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Binary Search Trees

binary search tree — A binary tree in which, given
some node, all nodes in the left subtree of that
node have a smaller key value and all the nodes
in the right subtree of a greater key value

Operations: Search, Insert, & Delete

Average case for these: Θ(lg n)
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Binary Search Trees

binary search tree — A binary tree in which, given
some node, all nodes in the left subtree of that
node have a smaller key value and all the nodes
in the right subtree of a greater key value

Operations: Search, Insert, & Delete

Average case for these: Θ(lg n)

Worst case for these: Θ(n)

This occurs when the tree is unbalanced (wide
diversity of path lengths from leaf nodes to root)
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Binary Search Trees

binary search tree — A binary tree in which, given
some node, all nodes in the left subtree of that
node have a smaller key value and all the nodes
in the right subtree of a greater key value

Operations: Search, Insert, & Delete

Average case for these: Θ(lg n)

Worst case for these: Θ(n)

This occurs when the tree is unbalanced (wide
diversity of path lengths from leaf nodes to root)

In the most severe case, the tree becomes a list
whose height is O(n)
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Binary Search Trees

binary search tree — A binary tree in which, given
some node, all nodes in the left subtree of that
node have a smaller key value and all the nodes
in the right subtree of a greater key value

Operations: Search, Insert, & Delete

Average case for these: Θ(lg n)

Worst case for these: Θ(n)

This occurs when the tree is unbalanced (wide
diversity of path lengths from leaf nodes to root)

In the most severe case, the tree becomes a list
whose height is O(n)

Two high-level for avoiding unbalanced trees:

Balance an unbalanced tree (instance simplification)
Allow more elements in a node (representation change)
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AVL Trees

Methods for transforming unbalanced trees to
balanced trees include AVL trees, red-black trees,
and splay trees

Balance factor— the difference between the
heights of the left and right subtrees

AVL tree — a binary search tree in which the
balance factor of every node is {+1, 0,−1}

The trick is to maintain the AVL property when
nodes are inserted or deleted

To do so, there are four special transformations:

Single-right, single-left rotation
Double left-right, double right-left rotation
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Right & Left Rotations
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Left-Right & Right-Left Rotations
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General Single-Right Rotation
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General Double Left-Right Rotation
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Analyzing AVL Trees

Rotations are complicated operations, but still constant time

Tree traversal efficiency depends on height of the tree

The Height h of any AVL tree with n nodes can be bound by lg n

So Search, Insert, and even Delete are in Θ(lg n).

Cost: Frequent rotations (high constant values in running-time)
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Analyzing AVL Trees

Rotations are complicated operations, but still constant time

Tree traversal efficiency depends on height of the tree

The Height h of any AVL tree with n nodes can be bound by lg n

So Search, Insert, and even Delete are in Θ(lg n).

Cost: Frequent rotations (high constant values in running-time)

Something to Ponder:

Is it better to accept a linear worst case situation when the
average is Θ(lg n) (binary search tree), or to slow all operations
down by a constant factor to ensure a lg n bound in all cases
(AVL tree)?
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2-3 Trees

One may also change the representation by allowing more nodes (e.g., 2-3 trees,
2-3-4 trees, and B-trees)

2-node — Contains a single key K and (up to)
two subtrees. The left subtree contains
nodes with key values less than K , the
right contain values greater than K

3-node — Contains two keys K1 and K2, and
(up to) three subtrees. The left
subtree contains nodes with key values
less than K1, the right contain values
greater than K2, the middle contain
values in (K1,K2)

K

< K > K

K1,K2

<K1 (K1,K2) >K2
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Searching in 2-3 Trees

For a 2-node: Compare the search key to the key at the node

If they are the same, return the node
If the search key is less, traverse left
If the search key is greater, traverse right

For a 3-node: Compare the search key to two keys at the node

If the search key is equal to either node keys, return the node
If the search key is less than the first node key, traverse left
If it is between the two keys, traverse middle
If it is greater than the second node key, traverse right
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Inserting in 2-3 Trees

If tree is empty, make a 2-node at the root for the inserted key

Otherwise,

Insert at a leaf (i.e., Search)
If the leaf is a 2-node, insert the key in that node in the
correct order
If the leaf is a 3-node, split the node up

The smallest key becomes a left 2-node
The largest key becomes a right 2-node
The middle key is promoted to the parent
Note: This promotion can force a split in the node above
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Example: Inserting in a 2-3 Tree

