CS 483 - Data Structures and Algorithm Analysis
Lecture VI: Chapter 5, part 2; Chapter 6, part 1

R. Paul Wiegand
George Mason University, Department of Computer Science

March 8, 2006
Outline

1. Topological Sorting
2. Generating Combinatorial Objects
3. Decrease-by-Constant Factor
4. Variable-Size-Decrease Algorithms
5. Transform & Conquer
6. Gaussian Elimination
7. Homework
DFS & BFS Edge-Types

- **tree edge** — Edge encountered by the search that leads to an as-yet unvisited node (DFS & BFS)
- **back edge** — Edge leading to a previously visited vertex other than its immediate predecessor (DFS)
- **cross edge** — Edge leading to a previously visited vertex other than its immediate predecessor (BFS)
DFS & BFS Edge-Types

- **tree edge** — Edge encountered by the search that leads to an as-yet unvisited node (DFS & BFS)

- **back edge** — Edge leading to a previously visited vertex other than its immediate predecessor (DFS)

- **cross edge** — Edge leading to a previously visited vertex other than its immediate predecessor (BFS)
DFS & BFS Edge-Types

tree edge — Edge encountered by the search that leads to an as-yet unvisited node (DFS & BFS)

back edge — Edge leading to a previously visited vertex other than its immediate predecessor (DFS)

cross edge — Edge leading to a previously visited vertex other than its immediate predecessor (BFS)
Directed Graphs: A Review

- A **directed graph** (digraph) is a graph with *directed edges*
- We can use the same representational constructs: adjacency matrices & adjacency lists
- But there are some differences from the undirected case:
 - Adjacency matrix need not be symmetric
 - An edge in the digraph has only one node in an adjacency list
- We can still use DFS & BFS to traverse such graphs, but the resulting search forest is often more complicated
- There are now four edge types:
 - **tree edge** — Edge leading to an as-yet unvisited node
 - **back edge** — Edge leading from some vertex to a previously visited ancestor
 - **forward edge** — Edge leading from a previously visited ancestor to some vertex
 - **cross edge** — Remaining edge types
Directed Graphs: More Review

R. Paul Wiegand
George Mason University, Department of Computer Science
Directed Graphs: More Review

Example DFS forest:
- tree edges
- back edge
- forward edge
- cross edge
Directed Graphs: More Review

Example DFS forest:
- tree edges
- back edge
- forward edge
- cross edge

NOTE: A digraph with no back edges has no directed cycles. We call this a **directed acyclic graph** (DAG).
Many real-world situations can be modeled with DAGs

Consider problems involving dependencies
(e.g., course pre-requisites):

```
CS112 -> CS211 -> CS310
       |       |       
       v       v       v
MAT125 -> CS330 -> CS483
       |       |       
       v       v       v
MAT105 -> MAT113 -> MAT114
```
Many real-world situations can be modeled with DAGs
Consider problems involving dependencies (e.g., course pre-requisites):

If you could take only one course at a time, what order would you choose?
Many real-world situations can be modeled with DAGs
Consider problems involving dependencies (e.g., course pre-requisites):

If you could take only one course at a time, what order would you choose?
More generally: Order the vertices of a DAG such that for every edge, the vertex where the edge starts precedes the vertex where the edge ends?
Representing Dependencies with DAGs

- Many real-world situations can be modeled with DAGs
- Consider problems involving dependencies (e.g., course pre-requisites):
 - If you could take only one course at a time, what order would you choose?
 - More generally: Order the vertices of a DAG such that for every edge, the vertex where the edge starts precedes the vertex where the edge ends?
 - This problem is called **topological sorting**
Two Algorithms to Sort Topologies

Algorithm 1
- Apply Depth-First Search
- Note the order in which the nodes become “dead” (popped off the traversal stack)
- Reverse the order; that is your answer
- Why does this work? When vertex \(v \) is popped off the stack, no vertex \(u \) with an edge \((u, v)\) can be among the vertices popped of before \(v \) (otherwise \((u, v)\) would be a back edge).

