CS 483 - Data Structures and Algorithm Analysis

 Lecture VI: Chapter 5, part 2; Chapter 6, part 1R. Paul Wiegand
George Mason University, Department of Computer Science

March 8, 2006

Outline

1 Topological Sorting

2 Generating Combinatorial Objects
3 Decrease-by-Constant Factor
4 Variable-Size-Decrease Algorithms
5 Transform \& Conquer
6 Gaussian Elimination
7 Homework

DFS \& BFS Edge-Types

tree edge - Edge encountered by the search that leads to an as-yet unvisited node (DFS \& BFS)
back edge - Edge leading to a previously visited vertex other than its immediate predecessor (DFS)
cross edge - Edge leading to a previously visited vertex other than its immediate predecessor (BFS)

DFS \& BFS Edge-Types

tree edge - Edge encountered by the search that leads to an as-yet unvisited node (DFS \& BFS)
back edge - Edge leading to a previously visited vertex other than its immediate predecessor (DFS)
cross edge - Edge leading to a previously visited vertex other than its immediate predecessor (BFS)

DFS \& BFS Edge-Types

tree edge - Edge encountered by the search that leads to an as-yet unvisited node (DFS \& BFS)
back edge - Edge leading to a previously visited vertex other than its immediate predecessor (DFS)

cross edge - Edge leading to a previously visited vertex other than its immediate predecessor (BFS)

Directed Graphs: A Review

- A directed graph (digraph) is a graph with directed edges
- We can use the same representational constructs: adjacency matrices \& adjacency lists
- But there are some differences from the undirected case:
- Adjacency matrix need not be symmetric

■ An edge in the digraph has only one node in an adjacency list

- We can still use DFS \& BFS to traverse such graphs, but the resulting search forest is often more complicated
- There are now four edge types
tree edge - Edge leading to an as-yet unvisited node
back edge - Edge leading from some vertex to a previously visited ancestor
forward edge - Edge leading from a previously visited ancestor to some vertex
cross edge - Remaining edge types

Directed Graphs: More Review

Directed Graphs: More Review

Example DFS forest:

tree edges
back edge
forward edge
cross edge

Directed Graphs: More Review

Example DFS forest:

tree edges
back edge
forward edge
cross edge

NOTE: A digraph with no back edges has no directed cycles. We call this a directed acyclic graph (DAG).

Representing Dependencies with DAGs

■ Many real-world situations can be modeled with DAGs

- Consider problems involving dependencies (e.g., course pre-requisites):

Representing Dependencies with DAGs

■ Many real-world situations can be modeled with DAGs

- Consider problems involving dependencies (e.g., course pre-requisites):

■ If you could take only one course at a time, what order would you choose?

Representing Dependencies with DAGs

■ Many real-world situations can be modeled with DAGs

- Consider problems involving dependencies
(e.g., course pre-requisites):

■ If you could take only one course at a time, what order would you choose?

■ More generally: Order the vertices of a DAG such that for every edge, the vertex where the edge starts precedes the vertex where the edge ends?

Representing Dependencies with DAGs

■ Many real-world situations can be modeled with DAGs

- Consider problems involving dependencies
(e.g., course pre-requisites):

■ If you could take only one course at a time, what order would you choose?

■ More generally: Order the vertices of a DAG such that for every edge, the vertex where the edge starts precedes the vertex where the edge ends?

- This problem is called topological sorting

Two Algorithms to Sort Topologies

Algorithm 1

■ Apply Depth-First Search
■ Note the order in which the nodes become "dead" (popped off the traversal stack)

- Reverse the order; that is your answer

■ Why does this work? When vertex v is popped off the stack, no vertex u with an edge (u, v) can be among the vertices popped of before v (otherwise (u, v) would be a back edge).

