Outline	Topological Sorting	Combinatorics 00000	Constant-Factor	Variable-Size 00	Transform 00	Gaussian 0000	Homework 000

CS 483 - Data Structures and Algorithm Analysis Lecture VI: Chapter 5, part 2; Chapter 6, part 1

R. Paul Wiegand

George Mason University, Department of Computer Science

March 8, 2006

George Mason University, Department of Computer Science

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		

Outline

- 1 Topological Sorting
- 2 Generating Combinatorial Objects
- 3 Decrease-by-Constant Factor
- 4 Variable-Size-Decrease Algorithms
- 5 Transform & Conquer
- 6 Gaussian Elimination

7 Homework

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
	●00000					

DFS & BFS Edge-Types

- tree edge Edge encountered by the search that leads to an as-yet unvisited node (DFS & BFS)
- back edge Edge leading to a previously visited vertex other than its immediate predecessor (DFS)
- cross edge Edge leading to a previously visited vertex other than its immediate predecessor (BFS)

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
	00000					

DFS & BFS Edge-Types

- tree edge Edge encountered by the search that leads to an as-yet unvisited node (DFS & BFS)
- back edge Edge leading to a previously visited vertex other than its immediate predecessor (DFS)
- cross edge Edge leading to a previously visited vertex other than its immediate predecessor (BFS)

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
	00000					

DFS & BFS Edge-Types

- tree edge Edge encountered by the search that leads to an as-yet unvisited node (DFS & BFS)
- back edge Edge leading to a previously visited vertex other than its immediate predecessor (DFS)
- cross edge Edge leading to a previously visited vertex other than its immediate predecessor (BFS)

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
	00000					

Directed Graphs: A Review

- A *directed graph* (digraph) is a graph with *directed edges*
- We can use the same representational constructs: adjacency matrices & adjacency lists
- But there are some differences from the undirected case:
 - Adjacency matrix need not be symmetric
 - An edge in the digraph has only one node in an adjacency list
- We can still use DFS & BFS to traverse such graphs, but the resulting search forest is often more complicated
- There are now four edge types
 - tree edge Edge leading to an as-yet unvisited node
 - back edge Edge leading from some vertex to a previously visited ancestor
 - forward edge Edge leading from a previously visited ancestor to some vertex
 - cross edge Remaining edge types

Outline Topo	logical Sorting	Combinatorics	Constant-Factor	Variable-Size		
000	000	00000			0000	

Directed Graphs: More Review

George Mason University, Department of Computer Science

'문에 세명에 '문

- 17 ▶

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
	00000	00000			0000	

Directed Graphs: More Review

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
	00000	00000			0000	000

Directed Graphs: More Review

NOTE: A digraph with no back edges has no directed cycles. We call this a *directed acyclic graph* (DAG).

A (10) × (10)

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
	000000					

- Many real-world situations can be modeled with DAGs
- Consider problems involving dependencies (e.g., course pre-requisites):

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
	000000					

- Many real-world situations can be modeled with DAGs
- Consider problems involving dependencies (e.g., course pre-requisites):
 - If you could take only one course at a time, what order would you choose?

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
	000000	00000			0000	

- Many real-world situations can be modeled with DAGs
- Consider problems involving dependencies (e.g., course pre-requisites):

- If you could take only one course at a time, what order would you choose?
- More generally: Order the vertices of a DAG such that for every edge, the vertex where the edge starts precedes the vertex where the edge ends?

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
	000000	00000			0000	

- Many real-world situations can be modeled with DAGs
- Consider problems involving dependencies (e.g., course pre-requisites):

- If you could take only one course at a time, what order would you choose?
- More generally: Order the vertices of a DAG such that for every edge, the vertex where the edge starts precedes the vertex where the edge ends?
- This problem is called topological sorting

George Mason University, Department of Computer Science

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
	000000	00000			0000	

Two Algorithms to Sort Topologies

Algorithm 1

- Apply Depth-First Search
- Note the order in which the nodes become "dead" (popped off the traversal stack)
- Reverse the order; that is your answer
- Why does this work? When vertex v is popped off the stack, no vertex u with an edge (u, v) can be among the vertices popped of before v (otherwise (u, v) would be a back edge).

