CS 483 - Data Structures and Algorithm Analysis

 Lecture V: Chapter 5, part 1
R. Paul Wiegand

George Mason University, Department of Computer Science

February 22, 2006

Outline

1 Introduction to Decrease-And-Conquer

2 The InsertionSort Algorithm

3 Depth-First and Breadth-First Searching

4 Homework

Decrease-And-Conquer

■ Decrease-and-conquer exploits the relationship between a solution to a given problem instance and a solution to a smaller instance of the same problem

- Divide-and-conquer attempts to solve separate pieces of the problem, then combine the pieces into an answer, while Decrease-and-conquer attempts to say something about the total solution in terms of the solution to the smaller piece
- Can be approached top-down (recursively) or bottom-up
- Three variations:
decrease by a constant - Each iteration, the size of a problem instance is reduced by a constant (e.g., $n-1$)
decrease by a constant factor - Each iteration, the size of a problem instance is reduced by a constant factor (e.g., $\frac{n}{2}$)
variable size decrease - The reduction pattern varies with each iteration

Simple Examples of Decrease-and-Conquer

Consider the problem of computing $f(n)=a^{n}$:

- Decrease by a constant:
$f(n)= \begin{cases}f(n-1) \cdot a & \text { if } n>1 \\ a & \text { if } n=1\end{cases}$
- Decrease by a constant factor:
$a^{n}= \begin{cases}\left(a^{n / 2}\right)^{2} & \text { if } n>0 \text { is even } \\ \left(a^{(n-1) / 2}\right)^{2} \cdot a & \text { if } n>1 \text { is odd } \\ a & \text { if } n=1\end{cases}$

Simple Examples of Decrease-and-Conquer

Consider the problem of computing $f(n)=a^{n}$:

- Decrease by a constant:

$$
f(n)= \begin{cases}f(n-1) \cdot a & \text { if } n>1 \\ a & \text { if } n=1\end{cases}
$$

* We are not solving each piece
* We are using knowledge about
* Decrease by a constant factor:

$$
a^{n}= \begin{cases}\left(a^{n / 2}\right)^{2} & \text { if } n>0 \text { is even } \\ \left(a^{(n-1) / 2}\right)^{2} \cdot a & \text { if } n>1 \text { is odd } \\ a & \text { if } n=1\end{cases}
$$ how the solution to the piece relates to the whole problem * $O(\lg n)$

Specifying InsertionSort

$$
\begin{aligned}
& \text { INSERTIONSORT }(A[0 \ldots n-1]) \\
& \text { for } i \longleftarrow 1 \text { to } n-1 \text { do } \\
& v \longleftarrow A[i] \\
& j \longleftarrow i-1 \\
& \text { while } j \geq 0 \text { and } A[j]>v \text { do } \\
& A[j+1] \longleftarrow A[j] \\
& j \longleftarrow j-1 \\
& A[j+1] \longleftarrow v
\end{aligned}
$$

$$
j \longrightarrow \begin{array}{|c|}
\hline \mathbf{A} \\
\hline \begin{array}{|c|}
\hline 69 \\
\hline 21 \\
\hline \\
\hline 50 \\
\hline
\end{array} \leq i=21 \\
\hline 59 \\
\hline 87 \\
\hline 47 \\
\hline
\end{array}
$$

Specifying InsertionSort

$$
\begin{aligned}
& \text { InsertionSort(A[0...n-1]) } \\
& \text { for } i \longleftarrow 1 \text { to } n-1 \text { do } \\
& v \longleftarrow A[i] \\
& j \longleftarrow i-1 \\
& \text { while } j \geq 0 \text { and } A[j]>v \text { do } \\
& A[j+1] \longleftarrow A[j] \\
& j \longleftarrow j-1 \\
& A[j+1] \longleftarrow v \\
& j \longrightarrow \begin{array}{|c|}
\hline \mathbf{A} \\
\hline \\
\hline
\end{array} v=21
\end{aligned}
$$

