Outline		DFS & BFS 000	

CS 483 - Data Structures and Algorithm Analysis Lecture V: Chapter 5, part 1

R. Paul Wiegand

George Mason University, Department of Computer Science

February 22, 2006

George Mason University, Department of Computer Science

Outline		DFS & BFS 000	
Outline			

1 Introduction to Decrease-And-Conquer

- 2 The INSERTIONSORT Algorithm
- 3 Depth-First and Breadth-First Searching

4 Homework

George Mason University, Department of Computer Science

Outline	Introduction ●○	DFS & BFS 000	

Decrease-And-Conquer

- Decrease-and-conquer exploits the relationship between a solution to a given problem instance and a solution to a smaller instance of the same problem
- Divide-and-conquer attempts to solve separate pieces of the problem, then combine the pieces into an answer, while Decrease-and-conquer attempts to say something about the total solution in terms of the solution to the smaller piece
- Can be approached top-down (recursively) or bottom-up
- Three variations:

decrease by a constant — Each iteration, the size of a problem instance is reduced by a constant (e.g., n-1)

decrease by a constant *factor* — Each iteration, the size of a problem instance is reduced by a constant factor (e.g., $\frac{n}{2}$)

variable size decrease — The reduction pattern varies with each iteration (e.g., Euclid)

Outline	Introduction 0•	DFS & BFS 000	

Simple Examples of Decrease-and-Conquer

Consider the problem of computing $f(n) = a^n$:

Decrease by a constant:

$$f(n) = \begin{cases} f(n-1) \cdot a & \text{if } n > 1 \\ a & \text{if } n = 1 \end{cases}$$

Decrease by a constant factor:

$$a^{n} = \begin{cases} \left(a^{n/2}\right)^{2} & \text{if } n > 0 \text{ is even} \\ \left(a^{(n-1)/2}\right)^{2} \cdot a & \text{if } n > 1 \text{ is odd} \\ a & \text{if } n = 1 \end{cases}$$

ৰ্চা > ব্টা> ব্টা> ব্টা> ব্টা> ট্রা> বি George Mason University, Department of Computer Science

Outline	Introduction 00	DFS & BFS 000	

Simple Examples of Decrease-and-Conquer

Consider the problem of computing $f(n) = a^n$:

Decrease by a constant:

$$f(n) = \begin{cases} f(n-1) \cdot a & \text{if } n > 1 \\ a & \text{if } n = 1 \end{cases}$$

 \star Decrease by a constant factor:

$$a^{n} = \begin{cases} \left(a^{n/2}\right)^{2} & \text{if } n > 0 \text{ is even} \\ \left(a^{(n-1)/2}\right)^{2} \cdot a & \text{if } n > 1 \text{ is odd} \\ a & \text{if } n = 1 \end{cases}$$

- ★ We are *not* solving *each piece*
- ★ We are using knowledge about how the solution to the piece relates to the whole problem
- $\star O(\lg n)$

Outline	InsertionSort •00	DFS & BFS 000	

イロト イヨト イヨト イヨト George Mason University, Department of Computer Science

2

Outline	INSERTIONSORT	DFS & BFS	
	000		

George Mason University, Department of Computer Science

(4回) (4回) (4回)

э

Outline	InsertionSort •00	DFS & BFS 000	

イロト イヨト イヨト イヨト George Mason University, Department of Computer Science

э

Outline	InsertionSort •••	DFS & BFS 000	

INSERTIONSORT($A[0 \dots n-1]$) v = 50Α 21 for $i \leftarrow 1$ to n-1 do $v \leftarrow A[i]$ $i \leftarrow i - 1$ 69 while $j \ge 0$ and A[j] > v do 59 $A[i+1] \leftarrow A[i]$ 87 $j \leftarrow j - 1$ 47 $A[i+1] \leftarrow v$

・ロト ・聞ト ・ヨト ・ヨト George Mason University, Department of Computer Science

э.

Outline	INSERTIONSORT	DFS & BFS	
	000		

INSERTIONSORT
$$(A[0...n-1])$$

for $i \leftarrow 1$ to $n-1$ do
 $v \leftarrow A[i]$
 $j \leftarrow i-1$
while $j \ge 0$ and $A[j] > v$ do
 $A[j+1] \leftarrow A[j]$
 $j \leftarrow j-1$
 $A[j+1] \leftarrow v$
 $j \leftarrow i$

イロト イヨト イヨト イヨト George Mason University, Department of Computer Science

2

Outline	InsertionSort ●00	DFS & BFS 000	

INSERTIONSORT($A[0 \dots n-1]$)

for
$$i \longleftarrow 1$$
 to $n-1$ do
 $v \longleftarrow A[i]$
 $j \longleftarrow i-1$
while $j \ge 0$ and $A[j] > v$ do
 $A[j+1] \longleftarrow A[j]$
 $j \longleftarrow j-1$
 $A[j+1] \longleftarrow v$

$$j \longrightarrow \begin{bmatrix} \mathbf{A} \\ 21 \\ 50 \\ \hline 69 \\ 87 \\ 47 \end{bmatrix} \longleftarrow \mathbf{i}$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ George Mason University, Department of Computer Science

