CS 483 - Data Structures and Algorithm Analysis

Lecture VII: Chapter 6, part 2

R. Paul Wiegand
George Mason University, Department of Computer Science

March 22, 2006

Outline

1 Balanced Trees

2 Heaps \& HeapSort

3 Horner's Rule \& Binary Exponentiation

4 Problem Reduction

5 Homework

Binary Search Trees

- binary search tree - A binary tree in which, given some node, all nodes in the left subtree of that node have a smaller key value and all the nodes in the right subtree of a greater key value

■ Operations: Search, Insert, \& Delete

- Average case for these: $\Theta(\lg n)$

Binary Search Trees

- binary search tree - A binary tree in which, given some node, all nodes in the left subtree of that node have a smaller key value and all the nodes in the right subtree of a greater key value
- Operations: Search, Insert, \& Delete
- Average case for these: $\Theta(\lg n)$
- Worst case for these: $\Theta(n)$
- This occurs when the tree is unbalanced (wide diversity of path lengths from leaf nodes to root)

Binary Search Trees

- binary search tree- A binary tree in which, given some node, all nodes in the left subtree of that node have a smaller key value and all the nodes in the right subtree of a greater key value
- Operations: Search, Insert, \& Delete

■ Average case for these: $\Theta(\lg n)$

- Worst case for these: $\Theta(n)$

■ This occurs when the tree is unbalanced (wide diversity of path lengths from leaf nodes to root)

- In the most severe case, the tree becomes a list whose height is $O(n)$

Binary Search Trees

- binary search tree- A binary tree in which, given some node, all nodes in the left subtree of that node have a smaller key value and all the nodes in the right subtree of a greater key value
- Operations: Search, Insert, \& Delete
- Average case for these: $\Theta(\lg n)$
- Worst case for these: $\Theta(n)$
- This occurs when the tree is unbalanced (wide diversity of path lengths from leaf nodes to root)
■ In the most severe case, the tree becomes a list whose height is $O(n)$

1
2
3

- Two high-level for avoiding unbalanced trees:

■ Balance an unbalanced tree (instance simplification)

- Allow more elements in a node (representation change)

AVL Trees

- Methods for transforming unbalanced trees to balanced trees include AVL trees, red-black trees, and splay trees

- Balance factor - the difference between the heights of the left and right subtrees
- AVL tree - a binary search tree in which the balance factor of every node is $\{+1,0,-1\}$
- The trick is to maintain the AVL property when nodes are inserted or deleted

Right \& Left Rotations

Single Right Rotation

Single Left Rotation

Left-Right \& Right-Left Rotations

Double Left-Right Rotation

Double Right-Left Rotation

General Single-Right Rotation

General Double Left-Right Rotation

Analyzing AVL Trees

- Rotations are complicated operations, but still constant time
- Tree traversal efficiency depends on height of the tree

■ The Height h of any AVL tree with n nodes can be bound by $\lg n$

- So Search, Insert, and even Delete are in $\Theta(\lg n)$.
- Cost: Frequent rotations (high constant values in running-time)

Analyzing AVL Trees

■ Rotations are complicated operations, but still constant time

- Tree traversal efficiency depends on height of the tree
- The Height h of any AVL tree with n nodes can be bound by $\lg n$

■ So Search, Insert, and even Delete are in $\Theta(\lg n)$.

- Cost: Frequent rotations (high constant values in running-time)

Something to Ponder:

Is it better to accept a linear worst case situation when the average is $\Theta(\lg n)$ (binary search tree), or to slow all operations down by a constant factor to ensure a $\lg n$ bound in all cases (AVL tree)?