Inserting:〈9, 5, 8, 3, 2, 4, 7〉:

9
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Example: Inserting in a 2-3 Tree

Inserting:〈9, 5, 8, 3, 2, 4, 7〉:

9,5
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Example: Inserting in a 2-3 Tree

Inserting:〈9, 5, 8, 3, 2, 4, 7〉:

9,5,8 8

5 9
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Example: Inserting in a 2-3 Tree

Inserting:〈9, 5, 8, 3, 2, 4, 7〉:

8

3,5 9
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Example: Inserting in a 2-3 Tree

Inserting:〈9, 5, 8, 3, 2, 4, 7〉:

8

2,3,5 9

3,8

2 5 9
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Example: Inserting in a 2-3 Tree

Inserting:〈9, 5, 8, 3, 2, 4, 7〉:

3,8

2 4,5 9
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Example: Inserting in a 2-3 Tree

Inserting:〈9, 5, 8, 3, 2, 4, 7〉:

3,8

2 4,5,7 9

3,5,8

2 4 7 9
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Analyzing 2-3 Trees

Consider a 2-3 tree of height h with n nodes in it.

Upper bound: All nodes are 2-nodes,
n ≥ 1 + 2 + . . . + 2h = 2h+1 − 1
∴ h ≤ lg(n + 1)− 1

Lower bound: All nodes are 3-nodes,
n ≤ 2 · 30 + 2 · 31 + · · ·+ 2 · 3h = 3h+1 − 1
∴ h ≥ log3(n + 1)− 1

So the height is bounded by Θ(log n)

Basic operations are, as well

R. Paul Wiegand George Mason University, Department of Computer Science
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Introduction to Heaps

Heaps are incompletely ordered data structures
suitable for priority queues

Find item with highest priority
Delete item with highest priority
Add new item to the set

Definition

A heap can be defined as a binary tree that meets
the following conditions:

1 It is essentially complete (all h − 1 levels
are full, level h has only left-most leaves)

2 Parental dominance— Key at each node
is ≥ its children
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Introduction to Heaps

Heaps are incompletely ordered data structures
suitable for priority queues

Find item with highest priority
Delete item with highest priority
Add new item to the set

Definition

A heap can be defined as a binary tree that meets
the following conditions:

1 It is essentially complete (all h − 1 levels
are full, level h has only left-most leaves)

2 Parental dominance— Key at each node
is ≥ its children
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Fun Facts about Heaps

The height of an essentially complete binary tree with n nodes is
always ⌊lg n⌋

The root node of a heap always has the largest key value

Any subtree of a heap is also a heap

A heap can be implemented as an array

Store values top-down, left-to-right
Parent nodes in first ⌊n/2⌋ positions, leaf keys in last ⌈n/2⌉
Children of a key in position i ∈ [1, ⌊n/2⌋] will be at 2i and
2i + 1
A parent of a key in position j ∈ [⌈n/2⌉ , n] will be at ⌊n/2⌋
Alternate heap definition:

H [i ] ≥ max{H [2i ], H [2i + 1]} ∀i ∈ [1, ⌊n/2⌋]
parents children

i 0 1 2 3 4 5 6

H[i ] 10 5 7 4 2 1
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Bottom-Up Heap Construction

Bottom-up heap construction takes a non-heap and turns it into a heap.

Starting with the last parental node, work
toward the root (i)

Check the parental dominance of the
node under consideration (j)
If condition not met:

Exchange keys with the larger child
Check again for node in new position
Repeat until satisfied (wc: to the leaf)

Move to the immediate (array)
predecessor and repeat

2

9

6 5

7

i, j

8

Cworst(n) = 2(n − log(n + 1))

∴ C(n) ∈ O(n)
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Bottom-Up Heap Construction

Bottom-up heap construction takes a non-heap and turns it into a heap.

Starting with the last parental node, work
toward the root (i)

Check the parental dominance of the
node under consideration (j)
If condition not met:

Exchange keys with the larger child
Check again for node in new position
Repeat until satisfied (wc: to the leaf)

Move to the immediate (array)
predecessor and repeat
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Cworst(n) = 2(n − log(n + 1))

∴ C(n) ∈ O(n)
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Bottom-Up Heap Construction

Bottom-up heap construction takes a non-heap and turns it into a heap.

