Outline	Balanced Trees 00000000000	Heaps 000000	Horner's Rule 00000	Reduction 00000	Homework 00

CS 483 - Data Structures and Algorithm Analysis Lecture VII: Chapter 6, part 2

R. Paul Wiegand

George Mason University, Department of Computer Science

March 22, 2006

R. Paul Wiegand CS483 Lecture II George Mason University, Department of Computer Science

Outline	Balanced Trees 000000000000	Heaps 000000	Horner's Rule 00000	Reduction 00000	Homework 00
Outline					

- 1 Balanced Trees
- 2 Heaps & HEAPSORT
- 3 Horner's Rule & Binary Exponentiation
- 4 Problem Reduction
- 5 Homework

George Mason University, Department of Computer Science

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	●00000000000	000000	00000	00000	00

- binary search tree— A binary tree in which, given some node, all nodes in the left subtree of that node have a smaller key value and all the nodes in the right subtree of a greater key value
- Operations: SEARCH, INSERT, & DELETE
- Average case for these: $\Theta(\lg n)$

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	●00000000000	000000	00000	00000	00

- binary search tree A binary tree in which, given some node, all nodes in the left subtree of that node have a smaller key value and all the nodes in the right subtree of a greater key value
- Operations: SEARCH, INSERT, & DELETE
- Average case for these: $\Theta(\lg n)$
- Worst case for these: $\Theta(n)$
- This occurs when the tree is unbalanced (wide diversity of path lengths from leaf nodes to root)

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	●00000000000	000000	00000	00000	00

- binary search tree A binary tree in which, given some node, all nodes in the left subtree of that node have a smaller key value and all the nodes in the right subtree of a greater key value
- Operations: SEARCH, INSERT, & DELETE
- Average case for these: $\Theta(\lg n)$
- Worst case for these: $\Theta(n)$
- This occurs when the tree is unbalanced (wide diversity of path lengths from leaf nodes to root)
- In the most severe case, the tree becomes a list whose height is O(n)

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	●00000000000	000000	00000	00000	00

- binary search tree A binary tree in which, given some node, all nodes in the left subtree of that node have a smaller key value and all the nodes in the right subtree of a greater key value
- Operations: SEARCH, INSERT, & DELETE
- Average case for these: $\Theta(\lg n)$
- Worst case for these: $\Theta(n)$
- This occurs when the tree is unbalanced (wide diversity of path lengths from leaf nodes to root)
- In the most severe case, the tree becomes a list whose height is O(n)
- Two high-level for avoiding unbalanced trees:
 - Balance an unbalanced tree (instance simplification)
 - Allow more elements in a node (representation change)

2

2

6

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	0●0000000000	000000	00000	00000	00

AVL Trees

- Methods for transforming unbalanced trees to balanced trees include AVL trees, red-black trees, and splay trees
- Balance factor— the difference between the heights of the left and right subtrees
- *AVL tree* a binary search tree in which the balance factor of every node is {+1, 0, -1}
- The trick is to maintain the AVL property when nodes are inserted or deleted
- To do so, there are four special transformations:
 - Single-right, single-left rotation
 - Double left-right, double right-left rotation

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00●000000000	000000	00000	00000	00

Right & Left Rotations

CS483 Lecture II

Left-Right & Right-Left Rotations

CS483 Lecture II

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	0000●0000000	000000	00000	00000	00

General Single-Right Rotation

George Mason University, Department of Computer Science

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction
	00000000000			

General Double Left-Right Rotation

George Mason University, Department of Computer Science

Outline	Balanced Trees 000000●00000	Heaps 000000	Horner's Rule 00000	Reduction 00000	Homework 00
A	····· ^)/I T				

- Analyzing AVL Trees
 - Rotations are complicated operations, but still constant time
 - Tree traversal efficiency depends on height of the tree
 - The Height *h* of any AVL tree with *n* nodes can be bound by lg *n*
 - So SEARCH, INSERT, and even DELETE are in $\Theta(\lg n)$.
 - Cost: Frequent rotations (high constant values in running-time)

Outline	Balanced Trees 000000●00000	Heaps 000000	Horner's Rule 00000	Reduction 00000	Homework 00
ΛΙ	· ^// T				

Analyzing AVL Trees

- Rotations are complicated operations, but still constant time
- Tree traversal efficiency depends on height of the tree
- The Height *h* of any AVL tree with *n* nodes can be bound by lg *n*
- So SEARCH, INSERT, and even DELETE are in $\Theta(\lg n)$.
- Cost: Frequent rotations (high constant values in running-time)

Something to Ponder:

Is it better to accept a linear worst case situation when the average is $\Theta(\lg n)$ (binary search tree), or to slow all operations down by a constant factor to ensure a $\lg n$ bound in all cases (AVL tree)?