Algorithm 2
- Identify a *source* in the digraph (node with no in-coming edges)
- Break ties arbitrarily
- Record then delete the node, along with all edges from that node
- Repeat the process on the remaining subgraph
- When the graph is empty, you are done
Example On Algorithm 2

CS112 → CS211 → CS310
MAT125 → CS330 → CS483
MAT105 → MAT113 → MAT114
Example On Algorithm 2

CS112 → CS211 → CS310

MAT125 → CS330 → CS483

MAT113 → MAT114

MAT105
Example On Algorithm 2

CS211 → CS301 → CS303

MAT125 → CS301 → CS483

MAT113 → MAT114

MAT105
CS112
Example On Algorithm 2

CS211 → CS310
MAT125 → CS330 → CS483
MAT114

- MAT105
- CS112
- MAT113
Example On Algorithm 2
Example On Algorithm 2

CS310 → CS483
CS330 → CS483
MAT114

MAT105
CS112
MAT113
MAT125
CS211
Example On Algorithm 2

- MAT105
- CS112
- MAT113
- MAT125
- CS211
- MAT114

Diagram:

```
CS310 → CS330
  ↓       ↓
CS483 ← CS483
```
Example On Algorithm 2

- MAT105
- CS112
- MAT113
- MAT125
- CS211
- MAT114
- CS330

CS310 → CS483
Example On Algorithm 2

- MAT105
- CS112
- MAT113
- MAT125
- CS211
- MAT114
- CS330
- CS310
Example On Algorithm 2

- MAT105
- CS112
- MAT113
- MAT125
- CS211
- MAT114
- CS330
- CS310
- CS483
Reviewing Combinations & Permutations

What is the difference between a combination and a permutation?

combination —

permutation —
Reviewing Combinations & Permutations

What is the difference between a combination and a permutation?

combination — The number of ways of picking k unordered outcomes from n possibilities. We often write it as “n choose k”.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

permutation —
Reviewing Combinations & Permutations

What is the difference between a combination and a permutation?

- **combination** — The number of ways of picking k unordered outcomes from n possibilities. We often write it as “n choose k”.
 \[
 \binom{n}{k} = \frac{n!}{k!(n-k)!}
 \]

- **permutation** — A permutation is a rearrangement of the elements of an ordered list S into a one-to-one correspondence with S itself.
 \[
 n\,P_k = \frac{n!}{(n-k)!}
 \]
Generating a Single Random Permutation

Permuteset $(A[0 \ldots n - 1])$

```plaintext
for $i \leftarrow 0$ to $n - 2$
    $j \leftarrow \text{RandInt}(i + 1, n - 1)$
    Swap$(A, i, j)$
```

- Basic operation is **RandInt**
- The loop is $\Theta(n)$

- In general, items in a permutation can be anything
- We think of them as ordered sets
 \{ $a_0, a_2, \ldots, a_{n-1}$ \}
- But we'll talk about them as a lists of integers for simplicity

For example:
\{1, 2, 3, 4, 5, 6, 7, 8\}
Generating a Single Random Permutation

PermuteSet(A[0...n − 1])

```
for i ← 0 to n − 2
   j ← RandInt(i + 1, n − 1)
   Swap(A, i, j)
```

- Basic operation is `RandInt`
- The loop is $\Theta(n)$

- In general, items in a permutation can be anything
- We think of them as ordered sets
 \[\{a_0, a_2, \ldots, a_{n-1}\} \]
- But we'll talk about them as a lists of integers for simplicity

For example:
\[\{4, 2, 3, 1, 5, 6, 7, 8\} \]
Generating a Single Random Permutation

PermuteSet($A[0 \ldots n-1]$)

for $i ← 0$ to $n-2$

\[j ← \text{RandInt}(i + 1, n-1) \]

Swap(A, i, j)

- Basic operation is RandInt
- The loop is $\Theta(n)$

In general, items in a permutation can be anything

We think of them as ordered sets
\[\{a_0, a_2, \ldots, a_{n-1}\} \]