æ

Outline	INSERTIONSORT	DFS & BFS	
	000		

INSERTION SORT
$$(A[0...n-1])$$

for $i \leftarrow 1$ to $n-1$ do
 $v \leftarrow A[i]$
 $j \leftarrow i-1$
while $j \ge 0$ and $A[j] > v$ do
 $A[j+1] \leftarrow A[j]$
 $j \leftarrow j-1$
 $A[j+1] \leftarrow v$
 $j \longrightarrow \begin{bmatrix} A \\ 21 \\ 50 \\ 59 \\ 69 \\ 87 \\ 47 \end{bmatrix} \leftarrow i$

イロト イヨト イヨト イヨト George Mason University, Department of Computer Science

э

Outline	InsertionSort ●00	DFS & BFS 000	

INSERTIONSORT(
$$A[0...n-1]$$
)
for $i \leftarrow 1$ to $n-1$ do
 $v \leftarrow A[i]$
 $j \leftarrow i-1$
while $j \ge 0$ and $A[j] > v$ do
 $A[j+1] \leftarrow A[j]$
 $j \leftarrow j-1$
 $A[j+1] \leftarrow v$
 $j \longrightarrow \begin{array}{c} \mathbf{A} \\ 21 \\ 50 \\ 69 \\ 69 \\ 87 \\ 47 \end{array} \leftarrow \mathbf{i}$

George Mason University, Department of Computer Science

∃ > э

Outline	InsertionSort •00	DFS & BFS 000	

George Mason University, Department of Computer Science

э

Outline	INSERTIONSORT	DFS & BFS	

It's like arranging cards in your hand!

イロン イ理と イヨン イヨン George Mason University, Department of Computer Science

3

Outline	InsertionSort 0●0	DFS & BFS 000	

Comments About INSERTIONSORT

- When dealing with A[n-1], we assume that the A[0...n-2] problem has already been solved
- We find an appropriate position for A[n-1] and insert it
- The *idea* of this algorithm is recursive, but a bottom-up, iterative implementation is typically best
- One way to speed up insertion is to use BINARYSEARCH to find the position (aka *binary insertion sort*)

Outline		InsertionSort 000	DFS & BFS 000	
Analyzi	ng (Straight)	INSERTIONSO	RT	

We count A[j] > v comparisons, analysis depends on data ...

Worst case:

Best case:

Average case:

ৰ্চা > ব্টা> ব্টা> ব্টা> ব্টা> ট্রা> বি George Mason University, Department of Computer Science

Outline	InsertionSort 00●	DFS & BFS 000	

Analyzing (Straight) INSERTIONSORT

We count A[j] > v comparisons, analysis depends on data ...

- Worst case:
 - All elements in the sublist are shifted every insertion
 - This occurs when A is initially strictly decreasing

•
$$C_{worst}(n) = \sum_{i=1}^{n-1} \sum_{j=0}^{i-1} i = \frac{(n-1)n}{2} \in \Theta(n^2)$$

Best case:

Average case:

Outline	INSERTIONSORT	DFS & BFS	
	000		

Analyzing (Straight) INSERTIONSORT

We count A[j] > v comparisons, analysis depends on data ...

- Worst case:
 - All elements in the sublist are shifted every insertion
 - This occurs when A is initially strictly decreasing

•
$$C_{worst}(n) = \sum_{i=1}^{n-1} \sum_{j=0}^{i-1} i = \frac{(n-1)n}{2} \in \Theta(n^2)$$

Best case:

We check each insertion, but no shift is necessary

•
$$C_{best}(n) = \sum_{i=1}^{n-1} 1 = n - 1 \in \Theta(n)$$

Average case:

Outline	INSERTIONSORT	DFS & BFS	
	000		

Analyzing (Straight) INSERTIONSORT

We count A[j] > v comparisons, analysis depends on data ...

- Worst case:
 - All elements in the sublist are shifted every insertion
 - This occurs when A is initially strictly decreasing

•
$$C_{worst}(n) = \sum_{i=1}^{n-1} \sum_{j=0}^{i-1} i = \frac{(n-1)n}{2} \in \Theta(n^2)$$

Best case:

We check each insertion, but no shift is necessary

•
$$C_{best}(n) = \sum_{i=1}^{n-1} 1 = n - 1 \in \Theta(n)$$

Average case:

- Investigate number of pairs of elements that are out of order
- On randomly ordered arrays, INSERTIONSORT makes on average half as many comparisons as on decreasing arrays

•
$$C_{avg}(n) \approx \frac{n^2}{4} \in \Theta(n^2)$$

Outline		DFS & BFS ●00	
Searchi	ng Graphs		

- Solutions to many problems involve searching through a graph
- There are a variety of ways of to search a graph ...
- But there's a simple generalization for many methods:

GRAPHSEARCH(G, a)

< 回 ト < 三 ト < 三 ト

Outline		DFS & BFS ●00	
Searchi	ng Graphs		

- Solutions to many problems involve searching through a graph
- There are a variety of ways of to search a graph ...
- But there's a simple generalization for many methods:

GRAPHSEARCH(G, a)

DFS, BFS, Best-First, and A^* are all instances of this method, depending on the list structure. DFS uses a Stack; BFS uses a queue

Outline		DFS & BFS ●00	
Searchi	ng Graphs		

- Solutions to many problems involve searching through a graph
- There are a variety of ways of to search a graph ...
- But there's a simple generalization for many methods:

GRAPHSEARCH(G, a)

DFS, BFS, Best-First, and A^* are all instances of this method, depending on the list structure. DFS uses a Stack; BFS uses a queue

WARNING: The algorithms in the book are presented differently, but they are the same in spirit.

Outline		DFS & BFS $0 \bullet 0$	

- For adjacency matrix representation, traversal time is $\Theta(|V|^2)$
- For adjacency list representation, traversal time is $\Theta(|V| + |E|)$
- We can use the algorithm to check for connectivity & cycles, and to find articulation points

Outline		DFS & BFS $0 \bullet 0$	

- For adjacency matrix representation, traversal time is $\Theta(|V|^2)$
- For adjacency list representation, traversal time is $\Theta(|V| + |E|)$
- We can use the algorithm to check for connectivity & cycles, and to find articulation points

Outline		DFS & BFS $0 \bullet 0$	

- For adjacency matrix representation, traversal time is $\Theta(|V|^2)$
- For adjacency list representation, traversal time is $\Theta(|V| + |E|)$
- We can use the algorithm to check for connectivity & cycles, and to find articulation points

Outline		DFS & BFS $0 \bullet 0$	

- For adjacency matrix representation, traversal time is $\Theta(|V|^2)$
- For adjacency list representation, traversal time is $\Theta(|V| + |E|)$
- We can use the algorithm to check for connectivity & cycles, and to find articulation points

Outline		DFS & BFS $0 \bullet 0$	

- For adjacency matrix representation, traversal time is $\Theta(|V|^2)$
- For adjacency list representation, traversal time is $\Theta(|V| + |E|)$
- We can use the algorithm to check for connectivity & cycles, and to find articulation points

Outline		DFS & BFS $0 \bullet 0$	

- For adjacency matrix representation, traversal time is $\Theta(|V|^2)$
- For adjacency list representation, traversal time is $\Theta(|V| + |E|)$
- We can use the algorithm to check for connectivity & cycles, and to find articulation points

Outline		DFS & BFS $0 \bullet 0$	

- For adjacency matrix representation, traversal time is $\Theta(|V|^2)$
- For adjacency list representation, traversal time is $\Theta(|V| + |E|)$
- We can use the algorithm to check for connectivity & cycles, and to find articulation points

Outline		DFS & BFS $0 \bullet 0$	

- For adjacency matrix representation, traversal time is $\Theta(|V|^2)$
- For adjacency list representation, traversal time is $\Theta(|V|+|E|)$
- We can use the algorithm to check for connectivity & cycles, and to find articulation points

Outline		DFS & BFS oo●	

- For adjacency list representation, traversal time is $\Theta(|V| + |E|)$
- We can use the algorithm to check for connectivity & cycles, and to find minimum paths

Outline		DFS & BFS oo●	

- For adjacency list representation, traversal time is $\Theta(|V| + |E|)$
- We can use the algorithm to check for connectivity & cycles, and to find minimum paths

Outline		DFS & BFS oo●	

- For adjacency list representation, traversal time is $\Theta(|V| + |E|)$
- We can use the algorithm to check for connectivity & cycles, and to find minimum paths

Outline		DFS & BFS oo●	

- For adjacency list representation, traversal time is $\Theta(|V| + |E|)$
- We can use the algorithm to check for connectivity & cycles, and to find minimum paths

Outline		DFS & BFS oo●	

- For adjacency list representation, traversal time is $\Theta(|V| + |E|)$
- We can use the algorithm to check for connectivity & cycles, and to find minimum paths

Outline		DFS & BFS oo●	

- For adjacency list representation, traversal time is $\Theta(|V| + |E|)$
- We can use the algorithm to check for connectivity & cycles, and to find minimum paths

Outline		DFS & BFS oo●	

- For adjacency list representation, traversal time is $\Theta(|V| + |E|)$
- We can use the algorithm to check for connectivity & cycles, and to find minimum paths

Outline		DFS & BFS 000	Homework ●
A :			

Assignments

This week's assignments:

- Section 5.1: Problems 4, 6, and 9
- Section 5.2: Problems 1, 4, and 7

ৰ্চা > ব্টা> ব্টা> ব্টা> ব্টা> ট্রা> বি George Mason University, Department of Computer Science