Algorithm 2

- Identify a *source* in the digraph (node with no in-coming edges)
- Break ties arbitrarily
- Record then delete the node, along with all edges from that node
- Repeat the process on the remaining subgraph
- When the graph is empty, you are done

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
	000000	00000			0000	

George Mason University, Department of Computer Science

A ►

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
	00000					

MAT105

George Mason University, Department of Computer Science

3

э

Outline	Topological Sorting 00000●	Combinatorics 00000	Constant-Factor 00	Variable-Size 00	Gaussian 0000	Homework 000

イロト イ団ト イヨト イヨト George Mason University, Department of Computer Science

э

Outline	Topological Sorting 00000●	Combinatorics 00000	Constant-Factor 00	Variable-Size 00	Gaussian 0000	Homework 000

George Mason University, Department of Computer Science

э

Outline	Topological Sorting 00000●	Combinatorics 00000	Constant-Factor 00	Variable-Size 00	Gaussian 0000	Homework 000

<ロト <問ト < 臣ト < 臣 George Mason University, Department of Computer Science

э

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
	000000					

イロト イ団ト イヨト イヨト George Mason University, Department of Computer Science

э

Outline	Topological Sorting 00000●	Combinatorics 00000	Constant-Factor 00	Variable-Size	Gaussian 0000	Homework 000

イロト イ団ト イヨト イヨト George Mason University, Department of Computer Science

э

Outline	Topological Sorting 00000●	Combinatorics 00000	Constant-Factor 00	Variable-Size	Gaussian 0000	Homework 000

イロト イ団ト イヨト イヨト George Mason University, Department of Computer Science

э

Outline	Topological Sorting 00000●	Combinatorics	Constant-Factor	Variable-Size 00	Gaussian 0000	Homework 000

CS483

Example On Algorithm 2

- MAT105
- CS112
- MAT113
- MAT125
- CS211
- MAT114
- CS330
- CS310

イロト イヨト イヨト イヨト George Mason University, Department of Computer Science

э

Outline	Topological Sorting 00000●	Combinatorics	Constant-Factor	Variable-Size 00	Gaussian 0000	Homework 000

- MAT105
- CS112
- MAT113
- MAT125
- CS211
- MAT114
- CS330
- CS310
- CS483

<ロ> (日) (日) (日) (日) (日) George Mason University, Department of Computer Science

э

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
		00000				

Reviewing Combinations & Permutations

What is the difference between a *combination* and a *permutation*?

combination -

permutation -

《日》《圖》《臣》《夏》 (夏) 夏) の(C

R. Paul Wiegand CS483 Lecture II George Mason University, Department of Computer Science

000000 00000			

Reviewing Combinations & Permutations

What is the difference between a *combination* and a *permutation*?

combination — The number of ways of picking k unordered outcomes from n possibilities. We often write it as "n choose k". $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

permutation -

George Mason University, Department of Computer Science

000000 00000			

Reviewing Combinations & Permutations

What is the difference between a *combination* and a *permutation*?

- combination The number of ways of picking k unordered outcomes from n possibilities. We often write it as "n choose k". $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- permutation A permutation is a rearrangement of the elements of an ordered list S into a one-to-one correspondence with Sitself. $_{n}P_{k} = \frac{n!}{(n-k)!}$

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
		0000				

PERMUTESET($A[0 \dots n-1]$)

for
$$i \leftarrow 0$$
 to $n-2$
 $j \leftarrow \text{RANDINT}(i+1, n-1)$
 $\text{SWAP}(A, i, j)$

- Basic operation is RANDINT
- The loop is $\Theta(n)$

- In general, items in a permutation can be anything
- We think of them as ordered sets

 $\{a_0, a_2, \ldots, a_{n-1}\}$

 But we'll talk about them as a lists of integers for simplicity

For example:

 $\{1,2,3,\textbf{4},5,6,7,8\}$

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
		0000				

PERMUTESET($A[0 \dots n-1]$)

for
$$i \leftarrow 0$$
 to $n-2$
 $j \leftarrow \text{RANDINT}(i+1, n-1)$
 $\text{SWAP}(A, i, j)$

- Basic operation is RANDINT
- The loop is $\Theta(n)$

- In general, items in a permutation can be anything
- We think of them as ordered sets