But we'll talk about them as a lists of integers for simplicity

For example:
\[\{4, 7, 3, 1, 5, 6, 2, 8\} \]
Generating a Single Random Permutation

\[\text{PERMUTESET}(A[0 \ldots n-1]) \]

\[
\text{for } i \leftarrow 0 \text{ to } n-2 \\
\quad j \leftarrow \text{RANDINT}(i+1, n-1) \\
\quad \text{SWAP}(A, i, j)
\]

- Basic operation is \text{RANDINT}
- The loop is \(\Theta(n)\)

In general, items in a permutation can be anything

We think of them as ordered sets
\(\{a_0, a_2, \ldots, a_{n-1}\}\)

But we'll talk about them as a lists of integers for simplicity

\textbf{For example:} \(\{4, 7, 1, 3, 5, 6, 2, 8\}\)
Generating a Single Random Permutation

PermuteSet\(^{(A[0 \ldots n - 1])}\)

\[
\text{for } i \leftarrow 0 \text{ to } n - 2 \\
\quad j \leftarrow \text{RandInt}(i + 1, n - 1) \\
\quad \text{Swap}(A, i, j)
\]

- Basic operation is \text{RandInt}
- The loop is \(\Theta(n)\)

- In general, items in a permutation can be anything
- We think of them as ordered sets \{a_0, a_2, \ldots, a_{n-1}\}
- But we’ll talk about them as a lists of integers for simplicity

For example:
\{4, 7, 1, 8, 5, 6, 2, 3\}
Generating a Single Random Permutation

PermuteSet(*A[0…n−1]*)

```plaintext
for \( i \leftarrow 0 \) to \( n-2 \)
  \( j \leftarrow \text{RandInt}(i+1, n-1) \)
  Swap(*A*, \( i, j \))
```

- Basic operation is **RandInt**
- The loop is \(\Theta(n) \)

- In general, items in a permutation can be anything
- We think of them as ordered sets \(\{a_0, a_2, \ldots, a_{n-1}\} \)
- But we'll talk about them as a lists of integers for simplicity

For example:
\(\{4, 7, 1, 8, 2, 6, 5, 3\} \)
Generating a Single Random Permutation

PermuteSet\((A[0 \ldots n - 1])\)

\[
\text{for } i \leftarrow 0 \text{ to } n - 2 \quad \\
\quad j \leftarrow \text{RandInt}(i + 1, n - 1) \quad \\
\quad \text{Swap}(A, i, j)
\]

- Basic operation is \(\text{RandInt}\)
- The loop is \(\Theta(n)\)

- In general, items in a permutation can be anything
- We think of them as ordered sets \(\{a_0, a_2, \ldots, a_{n-1}\}\)
- But we'll talk about them as a lists of integers for simplicity

For example:
\(\{4, 7, 1, 8, 2, 3, 5, 6\}\)
Generating All Permutations

- Suppose we want to generate all permutations between 1 and \(n \)
- We can use Decrease-and-Conquer:
 - Given that the \(n - 1 \) permutations are generated
 - We can generate the \(n^{th} \) permutations by inserting \(n \) at all possible \(n \) positions
 - We start adding right-to-left, then switch when a new perm is processed
Generating All Permutations

- Suppose we want to generate all permutations between 1 and n
- We can use Decrease-and-Conquer:
 - Given that the $n - 1$ permutations are generated
 - We can generate the n^{th} permutations by inserting n at all possible n positions
 - We start adding right-to-left, then switch when a new perm is processed

Start
Insert 2
 1
 12
 21
 right to left
Insert 3
 123
 132
 312
 321
 231
 213
 right to left
 left to right
Generating All Permutations

- Suppose we want to generate all permutations between 1 and \(n \)
- We can use Decrease-and-Conquer:
 - Given that the \(n - 1 \) permutations are generated
 - We can generate the \(n^{th} \) permutations by inserting \(n \) at all possible \(n \) positions
 - We start adding right-to-left, then switch when a new perm is processed