Specifying InsertionSort

$$
\begin{aligned}
& \text { INSERTIONSORT }(A[0 \ldots n-1]) \\
& \text { for } i \longleftarrow 1 \text { to } n-1 \text { do } \\
& \quad v \longleftarrow A[i] \\
& j \longleftarrow i-1 \\
& \text { while } j \geq 0 \text { and } A[j]>v \text { do } \\
& \quad A[j+1] \longleftarrow A[j] \\
& j \longleftarrow j-1 \\
& A[j+1] \longleftarrow v
\end{aligned}
$$

$$
j \longrightarrow \begin{array}{|c|}
\hline \mathbf{A} \\
\hline 21 \\
\hline \begin{array}{|c|}
\hline 29 \\
\hline 50 \\
\hline 59 \\
\hline 87 \\
\hline 47 \\
\hline
\end{array} \\
\hline
\end{array}
$$

Specifying InsertionSort

$$
\begin{aligned}
& \text { InSERTIONSORT }(A[0 \ldots n-1]) \\
& \text { for } i \longleftarrow 1 \text { to } n-1 \text { do } \\
& v \longleftarrow A[i] \\
& j \longleftarrow i-1 \\
& \text { while } \geq 0 \text { and } A[j]>v \text { do } \\
& A[j+1] \longleftarrow A[j] \\
& j \longleftarrow j-1 \\
& A[j+1] \longleftarrow v
\end{aligned}
$$

Specifying InsertionSort

$$
\begin{aligned}
& \text { INSERTIONSORT }(A[0 \ldots n-1]) \\
& \text { for } i \longleftarrow 1 \text { to } n-1 \text { do } \\
& v \longleftarrow A[i] \\
& j \longleftarrow i-1 \\
& \text { while } j \geq 0 \text { and } A[j]>v \text { do } \\
& \quad A[j+1] \longleftarrow A[j] \\
& j \longleftarrow j-1 \\
& A[j+1] \longleftarrow v
\end{aligned}
$$

Specifying InsertionSort

$$
\begin{aligned}
& \text { INSERTIONSORT }(A[0 \ldots n-1]) \\
& \text { for } i \longleftarrow 1 \text { to } n-1 \text { do } \\
& \quad v \longleftarrow A[i] \\
& j \longleftarrow i-1 \\
& \text { while } j \geq 0 \text { and } A[j]>v \text { do } \\
& \quad A[j+1] \longleftarrow A[j] \\
& j \longleftarrow j-1 \\
& A[j+1] \longleftarrow v
\end{aligned}
$$

$$
j \longrightarrow \begin{array}{|c|}
\hline \begin{array}{|c|}
\hline \mathbf{A} \\
\hline 21 \\
\hline
\end{array} \left\lvert\, \begin{array}{c}
\\
\hline 50 \\
\hline \\
\hline 69 \\
\hline \\
\hline 87 \\
\hline 47 \\
\hline
\end{array}\right. \\
\hline
\end{array}
$$

Specifying InsertionSort

$$
\begin{aligned}
& \text { INSERTIONSORT }(A[0 \ldots n-1]) \\
& \text { for } i \longleftarrow 1 \text { to } n-1 \text { do } \\
& \quad v \longleftarrow A[i] \\
& j \longleftarrow i-1 \\
& \text { while } j \geq 0 \text { and } A[j]>v \text { do } \\
& \quad A[j+1] \longleftarrow A[j] \\
& j \longleftarrow j-1 \\
& A[j+1] \longleftarrow v
\end{aligned}
$$

Specifying InsertionSort

$$
\begin{aligned}
& \text { INSERTIONSORT }(A[0 \ldots n-1]) \\
& \text { for } i \longleftarrow 1 \text { to } n-1 \text { do } \\
& v \longleftarrow A[i] \\
& j \longleftarrow i-1 \\
& \text { while } j \geq 0 \text { and } A[j]>v \text { do } \\
& \quad A[j+1] \longleftarrow A[j] \\
& j \longleftarrow j-1 \\
& A[j+1] \longleftarrow v
\end{aligned}
$$

