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DFS & BFS Edge-Types

tree edge — Edge encountered by the search
that leads to an as-yet unvisited
node (DFS & BFS)

back edge — Edge leading to a previously
visited vertex other than its
immediate predecessor (DFS)

cross edge — Edge leading to a previously
visited vertex other than its
immediate predecessor (BFS)
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DFS & BFS Edge-Types

tree edge — Edge encountered by the search
that leads to an as-yet unvisited
node (DFS & BFS)

back edge — Edge leading to a previously
visited vertex other than its
immediate predecessor (DFS)

cross edge — Edge leading to a previously
visited vertex other than its
immediate predecessor (BFS)
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DFS & BFS Edge-Types

tree edge — Edge encountered by the search
that leads to an as-yet unvisited
node (DFS & BFS)

back edge — Edge leading to a previously
visited vertex other than its
immediate predecessor (DFS)

cross edge — Edge leading to a previously
visited vertex other than its
immediate predecessor (BFS)

ba

bc

bf

bd be

bb

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Topological Sorting Combinatorics Constant-Factor Variable-Size Transform Gaussian Homework

Directed Graphs: A Review

A directed graph (digraph) is a graph with directed edges

We can use the same representational constructs: adjacency
matrices & adjacency lists
But there are some differences from the undirected case:

Adjacency matrix need not be symmetric
An edge in the digraph has only one node in an adjacency list

We can still use DFS & BFS to traverse such graphs, but the
resulting search forest is often more complicated
There are now four edge types

tree edge — Edge leading to an as-yet unvisited node

back edge — Edge leading from some vertex to a previously
visited ancestor

forward edge — Edge leading from a previously visited ancestor to
some vertex

cross edge — Remaining edge types

R. Paul Wiegand George Mason University, Department of Computer Science
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Directed Graphs: More Review
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Directed Graphs: More Review

a b

c

d
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Example DFS forest:

tree edges
back edge
forward edge
cross edge
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Directed Graphs: More Review

a b

c

d

e

a d

b e

c

Example DFS forest:

tree edges
back edge
forward edge
cross edge

NOTE: A digraph with no back edges has no directed
cycles. We call this a directed acyclic graph (DAG).
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Representing Dependencies with DAGs

Many real-world situations can be modeled with DAGs

Consider problems involving dependencies
(e.g., course pre-requisites):

CS112 CS211 CS310

MAT125 CS330 CS483

MAT105 MAT113 MAT114
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Representing Dependencies with DAGs

Many real-world situations can be modeled with DAGs

Consider problems involving dependencies
(e.g., course pre-requisites):

CS112 CS211 CS310

MAT125 CS330 CS483

MAT105 MAT113 MAT114

If you could take only one
course at a time, what
order would you choose?
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Representing Dependencies with DAGs

Many real-world situations can be modeled with DAGs

Consider problems involving dependencies
(e.g., course pre-requisites):

CS112 CS211 CS310

MAT125 CS330 CS483

MAT105 MAT113 MAT114

If you could take only one
course at a time, what
order would you choose?

More generally: Order the
vertices of a DAG such that
for every edge, the vertex
where the edge starts
precedes the vertex where
the edge ends?
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Representing Dependencies with DAGs

Many real-world situations can be modeled with DAGs

Consider problems involving dependencies
(e.g., course pre-requisites):

CS112 CS211 CS310

MAT125 CS330 CS483

MAT105 MAT113 MAT114

If you could take only one
course at a time, what
order would you choose?

More generally: Order the
vertices of a DAG such that
for every edge, the vertex
where the edge starts
precedes the vertex where
the edge ends?

This problem is called
topological sorting
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Two Algorithms to Sort Topologies

Algorithm 1

Apply Depth-First Search

Note the order in which the
nodes become “dead” (popped
off the traversal stack)

Reverse the order; that is your
answer

Why does this work? When
vertex v is popped off the
stack, no vertex u with an edge
(u, v) can be among the
vertices popped of before v

(otherwise (u, v) would be a
back edge).