Start

| Insert 2 | 12 | 21 |
| 12 | 21 |

right to left

| Insert 3 | 123 | 132 | 312 | 321 | 231 | 213 |
| 123 | 132 | 312 | 321 | 231 | 213 |

right to left left to right

Satisfies \textit{minimal-change}: each permutation can be obtained from its predecessor by exchanging just two elements.
Generating n^{th} Permutation

- We can get the same ordering of permutations of n elements without generating the smaller permutations
 - We associate a direction with each element in the permutation: $3 \ 2 \ 4 \ 1$
 - A *mobile* component is one in which the arrow points to a smaller adjacent value (3 & 4 above, but not 1 & 2)

JOHNSON-TROTTER(n)

Initialize the first permutation with $1 \ 2 \ \cdots \ n$
while there exists a mobile k do
 - Find the largest mobile integer k
 - Swap k and the adjacent integer its arrow points to
 - Reverse the direction of all integers larger than k
Generating n^{th} Permutation

- We can get the same ordering of permutations of n elements without generating the smaller permutations
 - We associate a direction with each element in the permutation: $\rightarrow \leftarrow \rightarrow \leftarrow$
 - A *mobile* component is one in which the arrow points to a smaller adjacent value (3 & 4 above, but not 1 & 2)

```
JOHNSON_TROTTER(n)

Initialize the first permutation with $\leftarrow \leftarrow \leftarrow \cdots \leftarrow$
while there exists a mobile $k$ do
  - Find the largest mobile integer $k$
  - Swap $k$ and the adjacent integer its arrow points to
  - Reverse the direction of all integers larger than $k$

1 2 3
1 3 2
3 1 2
3 2 1
2 3 1
2 1 3
```
Generating Subsets

- Given some universal set: \(U = \{a_1, a_2, \cdots, a_n\} \), generate all possible subsets
- The set of all subsets is called a \textit{power set}; there are \(2^n \) of them

\[
\begin{array}{c|l}
 n & \text{subsets} \\
\hline
0 & \emptyset \\
1 & \emptyset, \{a_1\} \\
2 & \emptyset, \{a_1\}, \{a_2\}, \{a_1, a_2\} \\
3 & \emptyset, \{a_1\}, \{a_2\}, \{a_3\}, \{a_1, a_2\}, \{a_1, a_3\}, \{a_2, a_3\}, \{a_1, a_2, a_3\}
\end{array}
\]
Generating Subsets

- Given some universal set: \(U = \{a_1, a_2, \ldots, a_n\} \), generate all possible subsets

- The set of all subsets is called a *power set*; there are \(2^n\) of them

<table>
<thead>
<tr>
<th>(n)</th>
<th>subsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>1</td>
<td>(\emptyset) {(a_1)}</td>
</tr>
<tr>
<td>2</td>
<td>(\emptyset) {(a_1)} {(a_2)} {(a_1, a_2)}</td>
</tr>
<tr>
<td>3</td>
<td>(\emptyset) {(a_1)} {(a_2)} {(a_3)} {(a_1, a_2)} {(a_1, a_3)} {(a_2, a_3)} {(a_1, a_2, a_3)}</td>
</tr>
</tbody>
</table>

- Can represent a set as a binary string:
 - \(000 \quad 001 \quad 010 \quad 011 \quad 100 \quad 101\)
 - \(\emptyset \{a_3\} \{a_2\} \{a_2, a_3\} \{a_1\} \{a_1, a_3\} \ldots\)

- Is there an equivalent to minimal-change algorithm here?
Generating Subsets

- Given some universal set: \(U = \{a_1, a_2, \ldots, a_n\} \), generate all possible subsets.

- The set of all subsets is called a *power set*; there are \(2^n \) of them.