Specifying InsertionSort

$$
\begin{aligned}
& \text { InSERTIONSORT }(A[0 \ldots n-1]) \\
& \text { for } i \longleftarrow 1 \text { to } n-1 \text { do } \\
& v \longleftarrow A[i] \\
& j \longleftarrow i-1 \\
& \text { while } \geq 0 \text { and } A[j]>v \text { do } \\
& A[j+1] \longleftarrow A[j] \\
& j \longleftarrow j-1 \\
& A[j+1] \longleftarrow v
\end{aligned}
$$

Specifying InsertionSort

$$
\begin{aligned}
& \text { INSERTIONSORT }(A[0 \ldots n-1]) \\
& \text { for } i \longleftarrow 1 \text { to } n-1 \text { do } \\
& v \longleftarrow A[i] \\
& j \longleftarrow i-1 \\
& \text { while } j \geq 0 \text { and } A[j]>v \text { do } \\
& \quad A[j+1] \longleftarrow A[j] \\
& j \longleftarrow j-1 \\
& A[j+1] \longleftarrow v
\end{aligned}
$$

It's like arranging cards in your hand!

Comments About InsertionSort

■ When dealing with $A[n-1]$, we assume that the $A[0 \ldots n-2]$ problem has already been solved

- We find an appropriate position for $A[n-1]$ and insert it

■ The idea of this algorithm is recursive, but a bottom-up, iterative implementation is typically best

- One way to speed up insertion is to use BinarySEARCH to find the position (aka binary insertion sort)

Analyzing (Straight) InsertionSort

We count $A[j]>v$ comparisons, analysis depends on data ...
■ Worst case:

■ Best case:

■ Average case:

Analyzing (Straight) InsertionSort

We count $A[j]>v$ comparisons, analysis depends on data ...
■ Worst case:

- All elements in the sublist are shifted every insertion
- This occurs when A is initially strictly decreasing
- $C_{\text {worst }}(n)=\sum_{i=1}^{n-1} \sum_{j=0}^{i-1} i=\frac{(n-1) n}{2} \in \Theta\left(n^{2}\right)$

■ Best case:

■ Average case:

Analyzing (Straight) InsertionSort

We count $A[j]>v$ comparisons, analysis depends on data ...
■ Worst case:
■ All elements in the sublist are shifted every insertion
\square This occurs when A is initially strictly decreasing
■ $C_{\text {worst }}(n)=\sum_{i=1}^{n-1} \sum_{j=0}^{i-1} i=\frac{(n-1) n}{2} \in \Theta\left(n^{2}\right)$
■ Best case:
■ We check each insertion, but no shift is necessary
$■ C_{\text {best }}(n)=\sum_{i=1}^{n-1} 1=n-1 \in \Theta(n)$

- Average case:

Analyzing (Straight) InsertionSort

We count $A[j]>v$ comparisons, analysis depends on data ...

- Worst case:

■ All elements in the sublist are shifted every insertion
■ This occurs when A is initially strictly decreasing
■ $C_{\text {worst }}(n)=\sum_{i=1}^{n-1} \sum_{j=0}^{i-1} i=\frac{(n-1) n}{2} \in \Theta\left(n^{2}\right)$

- Best case:

■ We check each insertion, but no shift is necessary
■ $C_{\text {best }}(n)=\sum_{i=1}^{n-1} 1=n-1 \in \Theta(n)$

- Average case:

■ Investigate number of pairs of elements that are out of order
■ On randomly ordered arrays, InsertionSort makes on average half as many comparisons as on decreasing arrays

- $C_{\operatorname{avg}}(n) \approx \frac{n^{2}}{4} \in \Theta\left(n^{2}\right)$