Starting with the last parental node, work
toward the root (i)

Check the parental dominance of the
node under consideration (j)
If condition not met:

Exchange keys with the larger child
Check again for node in new position
Repeat until satisfied (wc: to the leaf)

Move to the immediate (array)
predecessor and repeat
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Bottom-Up Heap Construction

Bottom-up heap construction takes a non-heap and turns it into a heap.

Starting with the last parental node, work
toward the root (i)

Check the parental dominance of the
node under consideration (j)
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Exchange keys with the larger child
Check again for node in new position
Repeat until satisfied (wc: to the leaf)
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Bottom-Up Heap Construction

Bottom-up heap construction takes a non-heap and turns it into a heap.

Starting with the last parental node, work
toward the root (i)

Check the parental dominance of the
node under consideration (j)
If condition not met:

Exchange keys with the larger child
Check again for node in new position
Repeat until satisfied (wc: to the leaf)

Move to the immediate (array)
predecessor and repeat
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Bottom-Up Heap Construction

Bottom-up heap construction takes a non-heap and turns it into a heap.

Starting with the last parental node, work
toward the root (i)

Check the parental dominance of the
node under consideration (j)
If condition not met:

Exchange keys with the larger child
Check again for node in new position
Repeat until satisfied (wc: to the leaf)

Move to the immediate (array)
predecessor and repeat
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Cworst(n) = 2(n − log(n + 1))

∴ C(n) ∈ O(n)
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Top-Down Heap Construction

Top-down heap construction maintains heap properties as nodes are inserted.

Repeatedly insert new nodes at the bottom of
the heap

Each insert:

Compare inserted node to parent
If parental dominance condition is not
met, swap nodes
Repeat until condition met or root is
reached

9
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8

7 10

Comparisons needed for
inserts are bounded by
the heap height:

Cinsert(n) = O(lg n)
∴ C(n) ∈ O(n lg n)
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Top-Down Heap Construction

Top-down heap construction maintains heap properties as nodes are inserted.

Repeatedly insert new nodes at the bottom of
the heap

Each insert:

Compare inserted node to parent
If parental dominance condition is not
met, swap nodes
Repeat until condition met or root is
reached

9

6

2 5

10

7 8

Comparisons needed for
inserts are bounded by
the heap height:

Cinsert(n) = O(lg n)
∴ C(n) ∈ O(n lg n)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Balanced Trees Heaps Horner’s Rule Reduction Homework

Top-Down Heap Construction

Top-down heap construction maintains heap properties as nodes are inserted.

Repeatedly insert new nodes at the bottom of
the heap

Each insert:

Compare inserted node to parent
If parental dominance condition is not
met, swap nodes
Repeat until condition met or root is
reached
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Comparisons needed for
inserts are bounded by
the heap height:

Cinsert(n) = O(lg n)
∴ C(n) ∈ O(n lg n)
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Deleting from a Heap

Removing the largest heap element:

1 Exchange the root with the last node in
the heap

2 Decrease the hep size by 1 (i.e., remove
the last node)

3 Sift the new root down the tree using
the heapify procedure from bottom-up
heap construction
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6

1

Comparisons needed for
delete are bounded by
twice the height:

Cdelete(n) = O(lg n)
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Deleting from a Heap

Removing the largest heap element:

1 Exchange the root with the last node in
the heap

2 Decrease the hep size by 1 (i.e., remove
the last node)

3 Sift the new root down the tree using
the heapify procedure from bottom-up
heap construction

1

8
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9

Step 1

Comparisons needed for
delete are bounded by
twice the height:

Cdelete(n) = O(lg n)
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Deleting from a Heap

Removing the largest heap element:

1 Exchange the root with the last node in
the heap

2 Decrease the hep size by 1 (i.e., remove
the last node)

3 Sift the new root down the tree using
the heapify procedure from bottom-up
heap construction

1
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9Step 2

Comparisons needed for
delete are bounded by
twice the height:

Cdelete(n) = O(lg n)
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Deleting from a Heap

Removing the largest heap element:

1 Exchange the root with the last node in
the heap

2 Decrease the hep size by 1 (i.e., remove
the last node)

3 Sift the new root down the tree using
the heapify procedure from bottom-up
heap construction
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j
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9Step 3a

Comparisons needed for
delete are bounded by
twice the height:

Cdelete(n) = O(lg n)
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Deleting from a Heap

Removing the largest heap element:

1 Exchange the root with the last node in
the heap

2 Decrease the hep size by 1 (i.e., remove
the last node)

3 Sift the new root down the tree using
the heapify procedure from bottom-up
heap construction
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9Step 3b

Comparisons needed for
delete are bounded by
twice the height:

Cdelete(n) = O(lg n)
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Deleting from a Heap

Removing the largest heap element:

1 Exchange the root with the last node in
the heap

2 Decrease the hep size by 1 (i.e., remove
the last node)

3 Sift the new root down the tree using
the heapify procedure from bottom-up
heap construction
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9Step 3c

Comparisons needed for
delete are bounded by
twice the height:

Cdelete(n) = O(lg n)
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HeapSort

Two stage process:
1 Construct a heap
2 Apply root-deletion n− 1 times

Bottom-up heap construction is O(n)
The deletes are slightly more complicated to analyze because the
size changes with each deletion:

C (n) ≤ 2 ⌊lg(n − 1)⌋+ 2 ⌊lg(n − 2)⌋+ · · ·+ 2 ⌊lg 1⌋

≤ 2

n−1
∑

i=1

lg i

≤ 2
n−1
∑

i=1

lg(n − 1) = 2(n− 1) lg(n − 1)

≤ 2n lg n

C (n) ∈ O(n lg n)

So HeapSort is in O(n lg n)R. Paul Wiegand George Mason University, Department of Computer Science
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Evaluating Polynomials

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

Given some polynomial evaluate it at a specified x

Example: p(x) = 2x2 − 3x + 1

Brute force: p(2) = 2∗(2∗2)− 3∗(2) + 2 = 4

R. Paul Wiegand George Mason University, Department of Computer Science
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Evaluating Polynomials

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

Given some polynomial evaluate it at a specified x

Example: p(x) = 2x2 − 3x + 1

Brute force: p(2) = 2∗(2∗2)− 3∗(2) + 2 = 4 3 multiplications
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Evaluating Polynomials

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

Given some polynomial evaluate it at a specified x

Example: p(x) = 2x2 − 3x + 1

Brute force: p(2) = 2∗(2∗2)− 3∗(2) + 2 = 4 3 multiplications

In general for brute force:

anx
n = an∗x∗x∗x · · · requires n multiplications

an−1x
n−1 requires n− 1 multiplications

...
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Evaluating Polynomials

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

Given some polynomial evaluate it at a specified x

Example: p(x) = 2x2 − 3x + 1

Brute force: p(2) = 2∗(2∗2)− 3∗(2) + 2 = 4 3 multiplications

In general for brute force:

anx
n = an∗x∗x∗x · · · requires n multiplications

an−1x
n−1 requires n− 1 multiplications

...
∑n

i=0 i ∈ O(n2)
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Evaluating Polynomials

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

Given some polynomial evaluate it at a specified x

Example: p(x) = 2x2 − 3x + 1

Brute force: p(2) = 2∗(2∗2)− 3∗(2) + 2 = 4 3 multiplications

In general for brute force:

anx
n = an∗x∗x∗x · · · requires n multiplications

an−1x
n−1 requires n− 1 multiplications

...
∑n

i=0 i ∈ O(n2)

Is there a better way?
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Horner’s Rule

We can successively take a common factor in
the remaining polynomials of smaller degree:

p(x) = anx
n + +an−1x

n−1 + an−2x
n−2 + · · · + a1x + a0
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Horner’s Rule

We can successively take a common factor in
the remaining polynomials of smaller degree:

p(x) = anx
n + +an−1x

n−1 + an−2x
n−2 + · · · + a1x + a0

= (anx + +an−1)x
n−1 + an−2x

n−2 + · · · + a1x + a0
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Horner’s Rule

We can successively take a common factor in
the remaining polynomials of smaller degree:

p(x) = anx
n + +an−1x

n−1 + an−2x
n−2 + · · · + a1x + a0

= (anx + +an−1)x
n−1 + an−2x

n−2 + · · · + a1x + a0

= ((anx + +an−1)x + an−2) xn−2 + · · · + a1x + a0

R. Paul Wiegand George Mason University, Department of Computer Science
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Horner’s Rule