Algorithm 2

■ Identify a source in the digraph (node with no in-coming edges)
■ Break ties arbitrarily
■ Record then delete the node, along with all edges from that node

- Repeat the process on the remaining subgraph
■ When the graph is empty, you are done

Example On Algorithm 2

Example On Algorithm 2

- MAT105

Example On Algorithm 2

■ MAT105
■ CS112

Example On Algorithm 2

■ MAT105
■ CS112
■ MAT113

Example On Algorithm 2

■ MAT105
■ CS112

- MAT113

■ MAT125

Example On Algorithm 2

■ MAT105
■ CS112
■ MAT113

■ MAT125

- CS211

Example On Algorithm 2

- MAT105

■ CS112

- MAT113

■ MAT125

- CS211

■ MAT114

Example On Algorithm 2

- MAT105

■ CS112

- MAT113

■ MAT125

- CS211

■ MAT114
■ CS330

Example On Algorithm 2

■ MAT105

- CS112

■ MAT113
■ MAT125
■ CS211
CS483
■ MAT114

- CS330

■ CS310

Example On Algorithm 2

■ MAT105

- CS112

■ MAT113
■ MAT125

- CS211

■ MAT114

- CS330
- CS310
- CS483

Reviewing Combinations \& Permutations

What is the difference between a combination and a permutation?
combination -
permutation -

Reviewing Combinations \& Permutations

What is the difference between a combination and a permutation?
combination - The number of ways of picking k unordered outcomes from n possibilities. We often write it as " n choose k ". $\binom{n}{k}=\frac{n!}{k!(n-k)!}$
permutation -

Reviewing Combinations \& Permutations

What is the difference between a combination and a permutation?
combination - The number of ways of picking k unordered outcomes from n possibilities. We often write it as " n choose k ". $\binom{n}{k}=\frac{n!}{k!(n-k)!}$
permutation - A permutation is a rearrangement of the elements of an ordered list \mathcal{S} into a one-to-one correspondence with \mathcal{S} itself. ${ }_{n} P_{k}=\frac{n!}{(n-k)!}$

Generating a Single Random Permutation

$$
\begin{aligned}
& \operatorname{PermuteSet}(A[0 \ldots n-1]) \\
& \text { for } i \longleftarrow 0 \text { to } n-2 \\
& j \longleftarrow \operatorname{RandInt}(i+1, n-1) \\
& \operatorname{SWAP}(A, i, j)
\end{aligned}
$$

- Basic operation is RandInt
- The loop is $\Theta(n)$
- In general, items in a permutation can be anything
- We think of them as ordered sets $\left\{a_{0}, a_{2}, \ldots, a_{n-1}\right\}$
- But we'll talk about them as a lists of integers for simplicity
For example:
$\{1,2,3,4,5,6,7,8\}$

Generating a Single Random Permutation

$$
\begin{aligned}
& \operatorname{PermuteSet}(A[0 \ldots n-1]) \\
& \text { for } i \longleftarrow 0 \text { to } n-2 \\
& j \longleftarrow \operatorname{RandInt}(i+1, n-1) \\
& \operatorname{SWAP}(A, i, j)
\end{aligned}
$$

- Basic operation is RandInt
- The loop is $\Theta(n)$
- In general, items in a permutation can be anything
- We think of them as ordered sets $\left\{a_{0}, a_{2}, \ldots, a_{n-1}\right\}$
- But we'll talk about them as a lists of integers for simplicity
For example:
$\{4,2,3,1,5,6,7,8\}$

Generating a Single Random Permutation

$$
\begin{aligned}
& \operatorname{PermuteSet}(A[0 \ldots n-1]) \\
& \text { for } i \longleftarrow 0 \text { to } n-2 \\
& j \longleftarrow \operatorname{RandInt}(i+1, n-1) \\
& \operatorname{SWAP}(A, i, j)
\end{aligned}
$$

- Basic operation is RandInt
- The loop is $\Theta(n)$
- In general, items in a permutation can be anything
- We think of them as ordered sets $\left\{a_{0}, a_{2}, \ldots, a_{n-1}\right\}$
- But we'll talk about them as a lists of integers for simplicity
For example:
$\{4,7,3,1,5,6,2,8\}$

Generating a Single Random Permutation

$$
\begin{aligned}
& \operatorname{PermuteSet}(A[0 \ldots n-1]) \\
& \text { for } i \longleftarrow 0 \text { to } n-2 \\
& j \longleftarrow \operatorname{RandInt}(i+1, n-1) \\
& \operatorname{SWAP}(A, i, j)
\end{aligned}
$$