2-3 Trees

One may also change the representation by allowing more nodes (e.g., 2-3 trees, 2-3-4 trees, and B-trees)

2-node - Contains a single key K and (up to) two subtrees. The left subtree contains nodes with key values less than K, the right contain values greater than K

3-node - Contains two keys K_{1} and K_{2}, and (up to) three subtrees. The left subtree contains nodes with key values less than K_{1}, the right contain values greater than K_{2}, the middle contain values in (K_{1}, K_{2})

Searching in 2-3 Trees

- For a 2-node: Compare the search key to the key at the node

■ If they are the same, return the node

- If the search key is less, traverse left

■ If the search key is greater, traverse right

■ For a 3-node: Compare the search key to two keys at the node
■ If the search key is equal to either node keys, return the node

- If the search key is less than the first node key, traverse left
- If it is between the two keys, traverse middle

■ If it is greater than the second node key, traverse right

Inserting in 2-3 Trees

■ If tree is empty, make a 2-node at the root for the inserted key

- Otherwise,

■ Insert at a leaf (i.e., SEARCH)

- If the leaf is a 2-node, insert the key in that node in the correct order
■ If the leaf is a 3-node, split the node up
■ The smallest key becomes a left 2-node
■ The largest key becomes a right 2-node
- The middle key is promoted to the parent

■ Note: This promotion can force a split in the node above

Example: Inserting in a 2-3 Tree

Inserting: $\langle 9,5,8,3,2,4,7\rangle$:
(9)

Example: Inserting in a 2-3 Tree

Inserting: $\langle 9,5,8,3,2,4,7\rangle$:

Example: Inserting in a 2-3 Tree

Inserting: $\langle 9,5,8,3,2,4,7\rangle$:

Example: Inserting in a 2-3 Tree

Inserting: $\langle 9,5,8,3,2,4,7\rangle$:

Example: Inserting in a 2-3 Tree

Inserting: $\langle 9,5,8,3,2,4,7\rangle$:

Example: Inserting in a 2-3 Tree

Inserting: $\langle 9,5,8,3,2,4,7\rangle$:

Example: Inserting in a 2-3 Tree

Inserting: $\langle 9,5,8,3,2,4,7\rangle$:

Analyzing 2-3 Trees

Consider a 2-3 tree of height h with n nodes in it.

- Upper bound: All nodes are 2-nodes, $n \geq 1+2+\ldots+2^{h}=2^{h+1}-1$ $\therefore h \leq \lg (n+1)-1$
- Lower bound: All nodes are 3 -nodes, $n \leq 2 \cdot 3^{0}+2 \cdot 3^{1}+\cdots+2 \cdot 3^{h}=3^{h+1}-1$
$\therefore h \geq \log _{3}(n+1)-1$
- So the height is bounded by $\Theta(\log n)$

■ Basic operations are, as well

Introduction to Heaps

■ Heaps are incompletely ordered data structures suitable for priority queues

- FInd item with highest priority
- Delete item with highest priority

■ Add new item to the set

Definition

A heap can be defined as a binary tree that meets the following conditions:

1 It is essentially complete (all $h-1$ levels are full, level h has only left-most leaves)

2 Parental dominance- Key at each node is \geq its children

Introduction to Heaps

■ Heaps are incompletely ordered data structures suitable for priority queues

- FInd item with highest priority
- Delete item with highest priority

■ Add new item to the set

Definition

A heap can be defined as a binary tree that meets the following conditions:

1 It is essentially complete (all $h-1$ levels are full, level h has only left-most leaves)

2 Parental dominance- Key at each node is \geq its children

Fun Facts about Heaps

- The height of an essentially complete binary tree with n nodes is always $\lfloor\lg n\rfloor$
- The root node of a heap always has the largest key value
- Any subtree of a heap is also a heap
- A heap can be implemented as an array

■ Store values top-down, left-to-right

- Parent nodes in first $\lfloor n / 2\rfloor$ positions, leaf keys in last $\lceil n / 2\rceil$
- Children of a key in position $i \in[1,\lfloor n / 2\rfloor]$ will be at $2 i$ and $2 i+1$
- A parent of a key in position $j \in[\lceil n / 2\rceil, n]$ will be at $\lfloor n / 2\rfloor$
- Alternate heap definition:

$$
H[i] \geq \max \{H[2 i], H[2 i+1]\} \quad \forall i \in[1,\lfloor n / 2\rfloor]
$$

i	0	1	2	3	4	5	6
$H[i]$		10	5	7	4	2	1

Bottom-Up Heap Construction

Bottom-up heap construction takes a non-heap and turns it into a heap.