Outline	Balanced Trees 000000000000	Heaps 000000	Horner's Rule 00000	Reduction 00000	Homework 00

2-3 Trees

One may also change the representation by allowing more nodes (e.g., 2-3 trees, 2-3-4 trees, and B-trees)

- 2-node Contains a single key K and (up to) two subtrees. The left subtree contains nodes with key values less than K, the right contain values greater than K
- 3-node Contains two keys K_1 and K_2 , and (up to) three subtrees. The left subtree contains nodes with key values less than K_1 , the right contain values greater than K_2 , the middle contain values in (K_1, K_2)

Outline	Balanced Trees 0000000000000	Heaps 000000	Horner's Rule 00000	Reduction 00000	Homework 00
<u> </u>	· · • • • •				

Searching in 2-3 Trees

For a 2-node: Compare the search key to the key at the node

- If they are the same, return the node
- If the search key is less, traverse left
- If the search key is greater, traverse right

For a 3-node: Compare the search key to two keys at the node

- If the search key is equal to either node keys, return the node
- If the search key is less than the first node key, traverse left
- If it is between the two keys, traverse middle
- If it is greater than the second node key, traverse right

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	0000000000000	000000	00000	00000	00

Inserting in 2-3 Trees

If tree is empty, make a 2-node at the root for the inserted key

Otherwise,

- Insert at a leaf (i.e., SEARCH)
- If the leaf is a 2-node, insert the key in that node in the correct order
- If the leaf is a 3-node, split the node up
 - The smallest key becomes a left 2-node
 - The largest key becomes a right 2-node
 - The middle key is promoted to the parent
 - Note: This promotion can force a split in the node above

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000000	000000	00000	00000	00

Inserting: (9, 5, 8, 3, 2, 4, 7):

George Mason University, Department of Computer Science

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000000	000000	00000	00000	00

Inserting: (9, 5, 8, 3, 2, 4, 7):

George Mason University, Department of Computer Science

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000000	000000	00000	00000	00

Inserting: (9, 5, 8, 3, 2, 4, 7):

 < □ > < ⊡ > < ⊡ > < ∃ > < ∃ >

 George Mason University, Department of Computer Science

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	
	000000000000				

Inserting: (9, 5, 8, 3, 2, 4, 7):

▲ □ ► ▲ □ ► ▲ George Mason University, Department of Computer Science

3

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000000	000000	00000	00000	00

Inserting: (9, 5, 8, 3, 2, 4, 7):

R. Paul Wiegand CS483 Lecture II ৰ্চা > ব্টা> ব্টা> ব্টা> ব্টা> ট্রা> বি George Mason University, Department of Computer Science

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000000	000000	00000	00000	00

Inserting: (9, 5, 8, 3, 2, 4, 7):

A (10) < A (10) </p> George Mason University, Department of Computer Science

3

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000000	000000	00000	00000	00

Inserting: (9, 5, 8, 3, 2, 4, 7):

米部ト 米油ト 米油ト George Mason University, Department of Computer Science

э

Outline	Balanced Trees 00000000000	Heaps 000000	Horner's Rule 00000	Reduction 00000	Homework 00
Analyz	ing 2-3 Trees				

Consider a 2-3 tree of height h with n nodes in it.

- Upper bound: All nodes are 2-nodes, $n \ge 1 + 2 + \ldots + 2^h = 2^{h+1} - 1$ $\therefore h \le \lg(n+1) - 1$
- Lower bound: All nodes are 3-nodes, $n \le 2 \cdot 3^0 + 2 \cdot 3^1 + \dots + 2 \cdot 3^h = 3^{h+1} - 1$ $\therefore h \ge \log_3(n+1) - 1$
- So the height is bounded by $\Theta(\log n)$
- Basic operations are, as well

伺い イヨト イヨト

Outline	Balanced Trees 000000000000	Heaps ●00000	Horner's Rule 00000	Reduction 00000	Homework 00

Introduction to Heaps

- Heaps are *incompletely* ordered data structures suitable for *priority queues*
 - FIND item with highest priority
 - DELETE item with highest priority
 - ADD NEW ITEM TO THE SET

Definition

A *heap* can be defined as a binary tree that meets the following conditions:

- It is essentially complete (all h − 1 levels are full, level h has only left-most leaves)
- 2 Parental dominance— Key at each node is ≥ its children

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	000000000000	●00000	00000	00000	00

Introduction to Heaps

 Heaps are *incompletely* ordered data structures suitable for *priority queues*

- FIND item with highest priority
- DELETE item with highest priority
- ADD NEW ITEM TO THE SET

Definition

A *heap* can be defined as a binary tree that meets the following conditions:

- It is essentially complete (all h − 1 levels are full, level h has only left-most leaves)
- 2 Parental dominance Key at each node is ≥ its children

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000	0●0000	00000	00000	00

Fun Facts about Heaps

- The height of an essentially complete binary tree with n nodes is always $|\lg n|$
- The root node of a heap always has the largest key value
- Any subtree of a heap is also a heap
- A heap can be implemented as an array
 - Store values top-down, left-to-right
 - Parent nodes in first |n/2| positions, leaf keys in last $\lceil n/2 \rceil$
 - Children of a key in position $i \in [1, \lfloor n/2 \rfloor]$ will be at 2*i* and 2i + 1
 - A parent of a key in position $j \in [\lceil n/2 \rceil, n]$ will be at $\lfloor n/2 \rfloor$
 - Alternate heap definition:

parents children 3 1 2 4 5 6 0 105 4 **(D)** < **(P)** < **(P**

 $H[i] \ge max\{H[2i], H[2i+1]\} \ \forall i \in [1, |n/2|]$

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000	00●000	00000	00000	00

Bottom-up heap construction takes a non-heap and turns it into a heap.

- Starting with the last parental node, work toward the root (i)
 - Check the parental dominance of the node under consideration (j)
 - If condition not met:
 - Exchange keys with the larger child
 - Check again for node in new position
 - Repeat until satisfied (wc: to the leaf)
 - Move to the immediate (array) predecessor and repeat

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000	00●000	00000	00000	00

Bottom-up heap construction takes a non-heap and turns it into a heap.

- Starting with the last parental node, work toward the root (i)
 - Check the parental dominance of the node under consideration (j)
 - If condition not met:
 - Exchange keys with the larger child
 - Check again for node in new position
 - Repeat until satisfied (wc: to the leaf)
 - Move to the immediate (array) predecessor and repeat

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000	00●000	00000	00000	00

Bottom-up heap construction takes a non-heap and turns it into a heap.

- Starting with the last parental node, work toward the root (i)
 - Check the parental dominance of the node under consideration (j)
 - If condition not met:
 - Exchange keys with the larger child
 - Check again for node in new position
 - Repeat until satisfied (wc: to the leaf)
 - Move to the immediate (array) predecessor and repeat

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000	00●000	00000	00000	00

Bottom-up heap construction takes a non-heap and turns it into a heap.

- Starting with the last parental node, work toward the root (i)
 - Check the parental dominance of the node under consideration (j)
 - If condition not met:
 - Exchange keys with the larger child
 - Check again for node in new position
 - Repeat until satisfied (wc: to the leaf)
 - Move to the immediate (array) predecessor and repeat

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000	00●000	00000	00000	00

Bottom-up heap construction takes a non-heap and turns it into a heap.

- Starting with the last parental node, work toward the root (i)
 - Check the parental dominance of the node under consideration (j)
 - If condition not met:
 - Exchange keys with the larger child
 - Check again for node in new position
 - Repeat until satisfied (wc: to the leaf)
 - Move to the immediate (array) predecessor and repeat

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000	00●000	00000	00000	00

Bottom-up heap construction takes a non-heap and turns it into a heap.

- Starting with the last parental node, work toward the root (i)
 - Check the parental dominance of the node under consideration (j)
 - If condition not met:
 - Exchange keys with the larger child
 - Check again for node in new position
 - Repeat until satisfied (wc: to the leaf)
 - Move to the immediate (array) predecessor and repeat

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000	000●00	00000	00000	00

Top-Down Heap Construction

Top-down heap construction maintains heap properties as nodes are inserted.

- Repeatedly insert new nodes at the bottom of the heap
- Each insert:
 - Compare inserted node to parent
 - If parental dominance condition is not met, swap nodes
 - Repeat until condition met or root is reached

Comparisons needed for inserts are bounded by the heap height:

 $C_{insert}(n) = O(\lg n)$ $\therefore C(n) \in O(n \lg n)$

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000	000●00	00000	00000	00

Top-Down Heap Construction

Top-down heap construction maintains heap properties as nodes are inserted.

- Repeatedly insert new nodes at the bottom of the heap
- Each insert:
 - Compare inserted node to parent
 - If parental dominance condition is not met, swap nodes
 - Repeat until condition met or root is reached

Comparisons needed for inserts are bounded by the heap height:

 $C_{insert}(n) = O(\lg n)$ $\therefore C(n) \in O(n \lg n)$

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000	000●00	00000	00000	00

Top-Down Heap Construction

Top-down heap construction maintains heap properties as nodes are inserted.