- Basic operation is RandInt
- The loop is $\Theta(n)$
- In general, items in a permutation can be anything
- We think of them as ordered sets $\left\{a_{0}, a_{2}, \ldots, a_{n-1}\right\}$
- But we'll talk about them as a lists of integers for simplicity
For example:
$\{4,7,1,3,5,6,2,8\}$

Generating a Single Random Permutation

$$
\begin{aligned}
& \operatorname{PermuteSet}(A[0 \ldots n-1]) \\
& \text { for } i \longleftarrow 0 \text { to } n-2 \\
& j \longleftarrow \operatorname{RandInt}(i+1, n-1) \\
& \operatorname{SWAP}(A, i, j)
\end{aligned}
$$

- Basic operation is RandInt
- The loop is $\Theta(n)$
- In general, items in a permutation can be anything
- We think of them as ordered sets $\left\{a_{0}, a_{2}, \ldots, a_{n-1}\right\}$
- But we'll talk about them as a lists of integers for simplicity

For example:

$\{4,7,1,8,5,6,2,3\}$

Generating a Single Random Permutation

$$
\begin{aligned}
& \operatorname{PermuteSet}(A[0 \ldots n-1]) \\
& \text { for } i \longleftarrow 0 \text { to } n-2 \\
& j \longleftarrow \operatorname{RandInt}(i+1, n-1) \\
& \operatorname{SWAP}(A, i, j)
\end{aligned}
$$

- Basic operation is RandInt
- The loop is $\Theta(n)$
- In general, items in a permutation can be anything
- We think of them as ordered sets $\left\{a_{0}, a_{2}, \ldots, a_{n-1}\right\}$
- But we'll talk about them as a lists of integers for simplicity
For example:
$\{4,7,1,8,2,6,5,3\}$

Generating a Single Random Permutation

$$
\begin{aligned}
& \operatorname{PermuteSet}(A[0 \ldots n-1]) \\
& \text { for } i \longleftarrow 0 \text { to } n-2 \\
& j \longleftarrow \operatorname{RandInt}(i+1, n-1) \\
& \operatorname{SWAP}(A, i, j)
\end{aligned}
$$

- Basic operation is RandInt
- The loop is $\Theta(n)$
- In general, items in a permutation can be anything
- We think of them as ordered sets $\left\{a_{0}, a_{2}, \ldots, a_{n-1}\right\}$
- But we'll talk about them as a lists of integers for simplicity
For example:
$\{4,7,1,8,2,3,5,6\}$

Generating All Permutations

- Suppose we want to generate all permutations between 1 and n

■ We can use Decrease-and-Conquer:

- Given that the $n-1$ permutations are generated
- We can generate the $n^{\text {th }}$ permutations by inserting n at all possible n positions
- We start adding right-to-left, then switch when a new perm is processed

Generating All Permutations

- Suppose we want to generate all permutations between 1 and n

■ We can use Decrease-and-Conquer:

- Given that the $n-1$ permutations are generated
- We can generate the $n^{\text {th }}$ permutations by inserting n at all possible n positions
- We start adding right-to-left, then switch when a new perm is processed

Start	1 Insert 2
	$12 \quad 21$ right to left

Insert $3 \quad 123132312 \quad 321231213$ right to left left to right

Generating All Permutations

- Suppose we want to generate all permutations between 1 and n

■ We can use Decrease-and-Conquer:

- Given that the $n-1$ permutations are generated
- We can generate the $n^{\text {th }}$ permutations by inserting n at all possible n positions
- We start adding right-to-left, then switch when a new perm is processed

Start
Insert 2

Insert $3 \quad 123132312 \quad 321231 \quad 213$

Satisfies minimal-change: each permutation can be obtained from its predecessor by exchanging just two elements right to left left to right

Generating $n^{\text {th }}$ Permutation

■ We can get the same ordering of permutations of n elements without generating the smaller permutations
－We associate a direction with each element in the permutation： $\overrightarrow{3} \underset{2}{\leftarrow} \underset{4}{ } \underset{1}{\overleftarrow{1}}$
－A mobile component is one in which the arrow points to a smaller adjacent value（3 \＆ 4 above，but not $1 \& 2$ ）