- Starting with the last parental node, work toward the root (i)
- Check the parental dominance of the node under consideration (j)
- If condition not met:
- Exchange keys with the larger child
- Check again for node in new position
- Repeat until satisfied (wc: to the leaf)

$C_{\text {worst }}(n)=2(n-\log (n+1))$
$\therefore C(n) \in O(n)$
- Move to the immediate (array) predecessor and repeat

Bottom-Up Heap Construction

Bottom-up heap construction takes a non-heap and turns it into a heap.

- Starting with the last parental node, work toward the root (i)
- Check the parental dominance of the node under consideration (j)
- If condition not met:
- Exchange keys with the larger child
- Check again for node in new position
- Repeat until satisfied (wc: to the leaf)

$C_{\text {worst }}(n)=2(n-\log (n+1))$
$\therefore C(n) \in O(n)$
- Move to the immediate (array) predecessor and repeat

Bottom-Up Heap Construction

Bottom-up heap construction takes a non-heap and turns it into a heap.

- Starting with the last parental node, work toward the root (i)
- Check the parental dominance of the node under consideration (j)
- If condition not met:
- Exchange keys with the larger child
- Check again for node in new position
- Repeat until satisfied (wc: to the leaf)

$C_{\text {worst }}(n)=2(n-\log (n+1))$
$\therefore C(n) \in O(n)$
- Move to the immediate (array) predecessor and repeat

Bottom-Up Heap Construction

Bottom-up heap construction takes a non-heap and turns it into a heap.

- Starting with the last parental node, work toward the root (i)
- Check the parental dominance of the node under consideration (j)
- If condition not met:

■ Exchange keys with the larger child

- Check again for node in new position
- Repeat until satisfied (wc: to the leaf)

$C_{\text {worst }}(n)=2(n-\log (n+1))$
$\therefore C(n) \in O(n)$
- Move to the immediate (array) predecessor and repeat

Bottom-Up Heap Construction

Bottom-up heap construction takes a non-heap and turns it into a heap.

- Starting with the last parental node, work toward the root (i)
- Check the parental dominance of the node under consideration (j)
- If condition not met:

■ Exchange keys with the larger child

- Check again for node in new position
- Repeat until satisfied (wc: to the leaf)

$C_{\text {worst }}(n)=2(n-\log (n+1))$
$\therefore C(n) \in O(n)$
- Move to the immediate (array) predecessor and repeat

Bottom-Up Heap Construction

Bottom-up heap construction takes a non-heap and turns it into a heap.

- Starting with the last parental node, work toward the root (i)
- Check the parental dominance of the node under consideration (j)
- If condition not met:
- Exchange keys with the larger child
- Check again for node in new position
- Repeat until satisfied (wc: to the leaf)

$C_{\text {worst }}(n)=2(n-\log (n+1))$
$\therefore C(n) \in O(n)$
- Move to the immediate (array) predecessor and repeat

Top-Down Heap Construction

Top-down heap construction maintains heap properties as nodes are inserted.

- Repeatedly insert new nodes at the bottom of the heap
■ Each insert:
- Compare inserted node to parent
- If parental dominance condition is not met, swap nodes
- Repeat until condition met or root is reached

Comparisons needed for inserts are bounded by the heap height:
$C_{\text {insert }}(n)=O(\lg n)$
$\therefore C(n) \in O(n \lg n)$

Top-Down Heap Construction

Top-down heap construction maintains heap properties as nodes are inserted.

- Repeatedly insert new nodes at the bottom of the heap
■ Each insert:
- Compare inserted node to parent
- If parental dominance condition is not met, swap nodes
- Repeat until condition met or root is reached

Comparisons needed for inserts are bounded by the heap height:
$C_{\text {insert }}(n)=O(\lg n)$
$\therefore C(n) \in O(n \lg n)$

Top-Down Heap Construction

Top-down heap construction maintains heap properties as nodes are inserted.