We can successively take a common factor in
the remaining polynomials of smaller degree:

p(x) = anx
n + +an−1x

n−1 + an−2x
n−2 + · · · + a1x + a0

= (anx + +an−1)x
n−1 + an−2x

n−2 + · · · + a1x + a0

= ((anx + +an−1)x + an−2) xn−2 + · · · + a1x + a0

= (. . . (anx + an−1)x + . . .) x + a0

R. Paul Wiegand George Mason University, Department of Computer Science
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Horner’s Rule

We can successively take a common factor in
the remaining polynomials of smaller degree:

p(x) = anx
n + +an−1x

n−1 + an−2x
n−2 + · · · + a1x + a0

= (anx + +an−1)x
n−1 + an−2x

n−2 + · · · + a1x + a0

= ((anx + +an−1)x + an−2) xn−2 + · · · + a1x + a0

= (. . . (anx + an−1)x + . . .) x + a0 One multiplication
(& one addition)
per coefficient
∴ O(n)

For example: p(x) = 2x4 − x3 + 3x2 + x − 5. What is p(3)?

~a 2 -1 3 1 -5
x P = a4 P = Px + a3 P = Px + a2 P = Px + a1 P = Px + a0

x = 3 2 2 · 3 − 1 = 5 5 · 3 + 3 = 18 18 · 3 + 1 = 55 55 · 3 − 5 = 160

R. Paul Wiegand George Mason University, Department of Computer Science
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Binary Exponentiation Basics

A degenerate polynomial evaluation problem of interest is an

xn, where x = a

R. Paul Wiegand George Mason University, Department of Computer Science
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Binary Exponentiation Basics

A degenerate polynomial evaluation problem of interest is an

xn, where x = a

Suppose we have a representation of n as a binary string of length ℓ:
n = bℓbℓ−1 · · · bi · · · b0 e.g., n = 13 = 11012

R. Paul Wiegand George Mason University, Department of Computer Science
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Binary Exponentiation Basics

A degenerate polynomial evaluation problem of interest is an

xn, where x = a

Suppose we have a representation of n as a binary string of length ℓ:
n = bℓbℓ−1 · · · bi · · · b0 e.g., n = 13 = 11012

Can interpret bits as coefficients, write a polynomial where x = 2:
p(x) = bℓx

ℓ + · · · bix
i + · · · b0 e.g., 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

R. Paul Wiegand George Mason University, Department of Computer Science
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Binary Exponentiation Basics

A degenerate polynomial evaluation problem of interest is an

xn, where x = a

Suppose we have a representation of n as a binary string of length ℓ:
n = bℓbℓ−1 · · · bi · · · b0 e.g., n = 13 = 11012

Can interpret bits as coefficients, write a polynomial where x = 2:
p(x) = bℓx

ℓ + · · · bix
i + · · · b0 e.g., 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

We can now rewrite an:
ap(x) = abℓxℓ+···bi x

i +···b0 e.g., a1·23+1·22+0·21+1·20

R. Paul Wiegand George Mason University, Department of Computer Science
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Binary Exponentiation Basics

A degenerate polynomial evaluation problem of interest is an

xn, where x = a

Suppose we have a representation of n as a binary string of length ℓ:
n = bℓbℓ−1 · · · bi · · · b0 e.g., n = 13 = 11012

Can interpret bits as coefficients, write a polynomial where x = 2:
p(x) = bℓx

ℓ + · · · bix
i + · · · b0 e.g., 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

We can now rewrite an:
ap(x) = abℓxℓ+···bi x

i +···b0 e.g., a1·23+1·22+0·21+1·20

So we can accumulate the product in the exponent by Horner’s rule

R. Paul Wiegand George Mason University, Department of Computer Science
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Binary Exponentiation Basics

A degenerate polynomial evaluation problem of interest is an

xn, where x = a

Suppose we have a representation of n as a binary string of length ℓ:
n = bℓbℓ−1 · · · bi · · · b0 e.g., n = 13 = 11012

Can interpret bits as coefficients, write a polynomial where x = 2:
p(x) = bℓx

ℓ + · · · bix
i + · · · b0 e.g., 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

We can now rewrite an:
ap(x) = abℓxℓ+···bi x

i +···b0 e.g., a1·23+1·22+0·21+1·20

So we can accumulate the product in the exponent by Horner’s rule

Writing p as the current product, we recognize that:

a2p+bi = a2p · abi = (ap)2 · abi =



(ap)2 if bi = 0

(ap)2 · a if bi = 1

R. Paul Wiegand George Mason University, Department of Computer Science
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Left-to-Right Binary Exponentiation

LeftToRightExp(a, b(n))
p ←− a

for i ← ℓ downto 0 do

p ←− p · p
if bi = 1 then p ← p · a

return p

Number of multiplications
bounded by the number of
1-bits

This is bounded by ℓ, the
length of b

ℓ− 1 = ⌊lg n⌋

∴ M(n) = O(lg n)

But we must have binary string
to begin with!

