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Decrease-And-Conquer

Decrease-and-conquer exploits the relationship between a solution
to a given problem instance and a solution to a smaller instance of
the same problem

Divide-and-conquer attempts to solve separate pieces of the
problem, then combine the pieces into an answer, while
Decrease-and-conquer attempts to say something about the total
solution in terms of the solution to the smaller piece

Can be approached top-down (recursively) or bottom-up

Three variations:

decrease by a constant — Each iteration, the size of a problem instance is
reduced by a constant (e.g., n − 1)

decrease by a constant factor — Each iteration, the size of a problem instance
is reduced by a constant factor (e.g., n

2
)

variable size decrease — The reduction pattern varies with each iteration
(e.g., Euclid)
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Simple Examples of Decrease-and-Conquer

Consider the problem of computing f (n) = an:

Decrease by a constant:

f (n) =

{

f (n − 1) · a if n > 1
a if n = 1

Decrease by a constant factor:

an =











(

an/2
)2

if n > 0 is even
(

a(n−1)/2
)2
· a if n > 1 is odd

a if n = 1
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Simple Examples of Decrease-and-Conquer

Consider the problem of computing f (n) = an:

Decrease by a constant:

f (n) =

{

f (n − 1) · a if n > 1
a if n = 1

⋆ Decrease by a constant factor:

an =











(

an/2
)2

if n > 0 is even
(

a(n−1)/2
)2
· a if n > 1 is odd

a if n = 1

⋆ We are not solving each piece

⋆ We are using knowledge about
how the solution to the piece
relates to the whole problem

⋆ O(lg n)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Introduction InsertionSort DFS & BFS Homework

Specifying InsertionSort

InsertionSort(A[0 . . .n − 1])

for i ←− 1 to n − 1 do

v ←− A[i ]
j ←− i − 1
while j ≥ 0 and A[j ] > v do

A[j + 1]←− A[j ]
j ←− j − 1

A[j + 1]←− v

v = 21A

j −→ 69
21 ←−i
50
59
87
47
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Specifying InsertionSort

InsertionSort(A[0 . . .n − 1])

for i ←− 1 to n − 1 do

v ←− A[i ]
j ←− i − 1
while j ≥ 0 and A[j ] > v do

A[j + 1]←− A[j ]
j ←− j − 1

A[j + 1]←− v

v = 21j −→ A

69 ←−i
50
59
87
47
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Specifying InsertionSort

InsertionSort(A[0 . . .n − 1])

for i ←− 1 to n − 1 do

v ←− A[i ]
j ←− i − 1
while j ≥ 0 and A[j ] > v do

A[j + 1]←− A[j ]
j ←− j − 1

A[j + 1]←− v

v = 50A

21
j −→ 69

50 ←−i
59
87
47
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Specifying InsertionSort

InsertionSort(A[0 . . .n − 1])

for i ←− 1 to n − 1 do

v ←− A[i ]
j ←− i − 1
while j ≥ 0 and A[j ] > v do

A[j + 1]←− A[j ]
j ←− j − 1

A[j + 1]←− v

v = 50A

j −→ 21
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87
47

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Introduction InsertionSort DFS & BFS Homework

Specifying InsertionSort

InsertionSort(A[0 . . .n − 1])

for i ←− 1 to n − 1 do

v ←− A[i ]
j ←− i − 1
while j ≥ 0 and A[j ] > v do

A[j + 1]←− A[j ]
j ←− j − 1

A[j + 1]←− v

v = 59A

21
50

j −→ 69
59 ←−i
87
47
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Specifying InsertionSort

InsertionSort(A[0 . . .n − 1])

for i ←− 1 to n − 1 do

v ←− A[i ]
j ←− i − 1
while j ≥ 0 and A[j ] > v do

A[j + 1]←− A[j ]
j ←− j − 1

A[j + 1]←− v

v = 59A

21
j −→ 50

69 ←−i
87
47
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Specifying InsertionSort

InsertionSort(A[0 . . .n − 1])

for i ←− 1 to n − 1 do

v ←− A[i ]
j ←− i − 1
while j ≥ 0 and A[j ] > v do

A[j + 1]←− A[j ]
j ←− j − 1

A[j + 1]←− v

v = 87A

21
50
59

j −→ 69
87 ←−i
47
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Specifying InsertionSort

InsertionSort(A[0 . . .n − 1])

for i ←− 1 to n − 1 do

v ←− A[i ]
j ←− i − 1
while j ≥ 0 and A[j ] > v do

A[j + 1]←− A[j ]
j ←− j − 1

A[j + 1]←− v

v = 47A

21
50
59
69

j −→ 87
47 ←−i
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Specifying InsertionSort

InsertionSort(A[0 . . .n − 1])

for i ←− 1 to n − 1 do

v ←− A[i ]
j ←− i − 1
while j ≥ 0 and A[j ] > v do

A[j + 1]←− A[j ]
j ←− j − 1

A[j + 1]←− v

v = 47A

j −→ 21

50
59
69
87 ←−i
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Specifying InsertionSort

InsertionSort(A[0 . . .n − 1])

for i ←− 1 to n − 1 do

v ←− A[i ]
j ←− i − 1
while j ≥ 0 and A[j ] > v do

A[j + 1]←− A[j ]
j ←− j − 1

A[j + 1]←− v

v = 47A

j −→ 21
47
50
59
69
87 ←−i

It’s like arranging cards in your hand!