- Repeatedly insert new nodes at the bottom of the heap
- Each insert:
- Compare inserted node to parent
- If parental dominance condition is not met, swap nodes
- Repeat until condition met or root is reached

Comparisons needed for inserts are bounded by the heap height:
$C_{\text {insert }}(n)=O(\lg n)$
$\therefore C(n) \in O(n \lg n)$

Deleting from a Heap

- Removing the largest heap element:

1 Exchange the root with the last node in the heap
2 Decrease the hep size by 1 (i.e., remove the last node)
3 Sift the new root down the tree using the heapify procedure from bottom-up heap construction

Comparisons needed for delete are bounded by twice the height:

$$
C_{\text {deletet }}(n)=O(\lg n)
$$

Deleting from a Heap

- Removing the largest heap element:

1 Exchange the root with the last node in the heap
2 Decrease the hep size by 1 (i.e., remove the last node)
3 Sift the new root down the tree using the heapify procedure from bottom-up heap construction

Comparisons needed for delete are bounded by twice the height:

$$
C_{\text {delete }}(n)=O(\lg n)
$$

Deleting from a Heap

- Removing the largest heap element:

1 Exchange the root with the last node in the heap
2 Decrease the hep size by 1 (i.e., remove the last node)
3 Sift the new root down the tree using the heapify procedure from bottom-up heap construction

Comparisons needed for delete are bounded by twice the height:

$$
C_{\text {delete }}(n)=O(\lg n)
$$

Deleting from a Heap

- Removing the largest heap element:

1 Exchange the root with the last node in the heap
2 Decrease the hep size by 1 (i.e., remove the last node)
3 Sift the new root down the tree using the heapify procedure from bottom-up heap construction

Comparisons needed for delete are bounded by twice the height:

$$
C_{\text {delete }}(n)=O(\lg n)
$$

Deleting from a Heap

- Removing the largest heap element:

1 Exchange the root with the last node in the heap
2 Decrease the hep size by 1 (i.e., remove the last node)
3 Sift the new root down the tree using the heapify procedure from bottom-up heap construction

Comparisons needed for delete are bounded by twice the height:

$$
C_{\text {delete }}(n)=O(\lg n)
$$

Deleting from a Heap

- Removing the largest heap element:

1 Exchange the root with the last node in the heap
2 Decrease the hep size by 1 (i.e., remove the last node)
3 Sift the new root down the tree using the heapify procedure from bottom-up heap construction

Comparisons needed for delete are bounded by twice the height:

$$
C_{\text {delete }}(n)=O(\lg n)
$$

HeapSort

- Two stage process:

1 Construct a heap
2 Apply root-deletion $n-1$ times

- Bottom-up heap construction is $O(n)$
- The deletes are slightly more complicated to analyze because the size changes with each deletion:

$$
\begin{aligned}
C(n) & \leq 2\lfloor\lg (n-1)\rfloor+2\lfloor\lg (n-2)\rfloor+\cdots+2\lfloor\lg 1\rfloor \\
& \leq 2 \sum_{i=1}^{n-1} \lg i \\
& \leq 2 \sum_{i=1}^{n-1} \lg (n-1)=2(n-1) \lg (n-1) \\
& \leq 2 n \lg n \\
C(n) & \in O(n \lg n)
\end{aligned}
$$

Evaluating Polynomials

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

- Given some polynomial evaluate it at a specified x
- Example:

$$
p(x)=2 x^{2}-3 x+1
$$

- Brute force:

$$
p(2)=2 *(2 * 2)-3 *(2)+2=4
$$

Evaluating Polynomials

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

－Given some polynomial evaluate it at a specified x
－Example：

$$
p(x)=2 x^{2}-3 x+1
$$

－Brute force：

$$
\begin{gathered}
p(2)=2 *(2 * 2)-3 *(2)+2=4-3 \text { multiplications } \\
- \text {-ニニーニーーーニーーー }
\end{gathered}
$$

Evaluating Polynomials

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

- Given some polynomial evaluate it at a specified x
- Example: $\quad p(x)=2 x^{2}-3 x+1$
- Brute force: $\quad p(2)=2 *(2 * 2)-3 *(2)+2=4-3$ multiplications
- In general for brute force:

■ $a_{n} x^{n}=a_{n} * X * x * x \cdots$ requires n multiplications

- $a_{n-1} x^{n-1}$ requires $n-1$ multiplications

Evaluating Polynomials

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

- Given some polynomial evaluate it at a specified x
- Example: $\quad p(x)=2 x^{2}-3 x+1$
- Brute force: $\quad p(2)=2 *(2 * 2)-3 *(2)+2=4-3$ multiplications
- In general for brute force:
- $a_{n} x^{n}=a_{n} * x * x * x \cdots$ requires n multiplications
- $a_{n-1} x^{n-1}$ requires $n-1$ multiplications
- $\sum_{i=0}^{n} i \in O\left(n^{2}\right)$

Evaluating Polynomials

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

- Given some polynomial evaluate it at a specified x
- Example: $\quad p(x)=2 x^{2}-3 x+1$
- Brute force: $\quad p(2)=2 *(2 * 2)-3 *(2)+2=4-3$ multiplications
- In general for brute force:
- $a_{n} x^{n}=a_{n} * x * x * x \cdots$ requires n multiplications
- $a_{n-1} x^{n-1}$ requires $n-1$ multiplications
- $\sum_{i=0}^{n} i \in O\left(n^{2}\right)$

■ Is there a better way?

Horner's Rule

- We can successively take a common factor in the remaining polynomials of smaller degree:

$$
p(x)=a_{n} x^{n}++a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}
$$

Horner's Rule

- We can successively take a common factor in the remaining polynomials of smaller degree:

$$
\begin{aligned}
p(x) & =a_{n} x^{n}++a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0} \\
& =\left(a_{n} x++a_{n-1}\right) x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}
\end{aligned}
$$

Horner's Rule

- We can successively take a common factor in the remaining polynomials of smaller degree:

$$
\begin{aligned}
p(x) & =a_{n} x^{n}++a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0} \\
& =\left(a_{n} x++a_{n-1}\right) x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0} \\
& =\left(\left(a_{n} x++a_{n-1}\right) x+a_{n-2}\right) x^{n-2}+\cdots+a_{1} x+a_{0}
\end{aligned}
$$

Horner's Rule

- We can successively take a common factor in the remaining polynomials of smaller degree:

$$
\begin{aligned}
p(x) & =a_{n} x^{n}++a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0} \\
& =\left(a_{n} x++a_{n-1}\right) x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0} \\
& =\left(\left(a_{n} x++a_{n-1}\right) x+a_{n-2}\right) x^{n-2}+\cdots+a_{1} x+a_{0} \\
& =\left(\ldots\left(a_{n} x+a_{n-1}\right) x+\ldots\right) x+a_{0}
\end{aligned}
$$

Horner's Rule

- We can successively take a common factor in the remaining polynomials of smaller degree:

$$
\begin{aligned}
& p(x)=a_{n} x^{n}++a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0} \\
&=\left(a_{n} x++a_{n-1}\right) x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0} \\
&=\left(\left(a_{n} x++a_{n-1}\right) x+a_{n-2}\right) x^{n-2}+\cdots+a_{1} x+a_{0} \\
&=\left(\ldots\left(a_{n} x+a_{n-1}\right) x+\ldots\right) x+a_{0} \quad \begin{array}{l}
\text { One multiplication } \\
\text { (\& one addition) } \\
\text { per coefficient } \\
\therefore O(n)
\end{array} \\
& \hline
\end{aligned}
$$

For example: $p(x)=2 x^{4}-x^{3}+3 x^{2}+x-5$. What is $p(3)$?