 $\{a_0,a_2,\ldots,a_{n-1}\}$

 But we'll talk about them as a lists of integers for simplicity

For example:

 $\{4, 2, 3, 1, 5, 6, 7, 8\}$

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
		0000				

PERMUTESET($A[0 \dots n-1]$)

for
$$i \leftarrow 0$$
 to $n-2$
 $j \leftarrow \text{RANDINT}(i+1, n-1)$
 $\text{SWAP}(A, i, j)$

- Basic operation is RANDINT
- The loop is $\Theta(n)$

- In general, items in a permutation can be anything
- We think of them as ordered sets

 $\{a_0, a_2, \ldots, a_{n-1}\}$

 But we'll talk about them as a lists of integers for simplicity

For example:

 $\{4,7,{\color{red}{3}},{\color{blue}{1}},{\color{blue}{5}},{\color{blue}{6}},{\color{blue}{2}},{\color{blue}{8}}\}$

ৰ়্া ১ ব্টা ২ ব্টা ২ ব্টা ২ টা ২ ব্টা ২ বি George Mason University, Department of Computer Science

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
		0000				

PERMUTESET($A[0 \dots n-1]$)

for
$$i \leftarrow 0$$
 to $n-2$
 $j \leftarrow \text{RANDINT}(i+1, n-1)$
 $\text{SWAP}(A, i, j)$

- Basic operation is RANDINT
- The loop is $\Theta(n)$

- In general, items in a permutation can be anything
- We think of them as ordered sets

 $\{a_0,a_2,\ldots,a_{n-1}\}$

 But we'll talk about them as a lists of integers for simplicity

For example: {4,7,1,3,5,6,2,8}

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
		0000				

PERMUTESET($A[0 \dots n-1]$)

for
$$i \leftarrow 0$$
 to $n-2$
 $j \leftarrow \text{RANDINT}(i+1, n-1)$
 $\text{SWAP}(A, i, j)$

- Basic operation is RANDINT
- The loop is $\Theta(n)$

- In general, items in a permutation can be anything
- We think of them as ordered sets

 $\{a_0,a_2,\ldots,a_{n-1}\}$

 But we'll talk about them as a lists of integers for simplicity

For example: {4,7,1,8,5,6,2,3}

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
		0000				

PERMUTESET($A[0 \dots n-1]$)

for
$$i \leftarrow 0$$
 to $n-2$
 $j \leftarrow \text{RANDINT}(i+1, n-1)$
 $\text{SWAP}(A, i, j)$

- Basic operation is RANDINT
- The loop is $\Theta(n)$

- In general, items in a permutation can be anything
- We think of them as ordered sets

 $\{a_0,a_2,\ldots,a_{n-1}\}$

 But we'll talk about them as a lists of integers for simplicity

For example: $\{4, 7, 1, 8, 2, 6, 5, 3\}$

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
		0000				

PERMUTESET($A[0 \dots n-1]$)

for
$$i \leftarrow 0$$
 to $n-2$
 $j \leftarrow \text{RANDINT}(i+1, n-1)$
 $\text{SWAP}(A, i, j)$

- Basic operation is RANDINT
- The loop is $\Theta(n)$

- In general, items in a permutation can be anything
- We think of them as ordered sets

 $\{a_0, a_2, \ldots, a_{n-1}\}$

 But we'll talk about them as a lists of integers for simplicity

For example: $\{4, 7, 1, 8, 2, 3, 5, 6\}$

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
		00000				

Generating All Permutations

- Suppose we want to generate all permutations between 1 and n
- We can use Decrease-and-Conquer:
 - Given that the n-1 permutations are generated
 - We can generate the nth permutations by inserting n at all possible n positions
 - We start adding right-to-left, then switch when a new perm is processed

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size 00	Gaussian 0000	Homework 000

Generating All Permutations

- Suppose we want to generate all permutations between 1 and *n*
- We can use Decrease-and-Conquer:
 - Given that the n-1 permutations are generated
 - We can generate the nth permutations by inserting n at all possible n positions
 - We start adding right-to-left, then switch when a new perm is processed

