5] 4] 37
if K = A[m| return m 5| 43
else if K<A[m]r<—m_]_ | — |6 51 P—
7
8
9

100

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Analyzing BINARY SEARCH

m Best case:

B Key is at the midpoint in the list
B Cpesr € O(1), constant time
B Very unlikely...

m Worst case:

m Average case:

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

BINARYSEARCH
oe

Analyzing BINARY SEARCH

m Best case:
B Key is at the midpoint in the list
B Cpest € O(1), constant time
B Very unlikely...

m Worst case:

m If the key is not in the list ...
L] Cworst(n) = Cworst(LgJ) +1 for n > 1, Cworst(l) =1

m Average case:

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

BINARYSEARCH
oe

Analyzing BINARY SEARCH

m Best case:

B Key is at the midpoint in the list
B Cpesr € O(1), constant time
B Very unlikely...

m Worst case:

m If the key is not in the list ...
| Cworst(n) = Cworst(LgJ) + 1 for n> 1, Cworst(l) =1
B By the Master Theorem: Cuorst(n) € ©(lg n)

m Average case:

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

BINARYSEARCH
oe

Analyzing BINARY SEARCH

m Best case:

B Key is at the midpoint in the list
B Cpesr € O(1), constant time
B Very unlikely...

m Worst case:

m If the key is not in the list ...
| Cworst(n) = Cworst(LgJ) + 1 for n> 1, Cworst(l) =1
B By the Master Theorem: Cuorst(n) € ©(lg n)

m Average case:

B Not substantially worse than the worst case, actually
B Cog € O(lgn)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Binary Trees
@00

Binary Trees

m Binary tree, T —a finite set of nodes that is
either empty or consists of a root and two
disjoint binary trees T, and Tg, called the left
and right subtree, respectively

m Note that the very definition recursively
divides the tree into smaller, similar structures

Ty Tr

m Many tree-related problems are solved by
applying D&C methods

m In particular, many tree-related problems
require an algorithm to traverse a tree

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Binary Trees
oeo

The HEIGHT Algorithm

HEIGHT(T)

if T =(return -1
else return max{HEIGHT(T.),HEIGHT(TR)}+1

m Measure problem size by the number of nodes in a given tree, n(T)
m The counts for MAXIMUM and addition operations will be the same
m So, A(n(T)) = A(n(TL)) + A(n(Tgr)) + 1, for n(T) >0, A(0) =0

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Binary Trees
oeo

The HEIGHT Algorithm

HEIGHT(T)

if T =(return -1
else return max{HEIGHT(T.),HEIGHT(TR)}+1

m Measure problem size by the number of nodes in a given tree, n(T)
m The counts for MAXIMUM and addition operations will be the same
m So, A(n(T)) = A(n(TL)) + A(n(Tgr)) + 1, for n(T) >0, A(0) =0

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Binary Trees
oeo

The HEIGHT Algorithm

HEIGHT(T)

if T =(return -1
else return max{HEIGHT(T.),HEIGHT(TR)}+1

m Measure problem size by the number of nodes in a given tree, n(T)
m The counts for MAXIMUM and addition operations will be the same
m So, A(n(T)) = A(n(TL)) + A(n(Tgr)) + 1, for n(T) >0, A(0) =0

m Can draw tree's extension by replacing empty
subtrees with special nodes

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Binary Trees
oeo

The HEIGHT Algorithm

if T =(return -1
else return max{HEIGHT(T.),HEIGHT(TR)}+1

m Measure problem size by the number of nodes in a given tree, n(T)
m The counts for MAXIMUM and addition operations will be the same
m So, A(n(T)) = A(n(TL)) + A(n(Tgr)) + 1, for n(T) >0, A(0) =0

m Can draw tree's extension by replacing empty
subtrees with special nodes

m Special nodes are external nodes

m Original nodes are internal nodes

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Binary Trees
oeo

The HEIGHT Algorithm

if T =(return -1
else return max{HEIGHT(T.),HEIGHT(TR)}+1

m Measure problem size by the number of nodes in a given tree, n(T)
m The counts for MAXIMUM and addition operations will be the same
m So, A(n(T)) = A(n(TL)) + A(n(Tgr)) + 1, for n(T) >0, A(0) =0

m Can draw tree's extension by replacing empty
subtrees with special nodes

m Special nodes are external nodes
m Original nodes are internal nodes

m HEIGHT makes one addition per internal
How many external nodes7 does a tree node, one comparison per internal and
with n internal nodes have? external node

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Binary Trees
oeo

The HEIGHT Algorithm

if T =(return -1
else return max{HEIGHT(T.),HEIGHT(TR)}+1

m Measure problem size by the number of nodes in a given tree, n(T)
m The counts for MAXIMUM and addition operations will be the same
m So, A(n(T)) = A(n(TL)) + A(n(Tgr)) + 1, for n(T) >0, A(0) =0

m Can draw tree's extension by replacing empty
subtrees with special nodes

m Special nodes are external nodes
m Original nodes are internal nodes

m HEIGHT makes one addition per internal
How many external nodes? does a tree node, one comparison per internal and
with n internal nodes have? x =n+1 external node

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal. Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,
subtree subtree then root

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

Binary Trees
ooce

Different Kinds of Tree Traversal

Preorder traversal: Inorder traversal: Preorder traversal:
Visit root, then left Visit left subtree, Visit left subtree,
subtree, then right then root, then right then right subtree,

subtree then root

subtree
(2]
ORRO.