JohnsonTrotter（n）

Initialize the first permutation with $\overleftarrow{1} ⿱ 亠 𧘇 厶 ⺝ 刂 灬$
while there exists a mobile k do
Find the largest mobile integer k
Swap k and the adjacent integer its arrow points to
Reverse the direction of all integers larger than k

Generating $n^{\text {th }}$ Permutation

■ We can get the same ordering of permutations of n elements without generating the smaller permutations

- We associate a direction with each element in the permutation: $\overrightarrow{3} \underset{2}{2} \underset{4}{4} \overleftarrow{1}$
- A mobile component is one in which the arrow points to a smaller adjacent value ($3 \& 4$ above, but not $1 \& 2$)

JOHNSONTROTTER(n)

Initialize the first permutation with $\overleftarrow{1} \underset{2}{\leftarrow} \ldots{ }_{n}$
while there exists a mobile k do
Find the largest mobile integer k
Swap k and the adjacent integer its arrow points to
Reverse the direction of all integers larger than k

$\leftarrow \leftarrow$		
	\leftarrow	\leftarrow
1	3	2
3	1	
	\leftarrow	\leftarrow
3	2	1
	\rightarrow	\leftarrow
2	3	1
$\overleftarrow{2} \leftarrow \mathbb{3}$		

Generating Subsets

■ Given some universal set: $U=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$, generate all possible subsets

- The set of all subsets is called a power set; there are 2^{n} of them

n	subsets			
0	\emptyset			
1	\emptyset	$\left\{a_{1}\right\}$		
2	\emptyset	$\left\{a_{1}\right\}\left\{a_{2}\right\}$	$\left\{a_{1}, a_{2}\right\}$	
3	\emptyset	$\left\{a_{1}\right\}\left\{a_{2}\right\}\left\{a_{3}\right\}$	$\left\{a_{1}, a_{2}\right\}\left\{a_{1}, a_{3}\right\}$	$\left\{a_{2}, a_{3}\right\}$

Generating Subsets

■ Given some universal set: $U=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$, generate all possible subsets

- The set of all subsets is called a power set; there are 2^{n} of them

n	subsets			
0	\emptyset			
1	\emptyset	$\left\{a_{1}\right\}$		$\left\{a_{1}, a_{2}\right\}$
2	\emptyset	$\left\{a_{1}\right\}\left\{a_{2}\right\}$	$\left\{a_{1}, a_{3}\right\}$	$\left\{a_{1}, a_{2}, a_{3}\right\}$

- Can represent a set as a binary string:

000	001	010	011	100	101
\emptyset	$\left\{a_{3}\right\}$	$\left\{a_{2}\right\}$	$\left\{a_{2}, a_{3}\right\}$	$\left\{a_{1}\right\}$	$\left\{a_{1}, a_{3}\right\} \ldots$

■ Is there an equivalent to minimal-change algorithm here?

Generating Subsets

■ Given some universal set: $U=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$, generate all possible subsets

- The set of all subsets is called a power set; there are 2^{n} of them

n	subsets			
0	\emptyset			
1	\emptyset	$\left\{a_{1}\right\}$		
2	\emptyset	$\left\{a_{1}\right\}\left\{a_{2}\right\}$	$\left\{a_{1}, a_{2}\right\}$	
3	\emptyset	$\left\{a_{1}\right\}\left\{a_{2}\right\}\left\{a_{3}\right\}$	$\left\{a_{1}, a_{2}\right\}\left\{a_{1}, a_{3}\right\}\left\{a_{2}, a_{3}\right\}$	$\left\{a_{1}, a_{2}, a_{3}\right\}$

- Can represent a set as a binary string:

000	001	010	011	100	101
\emptyset	$\left\{a_{3}\right\}$	$\left\{a_{2}\right\}$	$\left\{a_{2}, a_{3}\right\}$	$\left\{a_{1}\right\}$	$\left\{a_{1}, a_{3}\right\} \ldots$

- Is there an equivalent to minimal-change algorithm here?