<table>
<thead>
<tr>
<th>(n)</th>
<th>subsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>1</td>
<td>(\emptyset) ({a_1})</td>
</tr>
<tr>
<td>2</td>
<td>(\emptyset) ({a_1}) ({a_2}) ({a_1, a_2})</td>
</tr>
<tr>
<td>3</td>
<td>(\emptyset) ({a_1}) ({a_2}) ({a_3}) ({a_1, a_2}) ({a_1, a_3}) ({a_2, a_3}) ({a_1, a_2, a_3})</td>
</tr>
</tbody>
</table>

- Can represent a set as a binary string:

 \[
 \begin{array}{cccccccc}
 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
 \emptyset & \{a_3\} & \{a_2\} & \{a_2, a_3\} & \{a_1\} & \{a_1, a_3\} & \ldots \\
 \end{array}
 \]

- Is there an equivalent to minimal-change algorithm here? Yes: 000 001 011 010 100 111 101 100 (Gray code)
Fake-Coin Problem

- You are given n coins, one of which is fake (you don’t know which)
- You are provided a balance scale to compare sets of coins
- What is an efficient method for identifying the coin?
Fake-Coin Problem

- You are given n coins, one of which is fake (you don’t know which)
- You are provided a balance scale to compare sets of coins
- What is an efficient method for identifying the coin?

1. Hold one (or two) coins aside
2. Divide the remainder into two equal halves
3. If they balance, the fake has been set aside
4. Otherwise examine the lighter pile in the same way

$W(n) = W(\lfloor n/2 \rfloor) + 1$ for $n > 1$, $W(1) = 0 \in \Theta(\lg n)$
Fake-Coin Problem

- You are given n coins, one of which is fake (you don’t know which)
- You are provided a balance scale to compare sets of coins
- What is an efficient method for identifying the coin?

1. Hold one (or two) coins aside
2. Divide the remainder into two equal halves
3. If they balance, the fake has been set aside
4. Otherwise examine the lighter pile in the same way

$W(n) = W(\lfloor n/2 \rfloor) + 1$ for $n > 1$, $W(1) = 0 \in \Theta(\lg n)$

But wait! This is not the most efficient way. What if you divided into three equal piles?
Multiplication à la Russe

- We want to compute the product of \(n \) and \(m \), two positive integers.
- But we only know how to add and multiple & divide by two.
- If \(n \) is even, we can re-write: \(n \cdot m = \frac{n}{2} \cdot 2m \)
- If \(n \) is odd, we can re-write: \(n \cdot m = \frac{n-1}{2} \cdot 2m + m \)
- We can apply this method iteratively until \(n = 1 \)
Multiplication à la Russe

- We want to compute the product of n and m, two positive integers.
- But we only know how to add and multiply & divide by two.
- If n is even, we can re-write: $n \cdot m = \frac{n}{2} \cdot 2m$
- If n is odd, we can re-write: $n \cdot m = \frac{n-1}{2} \cdot 2m + m$
- We can apply this method iteratively until $n = 1$

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>25</td>
<td>130</td>
</tr>
<tr>
<td>12</td>
<td>260</td>
</tr>
<tr>
<td>6</td>
<td>520</td>
</tr>
<tr>
<td>3</td>
<td>1040</td>
</tr>
<tr>
<td>1</td>
<td>2080</td>
</tr>
</tbody>
</table>

3,250
Median and Selection

- The *selection problem*: Find the k^{th} smallest element in a list of n numbers (the k^{th} order statistics)
- Finding the *median* is a special case: $k = \lceil n/2 \rceil$
- Brute force: Sort, then select the k^{th} value in the list: $O(n \lg n)$
- But we can do better: Use the partitioning logic from **QuickSort**
Median and Selection

- The selection problem: Find the k^{th} smallest element in a list of n numbers (the k^{th} order statistics)
- Finding the median is a special case: $k = \lceil n/2 \rceil$
- Brute force: Sort, then select the k^{th} value in the list: $O(n \lg n)$
- But we can do better: Use the partitioning logic from QuickSort

\[
\begin{array}{cccc}
 a_1 & \cdots & a_s & p & a_{s+1} & \cdots & a_n \\
 \leq p & & & \geq p
\end{array}
\]