In general, traversals are ©(n), but not all binary tree operations
require full traversal of the tree (e.g., FIND, INSERT, etc.)

George Mason University, Department of Computer Science

R. Paul Wiegand
CS483 Lecture Il

Multiplication
[ele}

Multiplication of Two-Digit Integers

m Pen-and-paper multiplication:

m If there are n digits in first integer, m in the second, this
requires nm digit multiplications

m In the worst case, n = m, so M(n) € O(n?)

R. Paul Wiegand George Mason University, Department of Computer Science
CS483 Lecture Il

Multiplication
[ele}

Multiplication of Two-Digit Integers

m Pen-and-paper multiplication:
m If there are n digits in first integer, m in the second, this
requires nm digit multiplications
m In the worst case, n = m, so M(n) € O(n?)
m But consider a simple 2-digit example 23 x 14:
m We can break these down by digit
m When multiplied: (2 10t +3- 100) . (1 101 + 4 - 100)

R. Paul Wiegand
CS483 Lecture Il

George Mason University, Department of Computer Science

Multiplication
[ele}

Multiplication of Two-Digit Integers

m Pen-and-paper multiplication:
m If there are n digits in first integer, m in the second, this
requires nm digit multiplications
m In the worst case, n = m, so M(n) € O(n?)
m But consider a simple 2-digit example 23 x 14:
m We can break these down by digit
m When multiplied: (2 10t +3- 100) . (1 101 + 4 - 100)
m Rearranged: (2-1)10%2+ (3-1+2-4)10* + (3 -4)10°

R. Paul Wiegand
CS483 Lecture Il

George Mason University, Department of Computer Science

Multiplication
[ele}

Multiplication of Two-Digit Integers

m Pen-and-paper multiplication:
m If there are n digits in first integer, m in the second, this

requires nm digit multiplications
In the worst case, n = m, so M(n) € O(n?)

m But consider a simple 2-digit example 23 x 14:

R. Paul Wiegand

We can break these down by digit

When multiplied: (2 10t +3- 100) . (1 101 + 4 - 100)
Rearranged: (2-1)10%+ (3-1+2-4)10 + (3-4)10°
Notice: (3-1+2-4)=(24+3)-(14+4)—(2-1)—(3-4)

George Mason University, Department of Computer Science

CS483 Lecture Il

Multiplication
[ele}

Multiplication of Two-Digit Integers

m Pen-and-paper multiplication:

m If there are n digits in first integer, m in the second, this

requires nm digit multiplications

m In the worst case, n = m, so M(n) € O(n?)
m But consider a simple 2-digit example 23 x 14:

m We can break these down by digit

m When multiplied: (2 10t +3- 100) . (1 101 + 4 - 100)

m Rearranged: (2-1)10%2+ (3-1+2-4)10* + (3 -4)10°

m Notice: (3-1+2-4)=(2+3)-(1+4)—(2-1)—(3-4)
m For any pair of two-digit numbers (a = ajap, b = b1 by):

c = a'b:C2'102+C1'101+C0, where
G = a1 b

o = ap-boy

a = (a1+a0) (b1 + b)) — (&2 +)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Multiplication
[ele}

Multiplication of Two-Digit Integers

m Pen-and-paper multiplication:

m If there are n digits in first integer, m in the second, this

requires nm digit multiplications

m In the worst case, n = m, so M(n) € O(n?)
m But consider a simple 2-digit example 23 x 14:

m We can break these down by digit

m When multiplied: (2 10t +3- 100) . (1 101 + 4 - 100)

m Rearranged: (2-1)10%2+ (3-1+2-4)10* + (3 -4)10°

m Notice: (3-1+2-4)=(2+3)-(1+4)—(2-1)—(3-4)
m For any pair of two-digit numbers (a = ajap, b = b1 by):

c = a'b:C2'102+C1'].01+C0, where
We saved one o — a2
multiplication! 2 = 1

G = a 0

a = (a+ ao@th + b)) — (2 + @)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Multiplication
oeo

Multiplication of Large Integers

m We can generalize this method using D&C
m Let the digits of a and b be partitioned s.t.:
B a=aja) — a=a -10"2 + 5
m b= bby=b=by-10"2 + b
m Using the same trick:
c = a b= (al .10/ +a0) : (b1 1072 + bo)