Searching Graphs

- Solutions to many problems involve searching through a graph

■ There are a variety of ways of to search a graph ...
■ But there's a simple generalization for many methods:

```
GraphSEArch(G,a)
WaitingList \longleftarrow\langlea\rangle
VisitedList \longleftarrow\langle\rangle
while not Empty(WaitingList)
    v\longleftarrowGGetAndRemoveItem(WaitingList)
    ChildrenList « GetChildVertices(G,v)
    AddListToList(WaitingList,ChildrenList)
    AddItemToList(VistedList,v)
```


Searching Graphs

- Solutions to many problems involve searching through a graph

■ There are a variety of ways of to search a graph ...
■ But there's a simple generalization for many methods:

$\operatorname{GraphSEARCh}(G, a)$

```
WaitingList \longleftarrow\langlea\rangle
VisitedList \longleftarrow\langle\rangle
while not Empty(WaitingList)
    v\longleftarrowGGetAndRemoveItem(WaitingList)
    ChildrenList « GetChildVertices(G,v)
    AddListToList(WaitingList,ChildrenList)
    AddItemToList(VistedList,v)
```


Searching Graphs

- Solutions to many problems involve searching through a graph

■ There are a variety of ways of to search a graph ...
■ But there's a simple generalization for many methods:

$\operatorname{GraphSEARCh}(G, a)$

```
WaitingList \longleftarrow\langlea\rangle
VisitedList \longleftarrow\langle\rangle
while not Empty(WaitingList)
    v\longleftarrowGGetAndRemoveItem(WaitingList)
    ChildrenList « GetChildVertices(G,v)
    AddListToList(WaitingList,ChildrenList)
    AddItemToList(VistedList,v)
```

DFS, BFS, Best-First, and A* are all instances of this method, depending on the list structure. DFS uses a Stack; BFS uses a queue

WARNING: The algorithms in the book are presented differently, but they are the same in spirit.

Depth-First Searching: An Example

$$
\begin{aligned}
& \text { Stack }=\langle a\rangle \\
& \text { Visited }=\langle \rangle \\
& \text { Dead }=\langle \rangle
\end{aligned}
$$

- For adjacency matrix representation, traversal time is $\Theta\left(|V|^{2}\right)$
- For adjacency list representation, traversal time is $\Theta(|V|+|E|)$
- We can use the algorithm to check for connectivity \& cycles, and to find articulation points

Depth-First Searching: An Example

$$
\begin{aligned}
& \text { Stack }=\langle c d e\rangle \\
& \text { Visited }=\langle a\rangle \\
& \text { Dead }=\langle \rangle
\end{aligned}
$$

- For adjacency matrix representation, traversal time is $\Theta\left(|V|^{2}\right)$
- For adjacency list representation, traversal time is $\Theta(|V|+|E|)$
- We can use the algorithm to check for connectivity \& cycles, and to find articulation points

Depth-First Searching: An Example

$$
\begin{aligned}
& \text { Stack }=\langle d f e\rangle \\
& \text { Visited }=\langle a c\rangle \\
& \text { Dead }=\langle \rangle
\end{aligned}
$$

- For adjacency matrix representation, traversal time is $\Theta\left(|V|^{2}\right)$
- For adjacency list representation, traversal time is $\Theta(|V|+|E|)$
- We can use the algorithm to check for connectivity \& cycles, and to find articulation points

Depth-First Searching: An Example

$$
\begin{aligned}
& \text { Stack }=\langle f e\rangle \\
& \text { Visited }=\langle a c d\rangle \\
& \text { Dead }=\langle d\rangle
\end{aligned}
$$

- For adjacency matrix representation, traversal time is $\Theta\left(|V|^{2}\right)$
- For adjacency list representation, traversal time is $\Theta(|V|+|E|)$
- We can use the algorithm to check for connectivity \& cycles, and to find articulation points

Depth-First Searching: An Example

$$
\begin{aligned}
& \text { Stack }=\langle b e\rangle \\
& \text { Visited }=\langle\text { acdf }\rangle \\
& \text { Dead }=\langle d\rangle
\end{aligned}
$$