- If $s = k$ then p solves the problem
- If $s > k$ then the k^{th} smallest element in whole list is the k^{th} smallest element left-side sublist
- If $s < k$ then the k^{th} smallest element in whole list is the $(k - s)^{th}$ smallest element right-side sublist
- Average: $C(n) = C(n/2) + (n - 1) \in \Theta(n)$
Interpolation Search

- Like **BinarySearch**, but more like a telephone book
- Rather than split the list in half, we interpolate the position based on the key value

 - \(v := \text{search key value} \)
 - \(l := \text{left index} \)
 - \(r := \text{right index} \)
 - \(y = mx + b \implies x = \frac{y-b}{m} \)
 - \(x = l + \left\lfloor \frac{(v - A[l])(r-l)}{A[r] - A[l]} \right\rfloor \)
 - Average case: \(O(\lg \lg n) \)
Introduction to Transform & Conquer

- In many cases, one can transform a problem instance and solve the transformed problem.
- Three variations of this idea are as follows:
 - **instance simplification** — Transform problem instance into a simpler or more convenient instance.
 - **representation change** — Transform problem instance representations.
 - **problem reduction** — Transform problem instance into an instance of different problem.
Presorting

- Many questions about lists can be answered more easily when the list is already sorted
- The cost of the sort itself should be warranted

Example: Element uniqueness
Presorting

- Many questions about lists can be answered more easily when the list is already sorted
- The cost of the sort itself should be warranted

Example: Element uniqueness
- Brute force: compare every element against every other element, $\Theta(n^2)$
- Presort & scan:
 $$T(n) = T_{\text{sort}}(n) + T_{\text{scan}} = \Theta(n \lg n) + \Theta(n) \in \Theta(n \lg n)$$

Example: Search
Presorting

- Many questions about lists can be answered more easily when the list is already sorted
- The cost of the sort itself should be warranted

Example: Element uniqueness
- Brute force: compare every element against every other element, $\Theta(n^2)$
- Presort & scan:
 \[T(n) = T_{\text{sort}}(n) + T_{\text{scan}} = \Theta(n \lg n) + \Theta(n) \in \Theta(n \lg n) \]

Example: Search
- Brute force: linear search: $\Theta(n)$
- Presort & binary search:
 $\Theta(n \lg n) + \Theta(\lg n) \in \Theta(n \lg n)$
- Presorting does not help with one search, though perhaps it will with *many* searches on the same list

Example: Computing a *mode* (most frequent value)
Presorting

■ Many questions about lists can be answered more easily when the list is already sorted
■ The cost of the sort itself should be warranted

Example: Element uniqueness
■ Brute force: compare every element against every other element, $\Theta(n^2)$
■ Presort & scan:
 $T(n) = T_{\text{sort}}(n) + T_{\text{scan}} = \Theta(n \log n) + \Theta(n) \in \Theta(n \log n)$

Example: Search
■ Brute force: linear search: $\Theta(n)$
■ Presort & binary search:
 $\Theta(n \log n) + \Theta(\log n) \in \Theta(n \log n)$
■ Presorting does not help with one search, though perhaps it will with many searches on the same list

Example: Computing a *mode* (most frequent value)
■ Brute force: scan list an store count in auxiliary list then scan auxiliary list for highest frequency, worst case time $\Theta(n^2)$
■ Presort, Longest-run: sort then scan through list looking for the longest run of a value, $\Theta(n \log n)$
Gaussian Elimination

Problem: Solve a system of n linear equations with n unknowns

\[
\begin{align*}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
\vdots \\
a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n &= b_n
\end{align*}
\]

This can be written as $A\vec{x} = \vec{b}$

Gaussian Elimination first asks us to transform the problem to a different one, one that has the same solution: $A'\vec{x} = \vec{b}'$

The transformation yields a matrix with all zeros below its main diagonal:

\[
A' = \begin{bmatrix}
a'_{11} & a'_{12} & \cdots & a'_{1n} \\
0 & a'_{22} & \cdots & a'_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a'_{nn}
\end{bmatrix}, \quad \vec{b}' = \begin{bmatrix}
b'_1 \\
b'_2 \\
\vdots \\
v'_n
\end{bmatrix}
\]
Gaussian Elimination