Yes: 000001011010110111101100 (Gray code)

Fake-Coin Problem

- You are given n coins, one of which is fake (you don't know which)

■ You are provided a balance scale to compare sets of coins

- What is an efficient method for identifying the coin?

Fake-Coin Problem

- You are given n coins, one of which is fake (you don't know which)
- You are provided a balance scale to compare sets of coins

■ What is an efficient method for identifying the coin?
1 Hold one (or two) coins aside
2 Divide the remainder into two equal halves
3 If they balance, the fake has been set aside
4 Otherwise examine the lighter pile in the same way

$$
W(n)=W(\lfloor n / 2\rfloor)+1 \text { for } n>1, W(1)=0 \quad \in \Theta(\lg n)
$$

Fake-Coin Problem

- You are given n coins, one of which is fake (you don't know which)
- You are provided a balance scale to compare sets of coins

■ What is an efficient method for identifying the coin?
1 Hold one (or two) coins aside
2 Divide the remainder into two equal halves
3 If they balance, the fake has been set aside
4 Otherwise examine the lighter pile in the same way
$W(n)=W(\lfloor n / 2\rfloor)+1$ for $n>1, W(1)=0 \quad \in \Theta(\lg n)$
But wait! This is not the most efficient way. What if you divided into three equal piles?

Multiplication á la Russe

- We want to compute the product of n and m, two positive integers
- But we only know how to add and multiple \& divide by two

■ If n is even, we can re-write: $n \cdot m=\frac{n}{2} \cdot 2 m$

- If n is odd, we can re-write: $n \cdot m=\frac{n-1}{2} \cdot 2 m+m$
- We can apply this method iteratively until $n=1$

Multiplication á la Russe

■ We want to compute the product of n and m, two positive integers

- But we only know how to add and multiple \& divide by two

■ If n is even, we can re-write: $n \cdot m=\frac{n}{2} \cdot 2 m$

- If n is odd, we can re-write: $n \cdot m=\frac{n-1}{2} \cdot 2 m+m$
- We can apply this method iteratively until $n=1$

n	m	
50	65	
25	130	130
12	260	
6	520	
3	1040	1040
1	2080	2080
		3,250

Median and Selection

- The selection problem: Find the $k^{\text {th }}$ smallest element in a list of n numbers (the $k^{\text {th }}$ order statistics)
- Finding the median is a special case: $k=\lceil n / 2\rceil$

■ Brute force: Sort, then select the $k^{\text {th }}$ value in the list: $O(n \lg n)$

- But we can do better: Use the partitioning logic from QuickSort

Median and Selection

- The selection problem: Find the $k^{\text {th }}$ smallest element in a list of n numbers (the $k^{\text {th }}$ order statistics)
- Finding the median is a special case: $k=\lceil n / 2\rceil$

■ Brute force: Sort, then select the $k^{\text {th }}$ value in the list: $O(n \lg n)$

- But we can do better: Use the partitioning logic from QuickSort

$$
\begin{array}{ccc}
a_{1} \cdots a_{s} & p & a_{s+1} \cdots a_{n} \\
\leq p & \geq p
\end{array}
$$

■ If $s=k$ then p solves the problem

- If $s>k$ then the $k^{\text {th }}$ smallest element in whole list is the $k^{\text {th }}$ smallest element left-side sublist
- If $s<k$ then the $k^{t h}$ smallest element in whole list is the $(k-s)^{t h}$ smallest element right-side sublist
- Average: $C(n)=C(n / 2)+(n-1) \quad \in \Theta(n)$

Interpolation Search

■ Like BinarySEarch, but more like a telephone book

■ Rather than split the list in half, we interpolate the position based on the key value

■ $v:=$ search key value
■ $/:=$ left index
■ $r:=$ right index
■ $y=m x+b \Longrightarrow x=\frac{y-b}{m}$
$\square x=I+\left\lfloor\frac{(v-A[I])(r-l)}{A[r]-A[I]}\right\rfloor$

- Average case: $O(\lg \lg n)$

index

Introduction to Transform \& Conquer

- In many cases, one can transform a problem instance and solve the transformed problem
- Three variations of this idea are as follows:
instance simplicfication - Transform problem instance into a simpler or more convenient istance
representation change - Transform problem instance representations
problem reduction - Transform problem instance into an instance of different problem