- Repeatedly insert new nodes at the bottom of the heap
- Each insert:
 - Compare inserted node to parent
 - If parental dominance condition is not met, swap nodes
 - Repeat until condition met or root is reached

Comparisons needed for inserts are bounded by the heap height:

 $C_{insert}(n) = O(\lg n)$ $\therefore C(n) \in O(n \lg n)$
Outline	Heaps	Horner's Rule	Reduction	
	000000			

- Removing the largest heap element:
 - Exchange the root with the last node in the heap
 - 2 Decrease the hep size by 1 (i.e., remove the last node)
 - **3** Sift the new root down the tree using the *heapify* procedure from bottom-up heap construction

Comparisons needed for delete are bounded by twice the height:

 $C_{delete}(n) = O(\lg n)$

Outline	Heaps	Horner's Rule	Reduction	
	000000			

- Removing the largest heap element:
 - Exchange the root with the last node in the heap
 - 2 Decrease the hep size by 1 (i.e., remove the last node)
 - **3** Sift the new root down the tree using the *heapify* procedure from bottom-up heap construction

Comparisons needed for delete are bounded by twice the height:

 $C_{delete}(n) = O(\lg n)$

ৰ্চা > ব্টা> ব্টা> ব্টা> ব্টা> ট্রা> বি George Mason University, Department of Computer Science

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	000000000000	0000●0	00000	00000	00

- Removing the largest heap element:
 - Exchange the root with the last node in the heap
 - 2 Decrease the hep size by 1 (i.e., remove the last node)
 - **3** Sift the new root down the tree using the *heapify* procedure from bottom-up heap construction

Comparisons needed for delete are bounded by twice the height:

 $C_{delete}(n) = O(\lg n)$

Outline	Heaps	Horner's Rule	Reduction	
	000000			

- Removing the largest heap element:
 - Exchange the root with the last node in the heap
 - 2 Decrease the hep size by 1 (i.e., remove the last node)
 - **3** Sift the new root down the tree using the *heapify* procedure from bottom-up heap construction

Comparisons needed for delete are bounded by twice the height:

 $C_{delete}(n) = O(\lg n)$

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	000000000000	0000●0	00000	00000	00

- Removing the largest heap element:
 - Exchange the root with the last node in the heap
 - 2 Decrease the hep size by 1 (i.e., remove the last node)
 - **3** Sift the new root down the tree using the *heapify* procedure from bottom-up heap construction

Comparisons needed for delete are bounded by twice the height:

 $C_{delete}(n) = O(\lg n)$

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	000000000000	0000●0	00000	00000	00

- Removing the largest heap element:
 - Exchange the root with the last node in the heap
 - 2 Decrease the hep size by 1 (i.e., remove the last node)
 - **3** Sift the new root down the tree using the *heapify* procedure from bottom-up heap construction

Comparisons needed for delete are bounded by twice the height:

 $C_{delete}(n) = O(\lg n)$

Outline	Balanced Trees 000000000000	Heaps 00000●	Horner's Rule 00000	Reduction 00000	Homework 00
тт	C .				

HEAPSORT

- Two stage process:
 - Construct a heap
 - **2** Apply root-deletion n-1 times
- Bottom-up heap construction is O(n)
- The deletes are *slightly* more complicated to analyze because the size changes with each deletion:

$$C(n) \leq 2 \lfloor \lg(n-1) \rfloor + 2 \lfloor \lg(n-2) \rfloor + \dots + 2 \lfloor \lg 1 \rfloor$$

$$\leq 2 \sum_{i=1}^{n-1} \lg i$$

$$\leq 2 \sum_{i=1}^{n-1} \lg(n-1) = 2(n-1) \lg(n-1)$$

$$\leq 2n \lg n$$

$$C(n) \in O(n \lg n)$$

George Mason University, Department of Computer Science

Outline	Balanced Trees 000000000000	Heaps 000000	Horner's Rule ●0000	Reduction 00000	Homework 00
Evolue	ting Dolynom	iala			

Evaluating Polynomials

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

- Given some polynomial evaluate it at a specified x
- Example: $p(x) = 2x^2 3x + 1$
- Brute force: p(2) = 2*(2*2) 3*(2) + 2 = 4

Outline	Balanced Trees 000000000000	Heaps 000000	Horner's Rule ●0000	Reduction 00000	Homework 00
Evolue	ting Dolynom	iala			

Evaluating Polynomials

$$p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$$

- Given some polynomial evaluate it at a specified x
- Example: $p(x) = 2x^2 3x + 1$ Brute force: p(2) = 2*(2*2) - 3*(2) + 2 = 4 - 3 multiplications

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Outline	Balanced Trees 000000000000	Heaps 000000	Horner's Rule ●0000	Reduction 00000	Homework 00
Evalua	ating Polynom	ials			

$$p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$$

- Given some polynomial evaluate it at a specified x
- Example: $p(x) = 2x^2 3x + 1$
- Brute force: p(2) = 2*(2*2) 3*(2) + 2 = 4 3 multiplications