\vec{a}	2	-1	3	1	-5
x	$P=a_{4}$	$P=P x+a_{3}$	$P=P x+a_{2}$	$P=P x+a_{1}$	$P=P x+a_{0}$
$x=3$	2	$2 \cdot 3-1=5$	$5 \cdot 3+3=18$	$18 \cdot 3+1=55$	$55 \cdot 3-5=160$

Binary Exponentiation Basics

- A degenérate polynomial evaluation problem of interest is a^{n}

Binary Exponentiation Basics

- A degenérate polynomial evaluation problem of interest is a^{n}
- Suppose we have a representation of n as a binary string of length ℓ : $n=b_{\ell} b_{\ell-1} \cdots b_{i} \cdots b_{0}$
e.g., $n=13=1101_{2}$

Binary Exponentiation Basics

- A degenérate polynomial evaluation problem of interest is a^{n}
- Suppose we have a representation of n as a binary string of length ℓ : $n=b_{\ell} b_{\ell-1} \cdots b_{i} \cdots b_{0}$
e.g., $n=13=1101_{2}$
- Can interpret bits as coefficients, write a polynomial where $x=2$:

$$
p(x)=b_{\ell} x^{\ell}+\cdots b_{i} x^{i}+\cdots b_{0} \quad \text { e.g., } 1 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}
$$

Binary Exponentiation Basics

- A degenérate polynomial evaluation problem of interest is a^{n}
- Suppose we have a representation of n as a binary string of length ℓ : $n=b_{\ell} b_{\ell-1} \cdots b_{i} \cdots b_{0}$
e.g., $n=13=1101_{2}$
- Can interpret bits as coefficients, write a polynomial where $x=2$:
$p(x)=b_{\ell} x^{\ell}+\cdots b_{i} x^{i}+\cdots b_{0}$
e.g., $1 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}$

■ We can now rewrite a^{n} :

$$
a^{p(x)}=a^{b_{\ell} x^{\ell}+\cdots b_{i} x^{i}+\cdots b_{0}} \quad \text { e.g., } a^{1 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}}
$$

Binary Exponentiation Basics

- A degenérate polynomial evaluation problem of interest is a^{n}
- Suppose we have a representation of n as a binary string of length ℓ : $n=b_{\ell} b_{\ell-1} \cdots b_{i} \cdots b_{0} \quad$ e.g., $n=13=1101_{2}$
- Can interpret bits as coefficients, write a polynomial where $x=2$:
$p(x)=b_{\ell} x^{\ell}+\cdots b_{i} x^{i}+\cdots b_{0}$
e.g., $1 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}$

■ We can now rewrite a^{n} :

$$
a^{p(x)}=a^{b_{\ell} x^{\ell}+\cdots b_{i} x^{i}+\cdots b_{0}} \quad \text { e.g., } a^{1 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}}
$$

■ So we can accumulate the product in the exponent by Horner's rule

Binary Exponentiation Basics

- A degenérate polynomial evaluation problem of interest is a^{n}
- Suppose we have a representation of n as a binary string of length ℓ :
$n=b_{\ell} b_{\ell-1} \cdots b_{i} \cdots b_{0}$
e.g., $n=13=1101_{2}$
- Can interpret bits as coefficients, write a polynomial where $x=2$:

$$
p(x)=b_{\ell} x^{\ell}+\cdots b_{i} x^{i}+\cdots b_{0} \quad \text { e.g., } 1 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}
$$

■ We can now rewrite a^{n} :

$$
a^{p(x)}=a^{b_{\ell} x^{\ell}+\cdots b_{i} x^{i}+\cdots b_{0}} \quad \text { e.g., } a^{1 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}}
$$

- So we can accumulate the product in the exponent by Horner's rule

■ Writing p as the current product, we recognize that:

$$
a^{2 p+b_{i}}=a^{2 p} \cdot a^{b_{i}}=\left(a^{P}\right)^{2} \cdot a^{b_{i}}= \begin{cases}\left(a^{D}\right)^{2} & \text { if } b_{i}=0 \\ \left(a^{D}\right)^{2} \cdot a & \text { if } b_{i}=1\end{cases}
$$