Start		-	1		
Insert 2		12	21		
		right	to left		
Insert 3	123 132	312	321	231	213
	right t	o left	left t	o righ	t

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
		00000				

Generating All Permutations

- Suppose we want to generate all permutations between 1 and *n*
- We can use Decrease-and-Conquer:
 - Given that the n-1 permutations are generated
 - We can generate the nth permutations by inserting n at all possible n positions
 - We start adding right-to-left, then switch when a new perm is processed

Start	1	Satisfies <i>minimal-change</i> : each
Insert 2	12 21	permutation can be obtained
	right to left	from its predecessor by ex-
Insert 3	123 132 312 321 231 213	changing just two elements
	right to left left to right	

Outline	Topological Sorting 000000	Combinatorics	Constant-Factor 00	Variable-Size 00	Gaussian 0000	Homework 000

Generating n^{th} Permutation

- We can get the same ordering of permutations of n elements without generating the smaller permutations
 - We associate a direction with each element in the permutation: $\overrightarrow{3} \begin{array}{c} \rightarrow \\ 2 \end{array} \overrightarrow{4} \begin{array}{c} \rightarrow \\ 1 \end{array}$
 - A mobile component is one in which the arrow points to a smaller adjacent value (3 & 4 above, but not 1 & 2)

JOHNSONTROTTER(n)

Initialize the first permutation with $\begin{array}{c} \leftarrow & \leftarrow \\ 1 & 2 \end{array}$ $\begin{array}{c} \leftarrow & \leftarrow \\ n \end{array}$ while there exists a mobile k do Find the largest mobile integer kSwap k and the adjacent integer its arrow points to Reverse the direction of all integers larger than k

Outline	Topological Sorting	Combinatorics	Constant-Factor 00	Variable-Size 00	Gaussian 0000	Homework 000

Generating n^{th} Permutation

- We can get the same ordering of permutations of n elements without generating the smaller permutations
 - We associate a direction with each element in the permutation: $\overrightarrow{3} \begin{array}{c} \rightarrow & \leftarrow \\ 3 \end{array} \xrightarrow{} 2 \end{array} \begin{array}{c} 4 \end{array}$
 - A mobile component is one in which the arrow points to a smaller adjacent value (3 & 4 above, but not 1 & 2)

JOHNSONTROTTER(*n*)

Initialize the first permutation with $\begin{array}{c} \leftarrow & \leftarrow \\ 1 & 2 \end{array}$ while there exists a mobile k do Find the largest mobile integer kSwap k and the adjacent integer its arrow points to Reverse the direction of all integers larger than k

$\rightarrow \rightarrow \rightarrow$
1 2 3
$\rightarrow \rightarrow \rightarrow$
1 3 2
$\leftrightarrow \leftrightarrow \rightarrow$
3 1 2
$\rightarrow \leftarrow \leftarrow$
3 2 1
$\leftarrow \rightarrow \leftarrow$
2 3 1
$\leftarrow \rightarrow \rightarrow$
2-1 3-

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
		00000				

Generating Subsets

1

■ Given some universal set: U = {a₁, a₂, · · · , a_n}, generate all possible subsets

The set of all subsets is called a *power set*; there are 2^n of them

п	subsets			
0	Ø			
1	Ø	$\{a_1\}$		
2	Ø	$\{a_1\}$ $\{a_2\}$	$\{a_1,a_2\}$	
3	Ø	$\{a_1\}$ $\{a_2\}$ $\{a_3\}$	$\left\{ a_1,a_2 ight\} \left\{ a_1,a_3 ight\} \left\{ a_2,a_3 ight\}$	$\{a_1,a_2,a_3\}$

イロト イヨト イヨト イ

Outline	Topological Sorting	Combinatorics 0000●	Constant-Factor	Variable-Size	Gaussian 0000	Homework 000

Generating Subsets

- Given some universal set: U = {a₁, a₂, · · · , a_n}, generate all possible subsets
- The set of all subsets is called a *power set*; there are 2^n of them

n subsets

Ø

0

Is there an equivalent to minimal-change algorithm here?