Algorithm 2

Identify a source in the digraph
(node with no in-coming edges)

Break ties arbitrarily

Record then delete the node,
along with all edges from that
node

Repeat the process on the
remaining subgraph

When the graph is empty, you
are done

R. Paul Wiegand George Mason University, Department of Computer Science
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Example On Algorithm 2

MAT105

CS112

MAT113

MAT125

CS211

MAT114

CS330

CS310

CS483
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Example On Algorithm 2

CS112

MAT113

MAT125

CS211

MAT114

CS330

CS310

CS483

MAT105
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Example On Algorithm 2

MAT113

MAT125

CS211

MAT114

CS330

CS310

CS483

MAT105

CS112
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Example On Algorithm 2

MAT125

CS211

MAT114

CS330

CS310

CS483

MAT105

CS112

MAT113
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Example On Algorithm 2

CS211

MAT114

CS330

CS310

CS483

MAT105

CS112

MAT113
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Example On Algorithm 2

MAT114

CS330

CS310

CS483

MAT105

CS112

MAT113

MAT125

CS211
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Example On Algorithm 2
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Example On Algorithm 2

CS310

CS483

MAT105
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MAT125

CS211

MAT114

CS330

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Topological Sorting Combinatorics Constant-Factor Variable-Size Transform Gaussian Homework

Example On Algorithm 2

CS483

MAT105

CS112

MAT113

MAT125
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Example On Algorithm 2

MAT105

CS112

MAT113

MAT125

CS211

MAT114

CS330

CS310

CS483
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Reviewing Combinations & Permutations

What is the difference between a combination and a permutation?

combination —

permutation —
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Reviewing Combinations & Permutations

What is the difference between a combination and a permutation?

combination — The number of ways of picking k unordered outcomes
from n possibilities. We often write it as “n choose k”.
(

n
k

)

= n!
k!(n−k)!

permutation —
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Reviewing Combinations & Permutations

What is the difference between a combination and a permutation?

combination — The number of ways of picking k unordered outcomes
from n possibilities. We often write it as “n choose k”.
(

n
k

)

= n!
k!(n−k)!

permutation — A permutation is a rearrangement of the elements of
an ordered list S into a one-to-one correspondence with S
itself. nPk = n!

(n−k)!
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Generating a Single Random Permutation

PermuteSet(A[0 . . . n − 1])

for i ←− 0 to n − 2
j ←− RandInt(i + 1, n − 1)
Swap(A, i , j)

Basic operation is RandInt

The loop is Θ(n)

In general, items in a
permutation can be
anything

We think of them as
ordered sets

{a0, a2, . . . , an−1}

But we’ll talk about
them as a lists of
integers for simplicity

For example:

{1, 2, 3, 4, 5, 6, 7, 8}

R. Paul Wiegand George Mason University, Department of Computer Science
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Generating a Single Random Permutation

PermuteSet(A[0 . . . n − 1])

for i ←− 0 to n − 2
j ←− RandInt(i + 1, n − 1)
Swap(A, i , j)

Basic operation is RandInt

The loop is Θ(n)

In general, items in a
permutation can be
anything

We think of them as
ordered sets

{a0, a2, . . . , an−1}

But we’ll talk about
them as a lists of
integers for simplicity

For example:

{4, 2, 3, 1, 5, 6, 7, 8}
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Generating a Single Random Permutation

PermuteSet(A[0 . . . n − 1])

for i ←− 0 to n − 2
j ←− RandInt(i + 1, n − 1)
Swap(A, i , j)

Basic operation is RandInt

The loop is Θ(n)

In general, items in a
permutation can be
anything

We think of them as
ordered sets

{a0, a2, . . . , an−1}

But we’ll talk about
them as a lists of
integers for simplicity

For example:

{4, 7, 3, 1, 5, 6, 2, 8}

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Topological Sorting Combinatorics Constant-Factor Variable-Size Transform Gaussian Homework