Left-to-Right Binary Exponentiation

- Number of multiplications

```
LeftToRightExp(a, b(n))
p\longleftarrowa
for }i\leftarrow\ell\mathrm{ downto }0\mathrm{ do
        p\longleftarrowp
        if }\mp@subsup{b}{i}{}=1\mathrm{ then }p\leftarrowp\cdot
    return p
``` bounded by the number of 1-bits
- This is bounded by \(\ell\), the length of \(b\)
- \(\ell-1=\lfloor\lg n\rfloor\)
\(\therefore M(n)=O(\lg n)\)
- But we must have binary string to begin with!
For example: \(a^{13}\) where \(n=13=1101_{2}\) :
\begin{tabular}{ccccc}
\hline \hline binary digits of \(n\) & 1 & 1 & 0 & 1 \\
\hline product accumulator & \(a\) & \(a^{2} \cdot a=a^{3}\) & \(\left(a^{3}\right)^{2}=a^{6}\) & \(\left(a^{6}\right)^{2} \cdot a=a^{13}\) \\
example & 3 & \((9) \cdot 3=27\) & \((27)^{2}=729\) & \((729)^{2} \cdot 3=1,594,323\) \\
\hline \hline
\end{tabular}

\section*{Right-to-Left Binary Exponentiation}

■ Can re-express \(a^{n}\) :
\[
\begin{aligned}
& a^{b_{\ell} \chi^{\ell}+\cdots b_{i} x^{i}+\cdots b_{0}}= \\
& a^{b_{\ell} \ell^{\ell}} \cdots \cdots a^{b_{i} 2^{i}} \cdots a^{b_{0}}
\end{aligned}
\]

■ We recognize that:
\(a^{b_{i} 2^{i}}= \begin{cases}a^{2^{i}} & \text { if } b_{i}=1 \\ 1 & \text { if } b_{i}=0\end{cases}\)
- This is also \(O(\lg n)\)
- Also relies on having an available binary string

\section*{Right-to-Left Binary Exponentiation}

■ Can re-express \(a^{n}\) :
\[
\begin{aligned}
& a^{b_{\ell} x^{\ell}}+\cdots b_{i} x^{i}+\cdots b_{0}= \\
& a^{b_{\ell} 2^{\ell}} \cdots a^{b_{i} 2^{i}} \cdots a^{b_{0}}
\end{aligned}
\]

■ We recognize that:
\[
a^{b_{i} 2^{i}}= \begin{cases}a^{2^{i}} & \text { if } b_{i}=1 \\ 1 & \text { if } b_{i}=0\end{cases}
\]
- This is also \(O(\lg n)\)
- Also relies on having an available binary string
```

RightToLeftExp(a, b(n))
t \longleftarrow a
if }\mp@subsup{b}{0}{}=1\mathrm{ then }p\longleftarrow
else p \longleftarrow1
for }i\leftarrow1\mathrm{ to }\ell\mathrm{ do
t \longleftarrow t \cdot t
if }\mp@subsup{b}{i}{}=1\mathrm{ then }p\leftarrowp\cdot
return p

```

\section*{Right-to-Left Binary Exponentiation}
- Can re-express \(a^{n}\) :
\[
\begin{aligned}
& a^{b_{\ell} x^{l}+\cdots b_{i} x^{r}+\cdots b_{0}}= \\
& a^{b_{\ell} 2^{l}} \cdots a^{b_{i}^{2}} \cdots \cdots a^{b_{0}}
\end{aligned}
\]

■ We recognize that:
\[
a^{b_{i} 2^{i}}= \begin{cases}a^{2^{i}} & \text { if } b_{i}=1 \\ 1 & \text { if } b_{i}=0\end{cases}
\]
- This is also \(O(\lg n)\)
- Also relies on having an available binary string
```

RightToLeftExp(a,b(n))
t \longleftarrow a
if }\mp@subsup{b}{0}{}=1\mathrm{ then }p\longleftarrow
else p}\longleftarrow
for }i\leftarrow1\mathrm{ to }\ell\mathrm{ do
t \longleftarrow t \cdot t
if }\mp@subsup{b}{i}{}=1\mathrm{ then }p\leftarrowp\cdot
return p

```

For example: \(a^{13}\) where \(n=13=1101_{2}\) :
\begin{tabular}{ccccc}
\hline \hline 1 & 1 & 0 & 1 & binary digits of \(n\) \\
\hline\(a^{8}\) & \(a^{4}\) & \(a^{2}\) & \(a\) & terms of \(a^{2^{i}}\) \\
\(a^{5} \cdot a^{8}=a^{13}\) & \(a \cdot a^{4}=a^{5}\) & & \(a\) & product accumulator \\
\(3^{5} \cdot 3^{8}=1,594,323\) & \(3 \cdot 3^{4}=243\) & & 3 & example \\
\hline \hline
\end{tabular}