For example: a13 where n = 13 = 11012:

binary digits of n 1 1 0 1

product accumulator a a2 · a = a3
`

a3
´2

= a6
`

a6
´2

· a = a13

example 3 (9) · 3 = 27 (27)2 = 729 (729)2 · 3 = 1, 594, 323

R. Paul Wiegand George Mason University, Department of Computer Science
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Right-to-Left Binary Exponentiation

Can re-express an:
abℓxℓ+···bi x

i +···b0 =

abℓ2ℓ
· · · · abi2

i
· · · · ab0

We recognize that:

abi 2
i
=



a2i
if bi = 1

1 if bi = 0

This is also O(lg n)

Also relies on having an
available binary string

R. Paul Wiegand George Mason University, Department of Computer Science
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Right-to-Left Binary Exponentiation

Can re-express an:
abℓxℓ+···bi x

i +···b0 =

abℓ2ℓ
· · · · abi2

i
· · · · ab0

We recognize that:

abi 2
i
=



a2i
if bi = 1

1 if bi = 0

This is also O(lg n)

Also relies on having an
available binary string

RightToLeftExp(a, b(n))

t ←− a

if b0 = 1 then p ←− a

else p ←− 1
for i ← 1 to ℓ do

t ←− t · t
if bi = 1 then p ← p · t

return p

R. Paul Wiegand George Mason University, Department of Computer Science
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Right-to-Left Binary Exponentiation

Can re-express an:
abℓxℓ+···bi x

i +···b0 =

abℓ2ℓ
· · · · abi2

i
· · · · ab0

We recognize that:

abi 2
i
=



a2i
if bi = 1

1 if bi = 0

This is also O(lg n)

Also relies on having an
available binary string

RightToLeftExp(a, b(n))

t ←− a

if b0 = 1 then p ←− a

else p ←− 1
for i ← 1 to ℓ do

t ←− t · t
if bi = 1 then p ← p · t

return p

For example: a13 where n = 13 = 11012:

1 1 0 1 binary digits of n

a8 a4 a2 a terms of a2i

a5 · a8 = a13 a · a4 = a5 a product accumulator
35 · 38 = 1, 594, 323 3 · 34 = 243 3 example

R. Paul Wiegand George Mason University, Department of Computer Science
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“Reducing” Problems

Not called “reducing” because the problem
gets smaller or even (necessarily) easier

Comp Sci’s transform one problem into
another as a means of classifying problems

Properly classified, the space of unique
problems is reduced

P r o b l e m AP r o b l e m B P r o b l e m C P r o b l e m DP r o b l e m E

R. Paul Wiegand George Mason University, Department of Computer Science
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“Reducing” Problems

Not called “reducing” because the problem
gets smaller or even (necessarily) easier

Comp Sci’s transform one problem into
another as a means of classifying problems

Properly classified, the space of unique
problems is reduced

Also reduce problems as a means of solving
problems using known & proven methods

Or when another view gives us some
additional insight about the original problem

P r o b l e m AP r o b l e m B P r o b l e m C P r o b l e m DP r o b l e m E
P r o b l e m B A l g o r i t h m A :s o l v e s p r o b l e m AP r o b l e m AR e d u c t i o n A n s w e r t o p r o b l e mAA n s w e r t o p r o b l e mB

R. Paul Wiegand George Mason University, Department of Computer Science
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Least Common Multiple

The least common multiple of two positive integers m and n, lcm(m, n), is the
smallest integer that is divisible by both m and n.

Middle school method:

Compute the prime factors of m and n

Multiply common factors by the uncommon factors

24 = 2 · 2 · 3 · 2
60 = 2 · 2 · 3 · 5
lcm(24, 60) = (2 ·2 ·3) · (2 ·5)

R. Paul Wiegand George Mason University, Department of Computer Science
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Least Common Multiple

The least common multiple of two positive integers m and n, lcm(m, n), is the
smallest integer that is divisible by both m and n.