In general for brute force:

$$a_n x^n = a_n * x * x * x \cdots$$
 requires *n* multiplications
 $a_{n-1} x^{n-1}$ requires $n-1$ multiplications

Outline	Balanced Trees 000000000000	Heaps 000000	Horner's Rule ●0000	Reduction 00000	Homework 00
Evalua	ting Polynom	ials			

$$p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$$

- Given some polynomial evaluate it at a specified x
- Example: $p(x) = 2x^2 3x + 1$
- Brute force: p(2) = 2*(2*2) 3*(2) + 2 = 4 3 multiplications

■ In general for brute force:

• $a_n x^n = a_n * x * x * x \cdots$ requires *n* multiplications

$$\sum_{i=0}^{n} i \in O(n^2)$$

George Mason University, Department of Computer Science

Outline	Balanced Trees 000000000000	Heaps 000000	Horner's Rule ●0000	Reduction 00000	Homework 00
Evalua	ting Polynom	ials			
	$p(x) = a_r$	$a_n x^n + a_{n-1}$	$x^{n-1} + \cdots$	$+ a_1 x + a_0$)

- Given some polynomial evaluate it at a specified x
- Example: $p(x) = 2x^2 3x + 1$
- Brute force: p(2) = 2*(2*2) 3*(2) + 2 = 4 3 multiplications

■ In general for brute force:

• $a_n x^n = a_n * x * x * x \cdots$ requires *n* multiplications

$$\sum_{i=0}^{n} i \in O(n^2)$$

Is there a better way?

Outline	Balanced Trees 000000000000	Heaps 000000	Horner's Rule 0●000	Reduction 00000	Homework 00
Horne	r's Rule				

 $p(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$

(4回) (4回) (4回)

3

Outline	Balanced Trees 000000000000	Heaps 000000	Horner's Rule 0●000	Reduction 00000	Homework 00
Horne	r's Rule				

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$$

= $(a_n x + a_{n-1}) x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$

- 17 ▶

Outline	Balanced Trees 000000000000	Heaps 000000	Horner's Rule 0●000	Reduction 00000	Homework 00
Horne	r's Rule				

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$$

= $(a_n x + a_{n-1}) x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$
= $((a_n x + a_{n-1}) x + a_{n-2}) x^{n-2} + \dots + a_1 x + a_0$

Outline	Balanced Trees 000000000000	Heaps 000000	Horner's Rule 0●000	Reduction 00000	Homework 00
Horne	r's Rule				

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$$

= $(a_n x + a_{n-1}) x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$
= $((a_n x + a_{n-1}) x + a_{n-2}) x^{n-2} + \dots + a_1 x + a_0$
= $(\dots (a_n x + a_{n-1}) x + \dots) x + a_0$

э

Outline	Balanced Trees 000000000000	Heaps 000000	Horner's Rule 0●000	Reduction 00000	Homework 00			
Horner's Rule								
We the p(x) = = = = = = = = = = = = = = = = = = =	e can successively ta e remaining polynor = $a_n x^n + a_{n-1}$ = $(a_n x + a_{n-1})$ = $((a_n x + a_{n-1}))$	ake a comr nials of sm $x^{n-1} + a_n$ $)x^{n-1} + a_{1}$ $(x + a_{n-1})$	non factor in aller degree: $n-2x^{n-2} + \cdots + n-2x^{n-2} + \cdots + 2$	$a_1x + a_0$ + $a_1x + a_0$ $a_1x + a_0$				
Ξ	$= (\dots (a_n x + a_n x))$	$(-1)x + \dots$.) x + a ₀	One multip (& one add per coeffici $\therefore O(n)$	olication dition) ient			

For example: $p(x) = 2x^4 - x^3 + 3x^2 + x - 5$. What is p(3)?

ā	2	-1	3	1	-5
х	$P = a_4$	$P = Px + a_3$	$P = Px + a_2$	$P = Px + a_1$	$P = Px + a_0$
<i>x</i> = 3	2	$2\cdot 3 - 1 = 5$	$5 \cdot 3 + 3 = 18$	$18\cdot 3+1=55$	$55 \cdot 3 - 5 = 160$
				• • • • • • • • • • • • • • • • • • •	▶ ★ 臣 ▶ ★ 臣 ▶ ○臣 →

George Mason University, Department of Computer Science

R. Paul Wiegand

CS483 Lecture II

	000000	00000	00000	00				
Binary Exponent	Binary Exponentiation Basics							

 x^n , where x = a

• A degenerate polynomial evaluation problem of interest is a^n

George Mason University, Department of Computer Science

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	000000000000	000000	00●00	00000	00

$$x^n$$
, where $x = a$

• A degenerate polynomial evaluation problem of interest is a^n

Suppose we have a representation of *n* as a binary string of length ℓ : $n = b_{\ell}b_{\ell-1}\cdots b_i\cdots b_0$ e.g., $n = 13 = 1101_2$