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
		00000				

Generating Subsets

- Given some universal set: U = {a₁, a₂, · · · , a_n}, generate all possible subsets
- The set of all subsets is called a *power set*; there are 2^n of them

n subsets

Ø

0

 Is there an equivalent to minimal-change algorithm here? Yes: 000 001 011 010 110 111 101 100 (Gray code)

・ 回 ト ・ ヨ ト ・ ヨ ト

Outline	Topological Sorting	Combinatorics 00000	Constant-Factor ●0	Variable-Size 00	Gaussian 0000	Homework 000
Fake	-Coin Prot	olem				

- You are given *n* coins, one of which is fake (you don't know which)
- You are provided a balance scale to compare sets of coins
- What is an efficient method for identifying the coin?

Outline	Topological Sorting	Combinatorics 00000	Constant-Factor ●0	Variable-Size 00	Gaussian 0000	Homework 000
Fake	-Coin Prob					

- You are given *n* coins, one of which is fake (you don't know which)
 - You are provided a balance scale to compare sets of coins
 - What is an efficient method for identifying the coin?
- 1 Hold one (or two) coins aside
- 2 Divide the remainder into two equal halves
- 3 If they balance, the fake has been set aside
- 4 Otherwise examine the lighter pile in the same way

$$W(n) = W(\lfloor n/2 \rfloor) + 1$$
 for $n > 1$, $W(1) = 0$ $\in \Theta(\lg n)$

Outline	Topological Sorting	Combinatorics 00000	Constant-Factor ●0	Variable-Size 00	Gaussian 0000	Homework 000
Fake	-Coin Prob					

- You are given *n* coins, one of which is fake (you don't know which)
- You are provided a balance scale to compare sets of coins
- What is an efficient method for identifying the coin?
- 1 Hold one (or two) coins aside
- Divide the remainder into two equal halves 2
- 3 If they balance, the fake has been set aside
- 4 Otherwise examine the lighter pile in the same way

$$W(n) = W(\lfloor n/2 \rfloor) + 1$$
 for $n > 1$, $W(1) = 0$ $\in \Theta(\lg n)$

But wait! This is not the most efficient way. What if you divided into three equal piles?

→ + Ξ →

Outline	Topological Sorting	Combinatorics 00000	Constant-Factor 0●	Variable-Size 00	Gaussian 0000	Homework 000
Mult	iplication á	á la Russ	e			

- We want to compute the product of n and m, two positive integers
- But we only know how to add and multiple & divide by two
- If *n* is even, we can re-write: $n \cdot m = \frac{n}{2} \cdot 2m$
- If *n* is odd, we can re-write: $n \cdot m = \frac{n-1}{2} \cdot 2m + m$
- We can apply this method iteratively until n = 1

Outline	Topological Sorting	Combinatorics 00000	Constant-Factor ○●	Variable-Size 00	Gaussian 0000	Homework 000
N /I I+	inligation é					

- Multiplication á la Russe
 - We want to compute the product of n and m, two positive integers
 - But we only know how to add and multiple & divide by two
 - If *n* is even, we can re-write: $n \cdot m = \frac{n}{2} \cdot 2m$
 - If *n* is odd, we can re-write: $n \cdot m = \frac{n-1}{2} \cdot 2m + m$
 - We can apply this method iteratively until n = 1

n	т	
50	65	
25	130	130
12	260	
6	520	
3	1040	1040
1	2080	2080
		3,250

Outline	Topological Sorting	Combinatorics 00000	Constant-Factor 00	Variable-Size ●0	Gaussian 0000	Homework 000

Median and Selection

- The selection problem: Find the kth smallest element in a list of n numbers (the kth order statistics)
- Finding the *median* is a special case: $k = \lceil n/2 \rceil$
- Brute force: Sort, then select the k^{th} value in the list: $O(n \lg n)$
- But we can do better: Use the partitioning logic from QUICKSORT

Outline	Topological Sorting	Combinatorics 00000	Constant-Factor 00	Variable-Size ●0	Gaussian 0000	Homework 000

Median and Selection

- The selection problem: Find the kth smallest element in a list of n numbers (the kth order statistics)
- Finding the *median* is a special case: $k = \lceil n/2 \rceil$
- Brute force: Sort, then select the k^{th} value in the list: $O(n \lg n)$
- But we can do better: Use the partitioning logic from QUICKSORT

$$egin{array}{cccc} a_1\cdots a_s & p & a_{s+1}\cdots a_n \ &\leq p & \geq p \end{array}$$