Generating a Single Random Permutation

PermuteSet(A[0 . . . n − 1])

for i ←− 0 to n − 2
j ←− RandInt(i + 1, n − 1)
Swap(A, i , j)

Basic operation is RandInt

The loop is Θ(n)

In general, items in a
permutation can be
anything

We think of them as
ordered sets

{a0, a2, . . . , an−1}

But we’ll talk about
them as a lists of
integers for simplicity

For example:

{4, 7, 1, 3, 5, 6, 2, 8}
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Generating a Single Random Permutation

PermuteSet(A[0 . . . n − 1])

for i ←− 0 to n − 2
j ←− RandInt(i + 1, n − 1)
Swap(A, i , j)

Basic operation is RandInt

The loop is Θ(n)

In general, items in a
permutation can be
anything

We think of them as
ordered sets

{a0, a2, . . . , an−1}

But we’ll talk about
them as a lists of
integers for simplicity

For example:

{4, 7, 1, 8, 5, 6, 2, 3}
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Generating a Single Random Permutation

PermuteSet(A[0 . . . n − 1])

for i ←− 0 to n − 2
j ←− RandInt(i + 1, n − 1)
Swap(A, i , j)

Basic operation is RandInt

The loop is Θ(n)

In general, items in a
permutation can be
anything

We think of them as
ordered sets

{a0, a2, . . . , an−1}

But we’ll talk about
them as a lists of
integers for simplicity

For example:

{4, 7, 1, 8, 2, 6, 5, 3}
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Generating a Single Random Permutation

PermuteSet(A[0 . . . n − 1])

for i ←− 0 to n − 2
j ←− RandInt(i + 1, n − 1)
Swap(A, i , j)

Basic operation is RandInt

The loop is Θ(n)

In general, items in a
permutation can be
anything

We think of them as
ordered sets

{a0, a2, . . . , an−1}

But we’ll talk about
them as a lists of
integers for simplicity

For example:

{4, 7, 1, 8, 2, 3, 5, 6}

R. Paul Wiegand George Mason University, Department of Computer Science
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Generating All Permutations

Suppose we want to generate all permutations between 1 and n

We can use Decrease-and-Conquer:

Given that the n− 1 permutations are generated
We can generate the nth permutations by inserting n at all
possible n positions
We start adding right-to-left, then switch when a new perm is
processed

R. Paul Wiegand George Mason University, Department of Computer Science
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Generating All Permutations

Suppose we want to generate all permutations between 1 and n

We can use Decrease-and-Conquer:

Given that the n− 1 permutations are generated
We can generate the nth permutations by inserting n at all
possible n positions
We start adding right-to-left, then switch when a new perm is
processed

Start 1
Insert 2 12 21

right to left

Insert 3 123 132 312 321 231 213
right to left left to right

R. Paul Wiegand George Mason University, Department of Computer Science
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Generating All Permutations

Suppose we want to generate all permutations between 1 and n

We can use Decrease-and-Conquer:

Given that the n− 1 permutations are generated
We can generate the nth permutations by inserting n at all
possible n positions
We start adding right-to-left, then switch when a new perm is
processed

Start 1
Insert 2 12 21

right to left

Insert 3 123 132 312 321 231 213
right to left left to right

Satisfies minimal-change: each
permutation can be obtained
from its predecessor by ex-
changing just two elements

R. Paul Wiegand George Mason University, Department of Computer Science
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Generating n
th Permutation

We can get the same ordering of permutations of n elements
without generating the smaller permutations

We associate a direction with each element in the
permutation: →3

←

2
→

4
←

1
A mobile component is one in which the arrow points to a
smaller adjacent value (3 & 4 above, but not 1 & 2)

JohnsonTrotter(n)

Initialize the first permutation with ←
1
←

2
· · · ←

n
while there exists a mobile k do

Find the largest mobile integer k

Swap k and the adjacent integer its arrow points to
Reverse the direction of all integers larger than k

R. Paul Wiegand George Mason University, Department of Computer Science
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Generating n
th Permutation

We can get the same ordering of permutations of n elements
without generating the smaller permutations