= (31~b1)~10n—|—(31~bo+ao-b1)-10"/2+(ao~bo)
¢ 10"+ ¢ - 1072 + co, where

C = ai- b1
Cho = ao- bo
a = (ai+ao)- (b1+bo)—(c2+ co)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Multiplication
ooe

Divide-and-Conquer Multiplication

m Analysis of this is
straightforward:

m We count multiplications

B We divide digits in half each
time, apply multiplication
three times when combining

B Recurrence: M(n) =3M (§)
forn>1, M(1)=1

B M(n) € © (n'83 ~ n!-58)

m For small to moderate sized
input, the standard
multiplication method is faster

R. Paul Wiegand
CS483 Lecture Il

George Mason University, Department of Computer Science

Multiplication
ooe

Divide-and-Conquer Multiplication

m Similar methods can be applied for

= Analysis of this is matrix multiplication (Strassen’s
straightforward: Method, in book)
m We count multiplications B Use algebra to reduce (by one) the

B We divide digits in half each

time, apply multiplication

three times when combining =
B Recurrence: M(n) =3M (§)

forn>1, M(1)=1
B M(n) € © (n'83 ~ n!-58) -

eight multiplications performed when
working with two 2 X 2 matrices
Accrue 18 addition operations, whereas
traditional matrix multiplication
requires only 4
Partition complete matrix into four
. submatrices, recursively apply method
m For small to moderate sized m Count additions

input, the standard B Recurrence: A(n) = 7A () + 18 (2)?

multiplication method is faster forn>1, A(1)=0
B A(n) € © (n'87 ~ n?8)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Geometrics
[]

D& C and the Closest Pair Problem

o
E

Order the points by x-axis
Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
split (M(n) € O(n))

m Pass the winning pair up

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Geometrics
[]

D& C and the Closest Pair Problem

o
E

Order the points by x-axis
Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
split (M(n) € O(n))

m Pass the winning pair up

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Geometrics
[]

D& C and the Closest Pair Problem

o
E

Order the points by x-axis
Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
split (M(n) € O(n))

m Pass the winning pair up

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Geometrics
[]

D& C and the Closest Pair Problem

Order the points by x-axis
Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
split (M(n) € O(n))

m Pass the winning pair up

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Geometrics
[]

D& C and the Closest Pair Problem

Order the points by x-axis
Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
split (M(n) € O(n))

m Pass the winning pair up

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Geometrics
[]

D& C and the Closest Pair Problem

o
E

Order the points by x-axis
Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
split (M(n) € O(n))

m Pass the winning pair up

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Geometrics
[]

D& C and the Closest Pair Problem

o
E

Order the points by x-axis
Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
split (M(n) € O(n))

m Pass the winning pair up

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Geometrics
[]

D& C and the Closest Pair Problem

o
E

Order the points by x-axis
Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
split (M(n) € O(n))

m Pass the winning pair up

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Geometrics
[]

D& C and the Closest Pair Problem

Order the points by x-axis
Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
split (M(n) € O(n))

m Pass the winning pair up

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Geometrics
[]

D& C and the Closest Pair Problem

Order the points by x-axis

Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
split (M(n) € O(n))

m Pass the winning pair up

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Geometrics
[]

D& C and the Closest Pair Problem

Order the points by x-axis
Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
> * split (M(n) € O(n))
m Pass the winning pair up

0 2 4 6 8 10

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Geometrics
[]

D& C and the Closest Pair Problem

Order the points by x-axis
Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
> * split (M(n) € O(n))
Pass the winning pair up
m Recurrence: T(n) =2T (g) + M(n)
/ .\ \\ m So T(n)e?

0 2 4 6 8 10

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Geometrics
[]

D& C and the Closest Pair Problem

Order the points by x-axis
Recursively partition points

Find closest pair of 2 or 3 points

Combine by checking within § of
split (M(n) € O(n))

Pass the winning pair up

m Recurrence: T(n) =2T (§) + M(n)

/ '\ \ m So T(n) € O(nlgn)
\ \ / . QUICKHULL is similar,
. see book!

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il

Assignments

Homework
[]

m This week's assignments:

Section 4.1:
Section 4.2:
Section 4.3:
Section 4.4:
Section 4.5:
Section 4.6:

*Challenge problem

R. Paul Wiegand

Problems 5, 6, and 7
Problems 1, 6, and 8
Problems 1, 3, and 6
Problems 2, 4, and 6
Problems 2 and 6
Problems 8 and 9

George Mason University, Department of Computer Science

CS483 Lecture Il

	Outline
	Introduction to Divide-And-Conquer
	The MergeSort Algorithm
	The QuickSort Algorithm
	The BinarySearch Algorithm
	Binary Tree Traversal
	Fun With Multiplication
	Geometric Problems
	Homework