- If s = k then p solves the problem
- If s > k then the kth smallest element in whole list is the kth smallest element left-side sublist
- If s < k then the kth smallest element in whole list is the (k s)th smallest element right-side sublist
- Average: $C(n) = C(n/2) + (n-1) \in \Theta(n)$

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		
				00		

Interpolation Search

- Like BINARYSEARCH, but more like a telephone book
- Rather than split the list in half, we interpolate the position based on the key value
 - v := search key value • l := left index • r := right index • $y = mx + b \Longrightarrow x = \frac{y-b}{m}$ • $x = l + \left\lfloor \frac{(v-A[l])(r-l)}{A[r] - A[l]} \right\rfloor$ • Average case: $O(\lg \lg n)$

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size	Transform	
					•0	

Introduction to Transform & Conquer

- In many cases, one can transform a problem instance and solve the transformed problem
- Three variations of this idea are as follows:

instance simplicification — Transform problem instance into a simpler or more convenient istance representation change — Transform problem instance representations

problem reduction — Transform problem instance into an instance of different problem

Outline	Topological Sorting	Combinatorics 00000	Constant-Factor	Variable-Size 00	Transform ○●	Gaussian 0000	Homework 000	
Pres	orting							

- Many questions about lists can be answered more easily when the list is already sorted
- The cost of the sort itself should be warranted
- Example: Element uniqueness

Outline	Topological Sorting	Combinatorics 00000	Constant-Factor 00	Variable-Size 00	Transform ○●	Gaussian 0000	Homework 000

Presorting

- Many questions about lists can be answered more easily when the list is already sorted
- The cost of the sort itself should be warranted
- Example: Element uniqueness
 - Brute force: compare every element against every other element, Θ(n²)
 - Presort & scan: $T(n) = T_{sort}(n) + T_{scan} = \Theta(n \lg n) + \Theta(n) \in \Theta(n \lg n)$

Outline	Topological Sorting	Combinatorics 00000	Constant-Factor 00	Variable-Size	Transform ○●	Gaussian 0000	Homework 000

Presorting

- Many questions about lists can be answered more easily when the list is already sorted
- The cost of the sort itself should be warranted
- Example: Element uniqueness
 - Brute force: compare every element against every other element, Θ(n²)
 - Presort & scan: $T(n) = T_{sort}(n) + T_{scan} = \Theta(n \lg n) + \Theta(n) \in \Theta(n \lg n)$

- Example: Search
 - Brute force: linear search: $\Theta(n)$
 - Presort & binary search: $\Theta(n \lg n) + \Theta(\lg n) \in \Theta(n \lg n)$
 - Presorting does not help with one search, though perhaps it will with many searches on the same list
- Example: Computing a mode (most frequent value)

Outline	Topological Sorting	Combinatorics	Constant-Factor 00	Variable-Size 00	Transform ○●	Gaussian 0000	Homework 000

Presorting

- Many questions about lists can be answered more easily when the list is already sorted
- The cost of the sort itself should be warranted
- Example: Element uniqueness
 - Brute force: compare every element against every other element, Θ(n²)
 - Presort & scan: $T(n) = T_{sort}(n) + T_{scan} = \Theta(n \lg n) + \Theta(n) \in \Theta(n \lg n)$

Example: Search

- **Brute force:** linear search: $\Theta(n)$
- Presort & binary search: $\Theta(n \lg n) + \Theta(\lg n) \in \Theta(n \lg n)$
- Presorting does not help with one search, though perhaps it will with many searches on the same list
- Example: Computing a *mode* (most frequent value)
 - Brute force: scan list an store count in auxiliary list then scan auxiliary list for highest frequency, worst case time $\Theta(n^2)$
 - Presort, Longest-run: sort then scan through list looking for the longest run of a value, $\Theta(n \lg n)$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Outline	Topological Sorting	Combinatorics 00000	Constant-Factor	Variable-Size 00	Gaussian ●000	Homework 000

Gaussian Elimination

Problem: Solve a system of *n* linear equations with *n* unknowns

 $\begin{array}{rcl} a_{11}x_1 + a_{12}x_2 + & \cdots & +a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + & \cdots & +a_{2n}x_n = b_2 \\ & & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + & \cdots & +a_{nn}x_n = b_n \end{array}$