Presorting

■ Many questions about lists can be answered more easily when the list is already sorted

- The cost of the sort itself should be warranted

■ Example: Element uniqueness

Presorting

■ Many questions about lists can be answered more easily when the list is already sorted

- The cost of the sort itself should be warranted

■ Example: Element uniqueness

- Example: Search
- Brute force: compare every element against every other element, $\Theta\left(n^{2}\right)$
- Presort \& scan:
$T(n)=T_{\text {sort }}(n)+T_{\text {scan }}=$
$\Theta(n \lg n)+\Theta(n) \in \Theta(n \lg n)$

Presorting

■ Many questions about lists can be answered more easily when the list is already sorted
■ The cost of the sort itself should be warranted

- Example: Element uniqueness
- Brute force: compare every element against every other element, $\Theta\left(n^{2}\right)$
- Presort \& scan:
$T(n)=T_{\text {sort }}(n)+T_{\text {scan }}=$ $\Theta(n \lg n)+\Theta(n) \in \Theta(n \lg n)$

■ Example: Search
■ Brute force: linear search: $\Theta(n)$

- Presort \& binary search:
$\Theta(n \lg n)+\Theta(\lg n) \in \Theta(n \lg n)$
- Presorting does not help with one search, though perhaps it will with many searches on the same list

■ Example: Computing a mode (most frequent value)

Presorting

■ Many questions about lists can be answered more easily when the list is already sorted
■ The cost of the sort itself should be warranted

- Example: Element uniqueness
- Brute force: compare every element against every other element, $\Theta\left(n^{2}\right)$
- Presort \& scan:
$T(n)=T_{\text {sort }}(n)+T_{\text {scan }}=$ $\Theta(n \lg n)+\Theta(n) \in \Theta(n \lg n)$

■ Example: Search
■ Brute force: linear search: $\Theta(n)$

- Presort \& binary search: $\Theta(n \lg n)+\Theta(\lg n) \in \Theta(n \lg n)$
■ Presorting does not help with one search, though perhaps it will with many searches on the same list

■ Example: Computing a mode (most frequent value)
■ Brute force: scan list an store count in auxiliary list then scan auxiliary list for highest frequency, worst case time $\Theta\left(n^{2}\right)$
■ Presort, Longest-run: sort then scan through list looking for the longest run of a value, $\Theta(n \lg n)$

Gaussian Elimination

■ Problem: Solve a system of n linear equations with n unknowns

$$
\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+ & \cdots & +a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+ & \cdots & +a_{2 n} x_{n}=b_{2} \\
& \vdots & \\
a_{n 1} x_{1}+a_{n 2} x_{2}+ & \cdots & +a_{n n} x_{n}=b_{n}
\end{array}
$$

- This can be written as $A \vec{x}=\vec{b}$

■ Gaussian Elimination first asks us to transform the problem to a different one, one that has the same solution: $A^{\prime} \vec{x}=\vec{b}^{\prime}$

- The transformation yields a matrix with all zeros below its main diagonal:

$$
A^{\prime}=\left[\begin{array}{cccc}
a_{11}^{\prime} & a_{12}^{\prime} & \cdots & a_{1 n}^{\prime} \\
0 & a_{22}^{\prime} & \cdots & a_{2 n}^{\prime} \\
\vdots & \ddots & & \\
0 & 0 & \cdots & a_{n n}^{\prime}
\end{array}\right], \quad \overrightarrow{b^{\prime}}=\left[\begin{array}{c}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
\vdots \\
v_{n}^{\prime}
\end{array}\right]
$$

Gaussian Elimination

■ Problem: Solve a system of n linear equations with n unknowns

$$
\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+ & \cdots & +a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+ & \cdots & +a_{2 n} x_{n}=b_{2} \\
& \vdots & \\
a_{n 1} x_{1}+a_{n 2} x_{2}+ & \cdots & +a_{n n} x_{n}=b_{n}
\end{array}
$$

- This can be written as $A \vec{x}=\vec{b}$

■ Gaussian Elimination first asks us to transform the problem to a different one, one that has the same solution: $A^{\prime} \vec{x}=\vec{b}^{\prime}$