- Problem: Solve a system of n linear equations with n unknowns

\[\begin{align*}
a_{11}x_1 + a_{12}x_2 + & \cdots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + & \cdots + a_{2n}x_n = b_2 \\
& \vdots \\
a_{n1}x_1 + a_{n2}x_2 + & \cdots + a_{nn}x_n = b_n
\end{align*}\]

- This can be written as $A\vec{x} = \vec{b}$

- Gaussian Elimination first asks us to transform the problem to a different one, one that has the same solution: $A'\vec{x} = \vec{b}'$

- The transformation yields a matrix with all zeros below its main diagonal:

\[
A' = \begin{bmatrix}
a'_{11} & a'_{12} & \cdots & a'_{1n} \\
0 & a'_{22} & \cdots & a'_{2n} \\
& \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a'_{nn}
\end{bmatrix}, \quad \vec{b}' = \begin{bmatrix}
b'_1 \\
b'_2 \\
& \vdots \\
v'_n
\end{bmatrix}
\]

A simple backward substitution method can be used to obtain the solution now!
Gaussian Elimination: Obtaining An Upper-Triangle Coefficient Matrix

- Solutions to the system are invariant to three *elementary operations*:
 - Exchange two equations of the system
 - Replace an equation with its nonzero multiple
 - Replace an equation with a sum or difference of this equation and some multiple of another

- Consider the following example:

\[
\begin{align*}
2x_1 - x_2 + x_3 &= 1 \\
4x_1 + x_2 - x_3 &= 5 \\
x_1 + x_2 + x_3 &= 0
\end{align*}
\]

\[
\begin{bmatrix}
2 & -1 & 1 & 1 \\
4 & 1 & -1 & 5 \\
1 & 1 & 1 & 0
\end{bmatrix}
\]

row 2 ← row2 - row1 * \(\frac{4}{2} \)
row3 ← row3 - row1 * \(\frac{1}{2} \)
Gaussian Elimination: Obtaining An Upper-Triangle Coefficient Matrix

- Solutions to the system are invariant to three *elementary operations*:
 - Exchange two equations of the system
 - Replace an equation with its nonzero multiple
 - Replace an equation with a sum or difference of this equation and some multiple of another

- Consider the following example:

 \[
 \begin{align*}
 2x_1 - x_2 + x_3 &= 1 \\
 4x_1 + x_2 - x_3 &= 5 \\
 x_1 + x_2 + x_3 &= 0
 \end{align*}
 \]

 \[
 \begin{bmatrix}
 2 & -1 & 1 \\
 0 & 3 & -3 \\
 0 & 3/2 & 1/2
 \end{bmatrix}
 \begin{bmatrix}
 1 \\
 3 \\
 -1/2
 \end{bmatrix}
 \]

 \[
 \text{row}_3 \leftarrow \text{row}_3 - \text{row}_2 \times \frac{1}{2}
 \]
Solutions to the system are invariant to three *elementary operations*:
- Exchange two equations of the system
- Replace an equation with its nonzero multiple
- Replace an equation with a sum or difference of this equation and some multiple of another

Consider the following example:

\[
\begin{align*}
2x_1 - x_2 + x_3 &= 1 \\
4x_1 + x_2 - x_3 &= 5 \\
x_1 + x_2 + x_3 &= 0
\end{align*}
\]

\[
\begin{bmatrix}
2 & -1 & 1 \\
0 & 3 & -3 \\
0 & 0 & 2
\end{bmatrix}
\begin{bmatrix}
1 \\
3 \\
-2
\end{bmatrix}
\] Upper-triangle form!
LU Decomposition

- If we track the row multiples used during Gaussian elimination, we can construct a lower-triangular matrix (with one’s on the diagonal)

\[
L = \begin{bmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
\frac{1}{2} & \frac{1}{2} & 1
\end{bmatrix}
\]