This can be written as $A\vec{x} = \vec{b}$

- Gaussian Elimination first asks us to transform the problem to a different one, one that has the same solution: $A'\vec{x} = \vec{b}'$
- The transformation yields a matrix with all zeros below its main diagonal:

$$A' = \begin{bmatrix} a'_{11} & a'_{12} & \cdots & a'_{1n} \\ 0 & a'_{22} & \cdots & a'_{2n} \\ \vdots & \ddots & & \\ 0 & 0 & \cdots & a'_{nn} \end{bmatrix}, \quad \vec{b}' = \begin{bmatrix} b'_1 & \cdot \\ b'_2 & \cdot \\ \vdots \\ v'_n & \cdot \end{bmatrix}$$

Outline	Topological Sorting	Combinatorics 00000	Constant-Factor	Variable-Size 00	Gaussian ●000	Homework 000

Gaussian Elimination

Problem: Solve a system of *n* linear equations with *n* unknowns

 $\begin{array}{rcl} a_{11}x_1 + a_{12}x_2 + & \cdots & +a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + & \cdots & +a_{2n}x_n = b_2 \\ & & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + & \cdots & +a_{nn}x_n = b_n \end{array}$

This can be written as $A\vec{x} = \vec{b}$

- Gaussian Elimination first asks us to transform the problem to a different one, one that has the same solution: $A'\vec{x} = \vec{b}'$
- The transformation yields a matrix with all zeros below its main diagonal:

$$A' = \begin{bmatrix} a'_{11} & a'_{12} & \cdots & a'_{1n} \\ 0 & a'_{22} & \cdots & a'_{2n} \\ \vdots & \ddots & & \\ 0 & 0 & \cdots & a'_{nn} \end{bmatrix}, \quad \vec{b}' = \begin{bmatrix} b'_1 \\ b'_2 \\ \vdots \\ v'_n \end{bmatrix}$$

A simple backward substitution method can be used to obtain the solution now!

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size	Gaussian	
					0000	

Gaussian Elimination: Obtaining An Upper-Triangle Coefficient Matrix

- Solutions to the system are invariant to three *elementary* operations:
 - Exchange two equations of the system
 - Replace an equation with its nonzero multiple
 - Replace an equation with a sum or difference of this equation and some multiple of another
- Consider the following example:

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size	Gaussian	
					0000	

Gaussian Elimination: Obtaining An Upper-Triangle Coefficient Matrix

- Solutions to the system are invariant to three *elementary* operations:
 - Exchange two equations of the system
 - Replace an equation with its nonzero multiple
 - Replace an equation with a sum or difference of this equation and some multiple of another
- Consider the following example:

Gaussian Elimination: Obtaining An Upper-Triangle Coefficient Matrix

- Solutions to the system are invariant to three *elementary* operations:
 - Exchange two equations of the system
 - Replace an equation with its nonzero multiple
 - Replace an equation with a sum or difference of this equation and some multiple of another
- Consider the following example:

Outline	Topological Sorting	Combinatorics 00000	Constant-Factor	Variable-Size 00	Gaussian 00●0	Homework 000

LU Decomposition

 If we track the row multiples used during Gaussian elimination, we can construct a lower-triagonal matrix (with one's on the diagonal)

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix}$$

We can also consider the upper-triangular matrix produced by Gaussian elimination, leaving off the b' vector:

$$U = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -3 \\ 0 & 0 & 2 \end{bmatrix}$$

- It turns out that A = LU, so we can re-write our original system as $LU\vec{x} = \vec{b}$
- We can split this into two steps, and solve each with back substitution: $L\vec{y} = \vec{b}$ then $U\vec{x} = \vec{y}$
- Advantage: We can solve many systems with different b vectors in the same way, with minimal additional effort a second second

Outline	Topological Sorting	Combinatorics 00000	Constant-Factor	Variable-Size 00	Gaussian 00●0	Homework 000

LU Decomposition

 If we track the row multiples used during Gaussian elimination, we can construct a lower-triagonal matrix (with one's on the diagonal)

$$L = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 2 & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & 1 \end{array} \right]$$

• We can also consider the upper-triangular matrix produced by Gaussian elimination, leaving off the \vec{b}' vector:

$$U = \left| \begin{array}{ccc} 2 & -1 & 1 \\ 0 & 3 & -3 \\ 0 & 0 & 2 \end{array} \right|$$

NOTE: We can actually store *L* and *U* in the *same matrix* to save space.