- The transformation yields a matrix with all zeros below its main diagonal:

$$
A^{\prime}=\left[\begin{array}{cccc}
a_{11}^{\prime} & a_{12}^{\prime} & \cdots & a_{1 n}^{\prime} \\
0 & a_{22}^{\prime} & \cdots & a_{2 n}^{\prime} \\
\vdots & \ddots & & \\
0 & 0 & \cdots & a_{n n}^{\prime}
\end{array}\right], \quad \vec{b}^{\prime}=\left[\begin{array}{c}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
\vdots \\
v_{n}^{\prime}
\end{array}\right] \quad\left[\begin{array}{l}
\text { A simple backward substi- } \\
\text { tution method can be used } \\
\text { to obtain the solution now! }
\end{array}\right.
$$

Gaussian Elimination: Obtaining An Upper-Triangle Coefficient Matrix

- Solutions to the system are invariant to three elementary operations:
- Exchange two equations of the system

■ Replace an equation with its nonzero multiple

- Replace an equation with a sum or difference of this equation and some multiple of another
■ Consider the following example:

$$
\begin{aligned}
& 2 x_{1}-x_{2}+x_{3}=1 \\
& 4 x_{1}+x_{2}-x_{3}=5 \\
& x_{1}+x_{2}+x_{3}=0
\end{aligned} \quad\left[\begin{array}{rrr|r}
2 & -1 & 1 & 1 \\
4 & 1 & -1 & 5 \\
1 & 1 & 1 & 0
\end{array}\right] \quad \begin{array}{r}
\text { row } 2 \leftarrow \operatorname{row} 2-\operatorname{row} 1 * \frac{4}{2} \\
\text { row } 3 \leftarrow \operatorname{row} 3-\operatorname{row} 1 * \frac{1}{2}
\end{array}
$$

Gaussian Elimination: Obtaining An Upper-Triangle Coefficient Matrix

- Solutions to the system are invariant to three elementary operations:

■ Exchange two equations of the system
■ Replace an equation with its nonzero multiple

- Replace an equation with a sum or difference of this equation and some multiple of another
■ Consider the following example:
$2 x_{1}-x_{2}+x_{3}=1$
$4 x_{1}+x_{2}-x_{3}=5$
$x_{1}+x_{2}+x_{3}=0$$\quad\left[\begin{array}{rrr|r}2 & -1 & 1 & 1 \\ 0 & 3 & -3 & 3 \\ 0 & \frac{3}{2} & \frac{1}{2} & -\frac{1}{2}\end{array}\right]$ row $3 \leftarrow$ row $3-$ row $2 * \frac{1}{2}$

Gaussian Elimination: Obtaining An Upper-Triangle Coefficient Matrix

- Solutions to the system are invariant to three elementary operations:

■ Exchange two equations of the system
■ Replace an equation with its nonzero multiple

- Replace an equation with a sum or difference of this equation and some multiple of another
- Consider the following example:
$2 x_{1}-x_{2}+x_{3}=1$
$4 x_{1}+x_{2}-x_{3}=5$
$x_{1}+x_{2}+x_{3}=0$$\quad\left[\begin{array}{rrr|r}2 & -1 & 1 & 1 \\ 0 & 3 & -3 & 3 \\ 0 & 0 & 2 & -2\end{array}\right]$ Upper-triangle form!

LU Decomposition

- If we track the row multiples used during Gaussian elimination, we can construct a lower-triagonal matrix (with one's on the diagonal) $L=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & 1\end{array}\right]$
- We can also consider the upper-triangular matrix produced by Gaussian elimination, leaving off the $\overrightarrow{b^{\prime}}$ vector:
$U=\left[\begin{array}{rrr}2 & -1 & 1 \\ 0 & 3 & -3 \\ 0 & 0 & 2\end{array}\right]$
- It turns out that $A=L U$, so we can re-write our original system as $L U \vec{x}=\vec{b}$
■ We can split this into two steps, and solve each with back substitution: $L \vec{y}=\vec{b}$ then $U \vec{x}=\vec{y}$
- Advantage: We can solve many systems with different \vec{b} vectors in the same way, with minimal additional effort

LU Decomposition

- If we track the row multiples used during Gaussian elimination, we can construct a lower-triagonal matrix (with one's on the diagonal) $L=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & 1\end{array}\right]$
- We can also consider the upper-triangular matrix produced by Gaussian elimination, leaving off the $\overrightarrow{b^{\prime}}$ vector:

$$
U=\left[\begin{array}{rrr}
2 & -1 & 1 \\
0 & 3 & -3 \\
0 & 0 & 2
\end{array}\right]
$$

NOTE: We can actually store L and U in the same matrix to save space.