We associate a direction with each element in the
permutation: →3

←

2
→

4
←

1
A mobile component is one in which the arrow points to a
smaller adjacent value (3 & 4 above, but not 1 & 2)

JohnsonTrotter(n)

Initialize the first permutation with ←
1
←

2
· · · ←

n
while there exists a mobile k do

Find the largest mobile integer k

Swap k and the adjacent integer its arrow points to
Reverse the direction of all integers larger than k

←
1
←
2
←
3

←
1
←
3
←
2

←
3
←
1
←
2

→
3
←
2
←
1

←
2
→
3
←
1

←
2
←
1
→
3
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Generating Subsets

Given some universal set: U = {a1, a2, · · · , an}, generate all
possible subsets

The set of all subsets is called a power set; there are 2n of them

n subsets

0 ∅
1 ∅ {a1}
2 ∅ {a1} {a2} {a1, a2}
3 ∅ {a1} {a2} {a3} {a1, a2} {a1, a3} {a2, a3} {a1, a2, a3}

R. Paul Wiegand George Mason University, Department of Computer Science
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Generating Subsets

Given some universal set: U = {a1, a2, · · · , an}, generate all
possible subsets

The set of all subsets is called a power set; there are 2n of them

n subsets

0 ∅
1 ∅ {a1}
2 ∅ {a1} {a2} {a1, a2}
3 ∅ {a1} {a2} {a3} {a1, a2} {a1, a3} {a2, a3} {a1, a2, a3}

Can represent a set as a binary string:
000 001 010 011 100 101
∅ {a3} {a2} {a2, a3} {a1} {a1, a3} ...

Is there an equivalent to minimal-change algorithm here?

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Topological Sorting Combinatorics Constant-Factor Variable-Size Transform Gaussian Homework

Generating Subsets

Given some universal set: U = {a1, a2, · · · , an}, generate all
possible subsets

The set of all subsets is called a power set; there are 2n of them

n subsets

0 ∅
1 ∅ {a1}
2 ∅ {a1} {a2} {a1, a2}
3 ∅ {a1} {a2} {a3} {a1, a2} {a1, a3} {a2, a3} {a1, a2, a3}

Can represent a set as a binary string:
000 001 010 011 100 101
∅ {a3} {a2} {a2, a3} {a1} {a1, a3} ...

Is there an equivalent to minimal-change algorithm here?
Yes: 000 001 011 010 110 111 101 100 (Gray code)

R. Paul Wiegand George Mason University, Department of Computer Science
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Fake-Coin Problem

You are given n coins, one of which is fake (you don’t know which)

You are provided a balance scale to compare sets of coins

What is an efficient method for identifying the coin?

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Topological Sorting Combinatorics Constant-Factor Variable-Size Transform Gaussian Homework

Fake-Coin Problem

You are given n coins, one of which is fake (you don’t know which)

You are provided a balance scale to compare sets of coins

What is an efficient method for identifying the coin?

1 Hold one (or two) coins aside

2 Divide the remainder into two equal halves

3 If they balance, the fake has been set aside

4 Otherwise examine the lighter pile in the same way

W (n) = W (⌊n/2⌋) + 1 for n > 1, W (1) = 0 ∈ Θ(lg n)

R. Paul Wiegand George Mason University, Department of Computer Science
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Fake-Coin Problem

You are given n coins, one of which is fake (you don’t know which)

You are provided a balance scale to compare sets of coins

What is an efficient method for identifying the coin?

1 Hold one (or two) coins aside

2 Divide the remainder into two equal halves

3 If they balance, the fake has been set aside

4 Otherwise examine the lighter pile in the same way

W (n) = W (⌊n/2⌋) + 1 for n > 1, W (1) = 0 ∈ Θ(lg n)

But wait! This is not the most efficient way. What if you divided into

three equal piles?