- For adjacency matrix representation, traversal time is $\Theta\left(|V|^{2}\right)$
- For adjacency list representation, traversal time is $\Theta(|V|+|E|)$
- We can use the algorithm to check for connectivity \& cycles, and to find articulation points

Depth-First Searching: An Example

$$
\begin{aligned}
& \text { Stack }=\langle e\rangle \\
& \text { Visited }=\langle a c d f b\rangle \\
& \text { Dead }=\langle d\rangle
\end{aligned}
$$

- For adjacency matrix representation, traversal time is $\Theta\left(|V|^{2}\right)$
- For adjacency list representation, traversal time is $\Theta(|V|+|E|)$
- We can use the algorithm to check for connectivity \& cycles, and to find articulation points

Depth-First Searching: An Example

$$
\begin{aligned}
& \text { Stack }=\langle \rangle \\
& \text { Visited }=\langle\text { acdfbe }\rangle \\
& \text { Dead }=\langle d e\rangle
\end{aligned}
$$

- For adjacency matrix representation, traversal time is $\Theta\left(|V|^{2}\right)$
- For adjacency list representation, traversal time is $\Theta(|V|+|E|)$
- We can use the algorithm to check for connectivity \& cycles, and to find articulation points

Depth-First Searching: An Example

■ For adjacency matrix representation, traversal time is $\Theta\left(|V|^{2}\right)$

- For adjacency list representation, traversal time is $\Theta(|V|+|E|)$
- We can use the algorithm to check for connectivity \& cycles, and to find articulation points

Breadth-First Searching: An Example

- For adjacency matrix representation, traversal time is $\Theta\left(|V|^{2}\right)$

■ For adjacency list representation, traversal time is $\Theta(|V|+|E|)$

- We can use the algorithm to check for connectivity \& cycles, and to find minimum paths

Breadth-First Searching: An Example

Queue $=\langle c d e\rangle$
Visited $=\langle a\rangle$

- For adjacency matrix representation, traversal time is $\Theta\left(|V|^{2}\right)$

■ For adjacency list representation, traversal time is $\Theta(|V|+|E|)$

- We can use the algorithm to check for connectivity \& cycles, and to find minimum paths

Breadth-First Searching: An Example

- For adjacency matrix representation, traversal time is $\Theta\left(|V|^{2}\right)$
- For adjacency list representation, traversal time is $\Theta(|V|+|E|)$

■ We can use the algorithm to check for connectivity \& cycles, and to find minimum paths

Breadth-First Searching: An Example

- For adjacency matrix representation, traversal time is $\Theta\left(|V|^{2}\right)$
- For adjacency list representation, traversal time is $\Theta(|V|+|E|)$
- We can use the algorithm to check for connectivity \& cycles, and to find minimum paths

Breadth-First Searching: An Example

- For adjacency matrix representation, traversal time is $\Theta\left(|V|^{2}\right)$
- For adjacency list representation, traversal time is $\Theta(|V|+|E|)$

■ We can use the algorithm to check for connectivity \& cycles, and to find minimum paths

Breadth-First Searching: An Example

- For adjacency matrix representation, traversal time is $\Theta\left(|V|^{2}\right)$
- For adjacency list representation, traversal time is $\Theta(|V|+|E|)$
- We can use the algorithm to check for connectivity \& cycles, and to find minimum paths

Breadth-First Searching: An Example

Queue $=\langle \rangle$
Visited $=\langle$ acdefb \rangle

- For adjacency matrix representation, traversal time is $\Theta\left(|V|^{2}\right)$
- For adjacency list representation, traversal time is $\Theta(|V|+|E|)$

■ We can use the algorithm to check for connectivity \& cycles, and to find minimum paths

Assignments

■ This week's assignments:
■ Section 5.1: Problems 4, 6, and 9

- Section 5.2: Problems 1, 4, and 7