■ It turns out that $A=L U$, so we can re-write our original system as $L U \vec{x}=\vec{b}$
■ We can split this into two steps, and solve each with back substitution: $L \vec{y}=\vec{b}$ then $U \vec{x}=\vec{y}$
■ Advantage: We can solve many systems with different \vec{b} vectors in the same way, with minimal additional effort

Matrix Inversion

The inverse of a matrix, denoted A^{\prime},
\square is defined as $A A^{\prime}=I$, where I is the identity matrix

$$
I=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & & \ddots & 0 \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

But this can be written as a series of
■ systems of linear equations, $A \vec{x}^{j}=\vec{e}^{j} \quad A^{\prime}=$ where:
$\left[\begin{array}{cccc}x_{11} & x_{12} & \cdots & x_{1 n} \\ x_{21} & x_{22} & \cdots & x_{2 n} \\ \vdots & \ddots & & \\ x_{n 1} & x_{n 2} & \cdots & x_{n n}\end{array}\right]$

- \vec{x}^{j} is the $j^{\text {th }}$ column of the inverse matrix
- $\vec{e}{ }^{j}$ is the $j^{\text {th }}$ column of the identity matrix
- We can compute the $L U$ decomposition of A, then systematically attempt to solve for each column of the inverse
- If compute a U with zeros on the diagonal, there is no inverse and A is said to be singular

Matrix Inversion

The inverse of a matrix, denoted A^{\prime},
\square is defined as $A A^{\prime}=I$, where I is the identity matrix

But this can be written as a series of
■ systems of linear equations, $A \vec{x}^{j}=\vec{e}^{j} \quad A^{\prime}=$ where:

- \vec{x}^{j} is the $j^{\text {th }}$ column of the inverse matrix

■ \vec{e}^{j} is the $j^{\text {th }}$ column of the identity matrix

- We can compute the $L U$ decomposition of A, then systematically attempt to solve for each column of the inverse
- If compute a U with zeros on the diagonal, there is no inverse and A is said to be singular

Matrix Inversion

The inverse of a matrix, denoted A^{\prime},
\square is defined as $A A^{\prime}=I$, where I is the identity matrix

But this can be written as a series of
■ systems of linear equations, $A \vec{x}^{j}=\vec{e}^{j} \quad A^{\prime}=$ where:

■ \vec{x}^{j} is the $j^{t h}$ column of the inverse matrix
■ \vec{e}^{j} is the $j^{\text {th }}$ column of the identity matrix

- We can compute the $L U$ decomposition of A, then systematically attempt to solve for each column of the inverse
■ If compute a U with zeros on the diagonal, there is no inverse and A is said to be singular

Book Topics Skipped in Lecture

- In section 5.5:

■ Josephus Problem (pp. 182-184)
■ In section 5.6:
■ Search and Insertion in a Binary Search Tree (pp. 188-189)

- In section 6.2:

■ The GaussElimnation and BetterGaussElimination algorithms in detail (pp. 202-203)
■ Computing a Determinant (pp. 206-207)

Assignments

■ This week's assignments:
■ Section 5.3: Problems 1, 2, \& 5

- Section 5.4: Problems 1, 2, \& 5
- Section 5.5: Problems 2 \& 4
- Section 5.6: Problems 2 \& 6
- Section 6.1: Problems 1, 5, \& 6
- Section 6.2: Problems 1, 2, \& 7

Project II: Balanced Trees

See project description at: http://www.cs.gmu.edu/~pwiegand/cs483/assignments.htm

The project will be due by midnight April 7.