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Introduction InsertionSort DFS & BFS Homework

Comments About InsertionSort

When dealing with A[n − 1], we assume that the A[0 . . . n − 2]
problem has already been solved

We find an appropriate position for A[n − 1] and insert it

The idea of this algorithm is recursive, but a bottom-up, iterative
implementation is typically best

One way to speed up insertion is to use BinarySearch to find the
position (aka binary insertion sort)

R. Paul Wiegand George Mason University, Department of Computer Science
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Analyzing (Straight) InsertionSort

We count A[j] > v comparisons, analysis depends on data ...

Worst case:

Best case:

Average case:
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Analyzing (Straight) InsertionSort

We count A[j] > v comparisons, analysis depends on data ...

Worst case:

All elements in the sublist are shifted every insertion
This occurs when A is initially strictly decreasing

Cworst(n) =
∑n−1

i=1

∑i−1
j=0 i = (n−1)n

2 ∈ Θ(n2)

Best case:

Average case:
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Analyzing (Straight) InsertionSort

We count A[j] > v comparisons, analysis depends on data ...

Worst case:

All elements in the sublist are shifted every insertion
This occurs when A is initially strictly decreasing

Cworst(n) =
∑n−1

i=1

∑i−1
j=0 i = (n−1)n

2 ∈ Θ(n2)

Best case:

We check each insertion, but no shift is necessary
Cbest(n) =

∑n−1
i=1 1 = n − 1 ∈ Θ(n)

Average case:
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Analyzing (Straight) InsertionSort

We count A[j] > v comparisons, analysis depends on data ...

Worst case:

All elements in the sublist are shifted every insertion
This occurs when A is initially strictly decreasing

Cworst(n) =
∑n−1

i=1

∑i−1
j=0 i = (n−1)n

2 ∈ Θ(n2)

Best case:

We check each insertion, but no shift is necessary
Cbest(n) =

∑n−1
i=1 1 = n − 1 ∈ Θ(n)

Average case:

Investigate number of pairs of elements that are out of order
On randomly ordered arrays, InsertionSort makes on
average half as many comparisons as on decreasing arrays

Cavg (n) ≈ n2

4 ∈ Θ(n2)
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Searching Graphs

Solutions to many problems involve searching through a graph

There are a variety of ways of to search a graph ...

But there’s a simple generalization for many methods:

GraphSearch(G , a)

WaitingList ←− 〈a〉
VisitedList ←− 〈〉
while not Empty(WaitingList)

v ←−GetAndRemoveItem(WaitingList)
ChildrenList ←− GetChildVertices(G , v)
AddListToList(WaitingList,ChildrenList)
AddItemToList(VistedList,v)

R. Paul Wiegand George Mason University, Department of Computer Science
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Searching Graphs

Solutions to many problems involve searching through a graph

There are a variety of ways of to search a graph ...

But there’s a simple generalization for many methods:

GraphSearch(G , a)

WaitingList ←− 〈a〉
VisitedList ←− 〈〉
while not Empty(WaitingList)

v ←−GetAndRemoveItem(WaitingList)
ChildrenList ←− GetChildVertices(G , v)
AddListToList(WaitingList,ChildrenList)
AddItemToList(VistedList,v)

DFS, BFS, Best-First, and A⋆

are all instances of this method,
depending on the list structure.
DFS uses a Stack; BFS uses a
queue
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Searching Graphs

Solutions to many problems involve searching through a graph

There are a variety of ways of to search a graph ...

But there’s a simple generalization for many methods:

GraphSearch(G , a)

WaitingList ←− 〈a〉
VisitedList ←− 〈〉
while not Empty(WaitingList)

v ←−GetAndRemoveItem(WaitingList)
ChildrenList ←− GetChildVertices(G , v)
AddListToList(WaitingList,ChildrenList)
AddItemToList(VistedList,v)

DFS, BFS, Best-First, and A⋆

are all instances of this method,
depending on the list structure.
DFS uses a Stack; BFS uses a
queue

WARNING: The algorithms in
the book are presented differ-
ently, but they are the same in
spirit.
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Depth-First Searching: An Example

a

c

d

e

f

b

a

c

d f

b

e

Stack = 〈a〉
Visited = 〈〉
Dead = 〈〉

For adjacency matrix representation, traversal time is Θ(|V |2)

For adjacency list representation, traversal time is Θ(|V |+ |E |)

We can use the algorithm to check for connectivity & cycles, and to
find articulation points
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Depth-First Searching: An Example

a

c

d

e

f

b

a

c

d f

b

e

Stack = 〈cde〉
Visited = 〈a〉
Dead = 〈〉

For adjacency matrix representation, traversal time is Θ(|V |2)

For adjacency list representation, traversal time is Θ(|V |+ |E |)