Outline	Heaps	Horner's Rule	Reduction	
		00000		

$$x^n$$
, where $x = a$

A degenerate polynomial evaluation problem of interest is aⁿ

- Suppose we have a representation of *n* as a binary string of length ℓ : $n = b_{\ell}b_{\ell-1}\cdots b_i\cdots b_0$ e.g., $n = 13 = 1101_2$
- Can interpret bits as coefficients, write a polynomial where x = 2: $p(x) = b_{\ell}x^{\ell} + \cdots + b_ix^i + \cdots + b_0$ e.g., $1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$

Outline	Heaps	Horner's Rule	Reduction	
		00000		

$$x^n$$
, where $x = a$

- A degenerate polynomial evaluation problem of interest is *aⁿ*
- Suppose we have a representation of *n* as a binary string of length ℓ : $n = b_{\ell}b_{\ell-1}\cdots b_i\cdots b_0$ e.g., $n = 13 = 1101_2$
- Can interpret bits as coefficients, write a polynomial where x = 2: $p(x) = b_{\ell}x^{\ell} + \cdots + b_ix^i + \cdots + b_0$ e.g., $1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$
- We can now rewrite a^n : $a^{p(x)} = a^{b_{\ell}x^{\ell} + \cdots + b_{\ell}x^{i} + \cdots + b_{0}}$ e.g., $a^{1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0}$

Outline	Heaps	Horner's Rule	Reduction	
		00000		

$$x^n$$
, where $x = a$

- A degenerate polynomial evaluation problem of interest is *aⁿ*
- Suppose we have a representation of *n* as a binary string of length ℓ : $n = b_{\ell}b_{\ell-1}\cdots b_i\cdots b_0$ e.g., $n = 13 = 1101_2$
- Can interpret bits as coefficients, write a polynomial where x = 2: $p(x) = b_{\ell}x^{\ell} + \cdots + b_ix^i + \cdots + b_0$ e.g., $1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$
- We can now rewrite a^n : $a^{p(x)} = a^{b_\ell x^\ell + \dots + b_l x^l + \dots + b_0}$ e.g., $a^{1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0}$
- So we can accumulate the product in the exponent by Horner's rule

Outline	Heaps	Horner's Rule	Reduction	
		00000		

$$x^n$$
, where $x = a$

- A degenerate polynomial evaluation problem of interest is *aⁿ*
- Suppose we have a representation of *n* as a binary string of length ℓ : $n = b_{\ell}b_{\ell-1}\cdots b_i\cdots b_0$ e.g., $n = 13 = 1101_2$
- Can interpret bits as coefficients, write a polynomial where x = 2: $p(x) = b_{\ell}x^{\ell} + \cdots + b_ix^i + \cdots + b_0$ e.g., $1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$
- We can now rewrite a^n : $a^{p(x)} = a^{b_\ell x^\ell + \dots + b_i x^i + \dots + b_0}$ e.g., $a^{1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0}$
- So we can accumulate the product in the exponent by Horner's rule
- Writing p as the current product, we recognize that: $a^{2p+b_i} = a^{2p} \cdot a^{b_i} = (a^p)^2 \cdot a^{b_i} = \begin{cases} (a^p)^2 & \text{if } b_i = 0\\ (a^p)^2 \cdot a & \text{if } b_i = 1 \end{cases}$

- 4 週 ト - 4 三 ト - 4 三 ト

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000	000000	000●0	00000	00

Left-to-Right Binary Exponentiation

LEFTTORIGHTEXP
$$(a, b(n))$$

$$\begin{array}{l} p \longleftarrow a \\ \text{for } i \leftarrow \ell \text{ downto } 0 \text{ do} \\ p \longleftarrow p \cdot p \\ \text{ if } b_i = 1 \text{ then } p \leftarrow p \cdot a \\ \text{ return } p \end{array}$$

- Number of multiplications bounded by the number of 1-bits
- This is bounded by *l*, the length of *b*
- $\ell 1 = \lfloor \lg n \rfloor$
- $\bullet :: M(n) = O(\lg n)$
- But we must have binary string to begin with!

binary digits of <i>n</i>	1	1	0	1
product accumulator example	а 3	$a^2 \cdot a = a^3$ $(9) \cdot 3 = 27$	$(a^3)^2 = a^6$ $(27)^2 = 729$	$(a^6)^2 \cdot a = a^{13}$ (729) ² · 3 = 1,594,323
			4	

For example: a^{13} where $n = 13 = 1101_2$:

Outline	Balanced Trees 000000000000	Heaps 000000	Horner's Rule	Reduction 00000	Homework 00

Right-to-Left Binary Exponentiation

- Can re-express a^n : $a^{b_\ell x^\ell + \cdots b_i x^i + \cdots b_0} =$ $a^{b_\ell 2^\ell} \cdots a^{b_i 2^i} \cdots a^{b_0}$
- We recognize that: $a^{b_i 2^i} = \begin{cases} a^{2^i} & \text{if } b_i = 1\\ 1 & \text{if } b_i = 0 \end{cases}$
- This is also O(lg n)
- Also relies on having an available binary string

 < □ > < ⊡ > < ⊡ > < ∃ > < ∃ >

 George Mason University, Department of Computer Science

Outline	Heaps	Horner's Rule	Reduction	
		00000		

Right-to-Left Binary Exponentiation

- Can re-express a^n : $a^{b_\ell x^\ell + \cdots b_i x^i + \cdots b_0} =$ $a^{b_\ell 2^\ell} \cdots a^{b_i 2^i} \cdots a^{b_0}$
- We recognize that: $a^{b_i 2^i} = \begin{cases} a^{2^i} & \text{if } b_i = 1\\ 1 & \text{if } b_i = 0 \end{cases}$
- This is also O(lg n)
- Also relies on having an available binary string

RIGHTTOLEFTEXP(a, b(n))

```
\begin{array}{l}t \longleftarrow a\\ \text{if } b_0 = 1 \text{ then } p \longleftarrow a\\ \text{else } p \longleftarrow 1\\ \text{for } i \leftarrow 1 \text{ to } \ell \text{ do}\\ t \longleftarrow t \cdot t\\ \text{if } b_i = 1 \text{ then } p \leftarrow p \cdot t\\ \text{return } p\end{array}
```

Outline	Heaps	Horner's Rule	Reduction	
		00000		

Right-to-Left Binary Exponentiation

- Can re-express a^n : $a^{b_\ell x^\ell + \cdots b_i x^i + \cdots b_0} =$ $a^{b_\ell 2^\ell} \cdots a^{b_i 2^i} \cdots a^{b_0}$
- We recognize that: $a^{b_i 2^i} = \begin{cases} a^{2^i} & \text{if } b_i = 1\\ 1 & \text{if } b_i = 0 \end{cases}$
- This is also O(lg n)
- Also relies on having an available binary string

RIGHTTOLEFTEXP(a, b(n))

$$\begin{array}{l}t \longleftarrow a\\ \text{if } b_0 = 1 \text{ then } p \longleftarrow a\\ \text{else } p \longleftarrow 1\\ \text{for } i \leftarrow 1 \text{ to } \ell \text{ do}\\ t \longleftarrow t \cdot t\\ \text{if } b_i = 1 \text{ then } p \leftarrow p \cdot t\\ \text{return } p\end{array}$$

For example: a^{13} where $n = 13 = 1101_2$:

1	1	0	1	binary digits of <i>n</i>	
a ⁸	a ⁴	a^2	а	terms of <i>a^{2ⁱ}</i>	
$a^5 \cdot a^8 = a^{13}$	$a \cdot a^4 = a^5$		а	product accumulator	
$3^5 \cdot 3^8 = 1,594,323$	$3 \cdot 3^4 = 243$		3	example	
				▲□▶★@▶★≧▶★≧▶	

George Mason University, Department of Computer Science

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000	000000	00000	●0000	00

"Reducing" Problems

- Not called "reducing" because the problem gets smaller or even (necessarily) easier
- Comp Sci's transform one problem into another as a means of classifying problems
- Properly classified, the *space* of unique problems is reduced

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000	000000	00000	●0000	00

"Reducing" Problems

- Not called "reducing" because the problem gets smaller or even (necessarily) easier
- Comp Sci's transform one problem into another as a means of classifying problems
- Properly classified, the *space* of unique problems is reduced
- Also reduce problems as a means of solving problems using known & proven methods
- Or when another view gives us some additional insight about the original problem

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000	000000	00000	0●000	00

Least Common Multiple

The *least common multiple* of two positive integers m and n, lcm(m, n), is the smallest integer that is divisible by both m and n.

- Middle school method:
 - Compute the prime factors of m and n
 - Multiply common factors by the uncommon factors

$$24 = 2 \cdot 2 \cdot 3 \cdot 3 \\ 60 = 2 \cdot 2 \cdot 3 \cdot 5 \\ lcm(24, 60) = (2 \cdot 2 \cdot 3) \cdot (2 \cdot 5)$$

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000	000000	00000	0●000	00

Least Common Multiple

The *least common multiple* of two positive integers *m* and *n*, lcm(m, n), is the smallest integer that is divisible by both *m* and *n*.