- We can also consider the upper-triangular matrix produced by Gaussian elimination, leaving off the \(\vec{b}' \) vector:

\[
U = \begin{bmatrix}
2 & -1 & 1 \\
0 & 3 & -3 \\
0 & 0 & 2
\end{bmatrix}
\]

- It turns out that \(A = LU \), so we can re-write our original system as \(LU\vec{x} = \vec{b} \)

- We can split this into two steps, and solve each with back substitution: \(L\vec{y} = \vec{b} \) then \(U\vec{x} = \vec{y} \)

- Advantage: We can solve many systems with different \(\vec{b} \) vectors in the same way, with minimal additional effort
LU Decomposition

- If we track the row multiples used during Gaussian elimination, we can construct a lower-triangular matrix (with one’s on the diagonal)

\[
L = \begin{bmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
\frac{1}{2} & \frac{1}{2} & 1
\end{bmatrix}
\]

- We can also consider the upper-triangular matrix produced by Gaussian elimination, leaving off the \(\vec{b}' \) vector:

\[
U = \begin{bmatrix}
2 & -1 & 1 \\
0 & 3 & -3 \\
0 & 0 & 2
\end{bmatrix}
\]

- It turns out that \(A = LU \), so we can re-write our original system as \(LU\vec{x} = \vec{b} \)

- We can split this into two steps, and solve each with back substitution: \(L\vec{y} = \vec{b} \) then \(U\vec{x} = \vec{y} \)

- Advantage: We can solve many systems with different \(\vec{b} \) vectors in the same way, with minimal additional effort

NOTE: We can actually store \(L \) and \(U \) in the same matrix to save space.
Matrix Inversion

The inverse of a matrix, denoted A', is defined as $AA' = I$, where I is the identity matrix.

But this can be written as a series of systems of linear equations, $A \vec{x}^j = \vec{e}^j$, $A' = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$

where:

- \vec{x}^j is the j^{th} column of the inverse matrix
- \vec{e}^j is the j^{th} column of the identity matrix

We can compute the LU decomposition of A, then systematically attempt to solve for each column of the inverse.

If compute a U with zeros on the diagonal, there is no inverse and A is said to be *singular*.
Matrix Inversion

The inverse of a matrix, denoted A', is defined as $AA' = I$, where I is the identity matrix.

But this can be written as a series of systems of linear equations, $A\vec{x}^j = \vec{e}^j$, where:

- \vec{x}^j is the j^{th} column of the inverse matrix
- \vec{e}^j is the j^{th} column of the identity matrix

We can compute the LU decomposition of A, then systematically attempt to solve for each column of the inverse.

If compute a U with zeros on the diagonal, there is no inverse and A is said to be singular.
The inverse of a matrix, denoted A', is defined as $AA' = I$, where I is the identity matrix.

But this can be written as a series of systems of linear equations, $A\vec{x}^j = \vec{e}^j$ where:

- \vec{x}^j is the j^{th} column of the inverse matrix
- \vec{e}^j is the j^{th} column of the identity matrix

We can compute the LU decomposition of A, then systematically attempt to solve for each column of the inverse.

If compute a U with zeros on the diagonal, there is no inverse and A is said to be *singular*.
Book Topics Skipped in Lecture

- In section 5.5:
 - *Josephus Problem* (pp. 182–184)
- In section 5.6:
 - *Search and Insertion in a Binary Search Tree* (pp. 188–189)
- In section 6.2:
 - The *GaussElimnation* and *BetterGaussElimination* algorithms in detail (pp. 202–203)
 - *Computing a Determinant* (pp. 206–207)
Assignments

This week’s assignments:

- Section 5.3: Problems 1, 2, & 5
- Section 5.4: Problems 1, 2, & 5
- Section 5.5: Problems 2 & 4
- Section 5.6: Problems 2 & 6
- Section 6.1: Problems 1, 5, & 6
- Section 6.2: Problems 1, 2, & 7
Project II: Balanced Trees

See project description at:
http://www.cs.gmu.edu/~pwiegand/cs483/assignments.htm

The project will be due by midnight April 7.