R. Paul Wiegand George Mason University, Department of Computer Science
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Multiplication á la Russe

We want to compute the product of n and m, two positive integers

But we only know how to add and multiple & divide by two

If n is even, we can re-write: n ·m = n
2 · 2m

If n is odd, we can re-write: n ·m = n−1
2 · 2m + m

We can apply this method iteratively until n = 1

R. Paul Wiegand George Mason University, Department of Computer Science
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Multiplication á la Russe

We want to compute the product of n and m, two positive integers

But we only know how to add and multiple & divide by two

If n is even, we can re-write: n ·m = n
2 · 2m

If n is odd, we can re-write: n ·m = n−1
2 · 2m + m

We can apply this method iteratively until n = 1

n m

50 65
25 130 130
12 260
6 520
3 1040 1040
1 2080 2080

3,250

R. Paul Wiegand George Mason University, Department of Computer Science
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Median and Selection

The selection problem: Find the k th smallest element in a list of n

numbers (the k th order statistics)

Finding the median is a special case: k = ⌈n/2⌉

Brute force: Sort, then select the k th value in the list: O(n lg n)

But we can do better: Use the partitioning logic from QuickSort

R. Paul Wiegand George Mason University, Department of Computer Science
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Median and Selection

The selection problem: Find the k th smallest element in a list of n

numbers (the k th order statistics)

Finding the median is a special case: k = ⌈n/2⌉

Brute force: Sort, then select the k th value in the list: O(n lg n)

But we can do better: Use the partitioning logic from QuickSort

a1 · · · as p as+1 · · · an

≤ p ≥ p

If s = k then p solves the problem
If s > k then the k th smallest element in whole list is the k th

smallest element left-side sublist
If s < k then the k th smallest element in whole list is the
(k − s)th smallest element right-side sublist
Average: C (n) = C (n/2) + (n − 1) ∈ Θ(n)

R. Paul Wiegand George Mason University, Department of Computer Science
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Interpolation Search

Like BinarySearch, but
more like a telephone book

Rather than split the list in
half, we interpolate the
position based on the key value

v := search key value
l := left index
r := right index
y = mx + b =⇒ x = y−b

m

x = l +
⌊

(v−A[l])(r−l)
A[r ]−A[l]

⌋

Average case: O(lg lg n)
index

va
lu

e

A[l]

A[r]

l r

v

x

R. Paul Wiegand George Mason University, Department of Computer Science
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Introduction to Transform & Conquer

In many cases, one can transform a problem instance and solve the
transformed problem

Three variations of this idea are as follows:

instance simplicfication — Transform problem instance into a
simpler or more convenient istance

representation change — Transform problem instance
representations

problem reduction — Transform problem instance into an instance
of different problem

R. Paul Wiegand George Mason University, Department of Computer Science
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Presorting

Many questions about lists can be answered more easily when the
list is already sorted

The cost of the sort itself should be warranted

Example: Element uniqueness

R. Paul Wiegand George Mason University, Department of Computer Science
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Presorting

Many questions about lists can be answered more easily when the
list is already sorted

The cost of the sort itself should be warranted

Example: Element uniqueness

Brute force: compare every element
against every other element, Θ(n2)
Presort & scan:
T (n) = Tsort(n) + Tscan =
Θ(n lg n) + Θ(n) ∈ Θ(n lg n)

Example: Search
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Presorting

Many questions about lists can be answered more easily when the
list is already sorted

The cost of the sort itself should be warranted

Example: Element uniqueness

Brute force: compare every element
against every other element, Θ(n2)
Presort & scan:
T (n) = Tsort(n) + Tscan =
Θ(n lg n) + Θ(n) ∈ Θ(n lg n)

Example: Search

Brute force: linear search: Θ(n)
Presort & binary search:
Θ(n lg n) + Θ(lg n) ∈ Θ(n lg n)
Presorting does not help with one
search, though perhaps it will with
many searches on the same list

Example: Computing a mode (most frequent value)
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Presorting

Many questions about lists can be answered more easily when the
list is already sorted

The cost of the sort itself should be warranted

Example: Element uniqueness

Brute force: compare every element
against every other element, Θ(n2)
Presort & scan:
T (n) = Tsort(n) + Tscan =
Θ(n lg n) + Θ(n) ∈ Θ(n lg n)