- Middle school method:
 - Compute the prime factors of *m* and *n*
 - Multiply common factors by the uncommon factors
- Alternatively:
 - Note: The product of lcm(m, n) and gcd(m, n) includes every factor exactly once
 - In other words: $lcm(m, n) \cdot gcd(m, n) = m \cdot n$

$$\blacksquare \therefore \operatorname{lcm}(m,n) = \frac{m \cdot n}{\gcd(m,n)}$$

- So, if we can solve gcd, we can solve lcm
- gcd can be computed efficiently via Euclid's algorithm

 $60 = 2 \cdot 2 \cdot 3 \cdot 5$

 $lcm(24, 60) = (2 \cdot 2 \cdot 3) \cdot (2 \cdot 5)$

Counting Paths in a Graph

- How many paths of length k are there between any pair of nodes in a graph?
- We could perform a graph search and count the paths ...
- But there's a cool little trick:
 - Consider the adjacency matrix A

George Mason University, Department of Computer Science

Heaps 000000 Horner's Rule

Reduction 00●00 Homework

Counting Paths in a Graph

- How many paths of length k are there between any pair of nodes in a graph?
- We could perform a graph search and count the paths ...
- But there's a cool little trick:
 - Consider the adjacency matrix A
 - Recall: $A^2 = A \cdot A$ and $A_{ij} = \{0, 1\} \forall i, j$
 - So by matrix multiplication, A²_{ij} is the sum of all situations in which the *i* is connected to some other node and that node is connected to *j*

Heaps

Horner's Rule

Reduction

Homework

Counting Paths in a Graph

- How many paths of length k are there between any pair of nodes in a graph?
- We could perform a graph search and count the paths ...
- But there's a cool little trick:
 - Consider the adjacency matrix A
 - Recall: $A^2 = A \cdot A$ and $A_{ij} = \{0, 1\} \forall i, j$
 - So by matrix multiplication, A²_{ij} is the sum of all situations in which the *i* is connected to some other node and that node is connected to *j*

•
$$A^k = A \cdot A \cdot A \cdots$$

The value at A^k_{ij} will be the number of paths of length k that connect i and j

Outline	Balanced Trees 000000000000	Heaps 000000	Horner's Rule 00000	Reduction 000●0	Homework 00
Optim	ization				

- One optimization problem is maximization— argmax{f(x)}, find the argument value for x that gives us max{f(x)}
- We may also be asked to *minimize* a function
- It turns out that this is the same problem: max{f(x)} = -max{-f(x)}
- This works for virtually any domain so if you can solve maximization, you can solve minimization
- Moreover, the standard calculus method is a type of reduction:
 - Calculate the derivative, $f'(x) = \frac{d}{dx}f(x)$
 - Solve for f'(0)
 - Assuming the derivatives can be calculated, this reduces to the problem of finding critical points

Outline	Balanced Trees 000000000000	Heaps 000000	Horner's Rule 00000	Reduction 0000●	Homework 00
	_				

Linear Programming

- Linear programming problems involve optimizing a linear function subject to linear constraints
- There exists a general form for many LP problems: maximize $c_1x_1 + \dots + c_nx_n$ subject to $a_{i1}x_1 + \dots + a_{in}x_n \{\leq, =, \geq\} b_i \quad \forall i \in [1, m]$ $x_1 \geq 0, \dots, x_n \geq 0$
- Many (many) problems in computer science can be reduced to such problems (e.g., the fractional knap-sack problem)
- There are a variety of well-known methods for solving them:
 - The simplex method, which has an exponential worst-case bound, but whose average case is typically quite good
 - Karmarkar's algorithm, which guarantees a polynomial worst-case bound and has done well empirical
- A much harder, related class of problems are *integer linear* programming, which are known to be NP-hard in general (e.g., the 0-1 knap-sack problem)
| Outline | Balanced Trees | Heaps | Horner's Rule | Reduction | Homework |
|---------|----------------|--------|---------------|-----------|----------|
| | 00000000000 | 000000 | 00000 | 00000 | ●0 |
| | | | | | |

Book Topics Skipped in Lecture

In section 6.6:

Reduction to Graph Problems (pp. 239–240)

 < □ > < ⊡ > < ⊡ > < ∃ > < ∃ >

 George Mason University, Department of Computer Science

R. Paul Wiegand CS483 Lecture II

Outline	Balanced Trees	Heaps	Horner's Rule	Reduction	Homework
	00000000000	000000	00000	00000	0●

Assignments

This week's assignments:

- Section 6.3: Problems 1, 4, & 7
- Section 6.4: Problems 1 & 6
- Section 6.5: Problems 4, 6, 7 & 8
- Section 6.6: Problems 1, 8, & 9

R. Paul Wiegand CS483 Lecture II