- It turns out that A = LU, so we can re-write our original system as $LU\vec{x} = \vec{b}$
- We can split this into two steps, and solve each with back substitution: $L\vec{y} = \vec{b}$ then $U\vec{x} = \vec{y}$
- Advantage: We can solve many systems with different b vectors in the same way, with minimal additional effort.

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size 00	Gaussian 000●	Homework 000

Matrix Inversion

The inverse of a matrix, denoted A',

is defined as AA' = I, where I is the identity matrix

$$\vec{x}^{j}$$
 is the j^{th} column of the inverse matrix

• \vec{e}^j is the j^{th} column of the identity matrix

- We can compute the *LU* decomposition of *A*, then systematically attempt to solve for each column of the inverse
- If compute a U with zeros on the diagonal, there is no inverse and A is said to be singular

 $I = \left[\begin{array}{ccccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & 0 \\ 0 & 0 & \cdots & 0 \end{array} \right]$

Outline	Topological Sorting	Combinatorics 00000	Constant-Factor	Variable-Size 00	Gaussian 000●	Homework 000

Matrix Inversion

The inverse of a matrix, denoted A', is defined as AA' = I, where I is the

identity matrix

But this can be written as a series of systems of linear equations, $A\vec{x}^j = \vec{e}^j \quad A' = a^{j}$ where:

- **a** \vec{x}^{j} is the j^{th} column of the inverse matrix
- \vec{e}^{j} is the j^{th} column of the identity matrix
- We can compute the *LU* decomposition of *A*, then systematically attempt to solve for each column of the inverse
- If compute a U with zeros on the diagonal, there is no inverse and A is said to be singular

 x_{11} x_{21}

 X_{n1}

···· 0 ··· 0

 $\begin{array}{cccc} x_{12} & \cdots & x_{1n} \\ x_{22} & \cdots & x_{2n} \\ \vdots \\ \vdots \end{array}$

Outline	Topological Sorting	Combinatorics 00000	Constant-Factor	Variable-Size 00	Gaussian 000●	Homework 000

Matrix Inversion

The inverse of a matrix, denoted A', is defined as AA' = I, where I is the

identity matrix

But this can be written as a series of systems of linear equations, $A\vec{x}^j = \vec{e}^j$ $A' = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{21} \\ x_{21} & x_{22} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{bmatrix}$

- \vec{x}^{j} is the j^{th} column of the inverse matrix
- \vec{e}^{j} is the j^{th} column of the identity matrix
- We can compute the *LU* decomposition of *A*, then systematically attempt to solve for each column of the inverse
- If compute a U with zeros on the diagonal, there is no inverse and A is said to be singular

 $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & 0 \end{bmatrix}$

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		Homework
						000

Book Topics Skipped in Lecture

- In section 5.5:
 - Josephus Problem (pp. 182–184)
- In section 5.6:
 - Search and Insertion in a Binary Search Tree (pp. 188–189)
- In section 6.2:
 - The GAUSSELIMNATION and BETTERGAUSSELIMINATION algorithms in detail (pp. 202–203)
 - Computing a Determinant (pp. 206–207)

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		Homework
						000

Assignments

This week's assignments:

- Section 5.3: Problems 1, 2, & 5
- Section 5.4: Problems 1, 2, & 5
- Section 5.5: Problems 2 & 4
- Section 5.6: Problems 2 & 6
- Section 6.1: Problems 1, 5, & 6
- Section 6.2: Problems 1, 2, & 7

Outline	Topological Sorting	Combinatorics	Constant-Factor	Variable-Size		Homework
						000

Project II: Balanced Trees

See project description at:

 $\tt http://www.cs.gmu.edu/\sim pwiegand/cs483/assignments.htm$

The project will be due by midnight April 7.

George Mason University, Department of Computer Science