Example: Search

Brute force: linear search: Θ(n)
Presort & binary search:
Θ(n lg n) + Θ(lg n) ∈ Θ(n lg n)
Presorting does not help with one
search, though perhaps it will with
many searches on the same list

Example: Computing a mode (most frequent value)
Brute force: scan list an store count in auxiliary list then scan auxiliary list
for highest frequency, worst case time Θ(n2)
Presort, Longest-run: sort then scan through list looking for the longest
run of a value, Θ(n lg n)
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Gaussian Elimination

Problem: Solve a system of n linear equations with n unknowns

a11x1 + a12x2+ · · · +a1nxn = b1

a21x1 + a22x2+ · · · +a2nxn = b2

..

.

an1x1 + an2x2+ · · · +annxn = bn

This can be written as A~x = ~b

Gaussian Elimination first asks us to transform the problem to a
different one, one that has the same solution: A′~x = ~b′

The transformation yields a matrix with all zeros below its main
diagonal:

A′ =







a′11 a′12 · · · a′1n
0 a′22 · · · a′2n
...

. . .

0 0 · · · a′nn






, ~b′ =







b′1
b′2
...
v ′n






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Gaussian Elimination

Problem: Solve a system of n linear equations with n unknowns

a11x1 + a12x2+ · · · +a1nxn = b1

a21x1 + a22x2+ · · · +a2nxn = b2

..

.

an1x1 + an2x2+ · · · +annxn = bn

This can be written as A~x = ~b

Gaussian Elimination first asks us to transform the problem to a
different one, one that has the same solution: A′~x = ~b′

The transformation yields a matrix with all zeros below its main
diagonal:

A′ =







a′11 a′12 · · · a′1n
0 a′22 · · · a′2n
...

. . .

0 0 · · · a′nn






, ~b′ =







b′1
b′2
...
v ′n







A simple backward substi-
tution method can be used
to obtain the solution now!
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Gaussian Elimination: Obtaining An Upper-Triangle

Coefficient Matrix

Solutions to the system are invariant to three elementary

operations:

Exchange two equations of the system
Replace an equation with its nonzero multiple
Replace an equation with a sum or difference of this equation
and some multiple of another

Consider the following example:

2x1 − x2 + x3 = 1
4x1 + x2 − x3 = 5
x1 + x2 + x3 = 0





2 −1 1 1
4 1 −1 5
1 1 1 0





row 2 ← row2− row1 ∗ 4
2

row3 ← row3 − row1 ∗ 1
2
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Gaussian Elimination: Obtaining An Upper-Triangle

Coefficient Matrix

Solutions to the system are invariant to three elementary

operations:

Exchange two equations of the system
Replace an equation with its nonzero multiple
Replace an equation with a sum or difference of this equation
and some multiple of another

Consider the following example:

2x1 − x2 + x3 = 1
4x1 + x2 − x3 = 5
x1 + x2 + x3 = 0





2 −1 1 1
0 3 −3 3
0 3

2
1
2 − 1

2



row3 ← row3 − row2 ∗ 1
2
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Gaussian Elimination: Obtaining An Upper-Triangle

Coefficient Matrix

Solutions to the system are invariant to three elementary

operations:

Exchange two equations of the system
Replace an equation with its nonzero multiple
Replace an equation with a sum or difference of this equation
and some multiple of another

Consider the following example:

2x1 − x2 + x3 = 1
4x1 + x2 − x3 = 5
x1 + x2 + x3 = 0





2 −1 1 1
0 3 −3 3
0 0 2 −2



 Upper-triangle form!
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LU Decomposition

If we track the row multiples used during Gaussian elimination, we
can construct a lower-triagonal matrix (with one’s on the diagonal)

L =





1 0 0
2 1 0
1
2

1
2 1





We can also consider the upper-triangular matrix produced by
Gaussian elimination, leaving off the ~b′ vector:

U =





2 −1 1
0 3 −3
0 0 2





It turns out that A = LU, so we can re-write our original system as
LU~x = ~b
We can split this into two steps, and solve each with back
substitution: L~y = ~b then U~x = ~y
Advantage: We can solve many systems with different ~b vectors in
the same way, with minimal additional effort
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LU Decomposition

If we track the row multiples used during Gaussian elimination, we
can construct a lower-triagonal matrix (with one’s on the diagonal)

L =





1 0 0
2 1 0
1
2

1
2 1





We can also consider the upper-triangular matrix produced by
Gaussian elimination, leaving off the ~b′ vector:

U =





2 −1 1
0 3 −3
0 0 2





It turns out that A = LU, so we can re-write our original system as
LU~x = ~b
We can split this into two steps, and solve each with back
substitution: L~y = ~b then U~x = ~y
Advantage: We can solve many systems with different ~b vectors in
the same way, with minimal additional effort

NOTE: We can actually store L and
U in the same matrix to save space.
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Matrix Inversion

The inverse of a matrix, denoted A′,
is defined as AA′ = I , where I is the
identity matrix

I =







1 0 · · · 0
0 1 · · · 0
...

. . . 0
0 0 . . . 1







But this can be written as a series of
systems of linear equations, A~x j = ~e j

where:

A′ =







x11 x12 · · · x1n

x21 x22 · · · x2n

.

..
. . .

xn1 xn2 . . . xnn







~x j is the j th column of the inverse matrix
~e j is the j th column of the identity matrix

We can compute the LU decomposition of A, then systematically
attempt to solve for each column of the inverse

If compute a U with zeros on the diagonal, there is no inverse and
A is said to be singular

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Topological Sorting Combinatorics Constant-Factor Variable-Size Transform Gaussian Homework

Matrix Inversion

The inverse of a matrix, denoted A′,
is defined as AA′ = I , where I is the
identity matrix

I =







1 0 · · · 0
0 1 · · · 0
...

. . . 0
0 0 . . . 1







But this can be written as a series of
systems of linear equations, A~x j = ~e j

where:

A′ =







x11 x12 · · · x1n

x21 x22 · · · x2n

...
. . .

xn1 xn2 . . . xnn







~x j is the j th column of the inverse matrix
~e j is the j th column of the identity matrix

We can compute the LU decomposition of A, then systematically
attempt to solve for each column of the inverse

If compute a U with zeros on the diagonal, there is no inverse and
A is said to be singular

~x1

~e1
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Matrix Inversion

The inverse of a matrix, denoted A′,
is defined as AA′ = I , where I is the
identity matrix

I =







1 0 · · · 0
0 1 · · · 0
...

. . . 0
0 0 . . . 1







But this can be written as a series of
systems of linear equations, A~x j = ~e j

where:

A′ =







x11 x12 · · · x1n

x21 x22 · · · x2n

...
. . .

xn1 xn2 . . . xnn







~x j is the j th column of the inverse matrix
~e j is the j th column of the identity matrix

We can compute the LU decomposition of A, then systematically
attempt to solve for each column of the inverse

If compute a U with zeros on the diagonal, there is no inverse and
A is said to be singular

~x2

~e2
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Book Topics Skipped in Lecture

In section 5.5:

Josephus Problem (pp. 182–184)

In section 5.6:

Search and Insertion in a Binary Search Tree (pp. 188–189)

In section 6.2:

The GaussElimnation and BetterGaussElimination

algorithms in detail (pp. 202–203)
Computing a Determinant (pp. 206–207)
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Assignments

This week’s assignments:

Section 5.3: Problems 1, 2, & 5
Section 5.4: Problems 1, 2, & 5
Section 5.5: Problems 2 & 4
Section 5.6: Problems 2 & 6
Section 6.1: Problems 1, 5, & 6
Section 6.2: Problems 1, 2, & 7
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Project II: Balanced Trees

See project description at:
http://www.cs.gmu.edu/∼pwiegand/cs483/assignments.htm

The project will be due by midnight April 7.
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