Middle school method:

Compute the prime factors of m and n

Multiply common factors by the uncommon factors

24 = 2 · 2 · 3 · 2
60 = 2 · 2 · 3 · 5
lcm(24, 60) = (2 ·2 ·3) · (2 ·5)

Alternatively:

Note: The product of lcm(m, n) and gcd(m, n) includes every
factor exactly once
In other words: lcm(m, n) · gcd(m, n) = m · n
∴ lcm(m, n) = m·n

gcd(m,n)

So, if we can solve gcd, we can solve lcm
gcd can be computed efficiently via Euclid’s algorithm

R. Paul Wiegand George Mason University, Department of Computer Science
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Counting Paths in a Graph

How many paths of length k are there
between any pair of nodes in a graph?

We could perform a graph search and count
the paths ...

But there’s a cool little trick:

Consider the adjacency matrix A

a b

c d

A =

a

b

c

d









0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0









a b c d

R. Paul Wiegand George Mason University, Department of Computer Science
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Counting Paths in a Graph

How many paths of length k are there
between any pair of nodes in a graph?

We could perform a graph search and count
the paths ...

But there’s a cool little trick:

Consider the adjacency matrix A

Recall: A2 = A · A and Aij = {0, 1} ∀i , j
So by matrix multiplication, A2

ij is the
sum of all situations in which the i is
connected to some other node and that
node is connected to j

a b

c d

A =

a

b

c

d









0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0









a b c d

A2 =

a

b

c

d









3 0 1 1
0 1 1 1
1 1 2 1
1 1 1 2









a b c d
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Counting Paths in a Graph

How many paths of length k are there
between any pair of nodes in a graph?

We could perform a graph search and count
the paths ...

But there’s a cool little trick:

Consider the adjacency matrix A

Recall: A2 = A · A and Aij = {0, 1} ∀i , j
So by matrix multiplication, A2

ij is the
sum of all situations in which the i is
connected to some other node and that
node is connected to j

Ak = A · A · A · · ·
The value at Ak

ij will be the number of
paths of length k that connect i and j

a b

c d

A =

a

b

c

d









0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0









a b c d

A2 =

a

b

c

d









3 0 1 1
0 1 1 1
1 1 2 1
1 1 1 2









a b c d
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Optimization

One optimization problem is maximization— argmax{f (x)}, find
the argument value for x that gives us max{f (x)}

We may also be asked to minimize a function

It turns out that this is the same problem:
max{f (x)} = −max{−f (x)}

This works for virtually any domain— so if you can solve
maximization, you can solve minimization

Moreover, the standard calculus method is a type of reduction:

Calculate the derivative, f ′(x) = d
dx

f (x)
Solve for f ′(0)
Assuming the derivatives can be calculated, this reduces to the
problem of finding critical points

R. Paul Wiegand George Mason University, Department of Computer Science
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Linear Programming

Linear programming problems involve optimizing a linear function
subject to linear constraints
There exists a general form for many LP problems:

maximize c1x1 + · · · + cnxn

subject to ai1x1 + · · · + ainxn{≤, =,≥}bi ∀i ∈ [1,m]
x1 ≥ 0, . . . , xn ≥ 0

Many (many) problems in computer science can be reduced to such
problems (e.g., the fractional knap-sack problem)
There are a variety of well-known methods for solving them:

The simplex method, which has an exponential worst-case
bound, but whose average case is typically quite good
Karmarkar’s algorithm, which guarantees a polynomial
worst-case bound and has done well empirical

A much harder, related class of problems are integer linear

programming, which are known to be NP-hard in general (e.g., the
0-1 knap-sack problem)

R. Paul Wiegand George Mason University, Department of Computer Science
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Book Topics Skipped in Lecture

In section 6.6:

Reduction to Graph Problems (pp. 239–240)

R. Paul Wiegand George Mason University, Department of Computer Science
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Assignments

This week’s assignments:

Section 6.3: Problems 1, 4, & 7
Section 6.4: Problems 1 & 6
Section 6.5: Problems 4, 6, 7 & 8
Section 6.6: Problems 1, 8, & 9

R. Paul Wiegand George Mason University, Department of Computer Science
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