We can use the algorithm to check for connectivity & cycles, and to
find articulation points
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Depth-First Searching: An Example

a

c

d

e

f

b

a

c

d f

b

e

Stack = 〈dfe〉
Visited = 〈ac〉
Dead = 〈〉

For adjacency matrix representation, traversal time is Θ(|V |2)

For adjacency list representation, traversal time is Θ(|V |+ |E |)

We can use the algorithm to check for connectivity & cycles, and to
find articulation points
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Depth-First Searching: An Example

a

c

d

e

f

b

a

c

d f

b

e

Stack = 〈fe〉
Visited = 〈acd〉
Dead = 〈d〉

For adjacency matrix representation, traversal time is Θ(|V |2)

For adjacency list representation, traversal time is Θ(|V |+ |E |)

We can use the algorithm to check for connectivity & cycles, and to
find articulation points

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Introduction InsertionSort DFS & BFS Homework

Depth-First Searching: An Example

a

c

d

e

f

b

a

c

d f

b

e

Stack = 〈be〉
Visited = 〈acdf 〉
Dead = 〈d〉

For adjacency matrix representation, traversal time is Θ(|V |2)

For adjacency list representation, traversal time is Θ(|V |+ |E |)

We can use the algorithm to check for connectivity & cycles, and to
find articulation points
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Depth-First Searching: An Example

a

c

d

e

f

b

a

c

d f

b

e

Stack = 〈e〉
Visited = 〈acdfb〉
Dead = 〈d〉

For adjacency matrix representation, traversal time is Θ(|V |2)

For adjacency list representation, traversal time is Θ(|V |+ |E |)

We can use the algorithm to check for connectivity & cycles, and to
find articulation points
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Depth-First Searching: An Example

a

c

d

e

f

b

a

c

d f

b

e

Stack = 〈〉
Visited = 〈acdfbe〉
Dead = 〈de〉

For adjacency matrix representation, traversal time is Θ(|V |2)

For adjacency list representation, traversal time is Θ(|V |+ |E |)

We can use the algorithm to check for connectivity & cycles, and to
find articulation points
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Depth-First Searching: An Example

a

c

d

e

f

b

a

c

d f

b

e

Stack = 〈〉
Visited = 〈acdfbe〉
Dead = 〈debfca〉

For adjacency matrix representation, traversal time is Θ(|V |2)

For adjacency list representation, traversal time is Θ(|V |+ |E |)

We can use the algorithm to check for connectivity & cycles, and to
find articulation points
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Breadth-First Searching: An Example

a

c

d

e

f

b

a

c

f

d e

b Queue = 〈a〉
Visited = 〈〉

For adjacency matrix representation, traversal time is Θ(|V |2)

For adjacency list representation, traversal time is Θ(|V |+ |E |)

We can use the algorithm to check for connectivity & cycles, and to
find minimum paths
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Breadth-First Searching: An Example

a

c

d

e

f

b

a

c

f

d e

b Queue = 〈cde〉
Visited = 〈a〉

For adjacency matrix representation, traversal time is Θ(|V |2)

For adjacency list representation, traversal time is Θ(|V |+ |E |)

We can use the algorithm to check for connectivity & cycles, and to
find minimum paths
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Breadth-First Searching: An Example

a

c

d

e

f

b

a

c

f

d e

b Queue = 〈def 〉
Visited = 〈ac〉

For adjacency matrix representation, traversal time is Θ(|V |2)

For adjacency list representation, traversal time is Θ(|V |+ |E |)

We can use the algorithm to check for connectivity & cycles, and to
find minimum paths
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Breadth-First Searching: An Example

a

c

d

e

f

b

a

c

f

d e

b Queue = 〈ef 〉
Visited = 〈acd〉

For adjacency matrix representation, traversal time is Θ(|V |2)

For adjacency list representation, traversal time is Θ(|V |+ |E |)

We can use the algorithm to check for connectivity & cycles, and to
find minimum paths
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Breadth-First Searching: An Example

a

c

d

e

f

b

a

c

f

d e

b Queue = 〈fb〉
Visited = 〈acde〉

For adjacency matrix representation, traversal time is Θ(|V |2)

For adjacency list representation, traversal time is Θ(|V |+ |E |)

We can use the algorithm to check for connectivity & cycles, and to
find minimum paths
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Breadth-First Searching: An Example

a

c

d

e

f

b

a

c

f

d e

b Queue = 〈b〉
Visited = 〈acdef 〉

For adjacency matrix representation, traversal time is Θ(|V |2)

For adjacency list representation, traversal time is Θ(|V |+ |E |)

We can use the algorithm to check for connectivity & cycles, and to
find minimum paths
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Breadth-First Searching: An Example

a

c

d

e

f

b

a

c

f

d e

b Queue = 〈〉
Visited = 〈acdefb〉

For adjacency matrix representation, traversal time is Θ(|V |2)

For adjacency list representation, traversal time is Θ(|V |+ |E |)

We can use the algorithm to check for connectivity & cycles, and to
find minimum paths
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Assignments

This week’s assignments:

Section 5.1: Problems 4, 6, and 9
Section 5.2: Problems 1, 4, and 7
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