\section*{"Reducing" Problems}

■ Not called "reducing" because the problen gets smaller or even (necessarily) easier
- Comp Sci's transform one problem into another as a means of classifying problems

- Properly classified, the space of unique problems is reduced

\section*{"Reducing" Problems}

■ Not called "reducing" because the problen gets smaller or even (necessarily) easier
- Comp Sci's transform one problem into another as a means of classifying problems

- Properly classified, the space of unique problems is reduced
- Also reduce problems as a means of solving problems using known \& proven methods

- Or when another view gives us some additional insight about the original problen

\section*{Least Common Multiple}

The least common multiple of two positive integers \(m\) and \(n, \operatorname{lcm}(m, n)\), is the smallest integer that is divisible by both \(m\) and \(n\).

■ Middle school method:
\[
\begin{aligned}
& 24=(2 \cdot 2 \cdot 3) \\
& 60=2 \cdot 2 \cdot 3) 5 \\
& \operatorname{lcm}(24,60)=(2 \cdot 2 \cdot 3) \cdot(2 \cdot 5)
\end{aligned}
\]
- Compute the prime factors of \(m\) and \(n\)
- Multiply common factors by the uncommon factors

\section*{Least Common Multiple}

The least common multiple of two positive integers \(m\) and \(n, \operatorname{lcm}(m, n)\), is the smallest integer that is divisible by both \(m\) and \(n\).

■ Middle school method:
- Compute the prime factors of \(m\) and \(n\)
\[
\begin{aligned}
& 24=(2 \cdot 2 \cdot 3 \\
& 60=2 \cdot 2 \cdot 3) 5 \\
& \operatorname{lcm}(24,60)=(2 \cdot 2 \cdot 3) \cdot(2 \cdot 5)
\end{aligned}
\]
- Multiply common factors by the uncommon factors
- Alternatively:
- Note: The product of \(\operatorname{Icm}(m, n)\) and \(\operatorname{gcd}(m, n)\) includes every factor exactly once
■ In other words: \(\operatorname{lcm}(m, n) \cdot \operatorname{gcd}(m, n)=m \cdot n\)
\(\square \therefore \operatorname{lcm}(m, n)=\frac{m \cdot n}{\operatorname{gcd}(m, n)}\)
- So, if we can solve gcd, we can solve Icm
- gcd can be computed efficiently via Euclid's algorithm

\section*{Counting Paths in a Graph}
- How many paths of length \(k\) are there between any pair of nodes in a graph?
- We could perform a graph search and count the paths ...
- But there's a cool little trick:

■ Consider the adjacency matrix \(A\)

\[
A=\begin{gathered}
a \\
b \\
c \\
d
\end{gathered}\left[\begin{array}{llll}
a & b & c & d \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
\]

\section*{Counting Paths in a Graph}

■ How many paths of length \(k\) are there between any pair of nodes in a graph?
- We could perform a graph search and count the paths ...
- But there's a cool little trick:
- Consider the adjacency matrix \(A\)
- Recall: \(A^{2}=A \cdot A\) and \(A_{i j}=\{0,1\} \forall i, j \quad A=\)
- So by matrix multiplication, \(A_{i j}^{2}\) is the sum of all situations in which the \(i\) is connected to some other node and that node is connected to \(j\)
\[
A^{2}=\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{llll}
a & b & c & d \\
3 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 \\
1 & 1 & 1 & 2
\end{array}\right]
\]

\section*{Counting Paths in a Graph}

■ How many paths of length \(k\) are there between any pair of nodes in a graph?
- We could perform a graph search and count
 the paths ...
■ But there's a cool little trick:
- Consider the adjacency matrix \(A\)
- Recall: \(A^{2}=A \cdot A\) and \(A_{i j}=\{0,1\} \forall i, j \quad A=\)
- So by matrix multiplication, \(A_{i j}^{2}\) is the sum of all situations in which the \(i\) is connected to some other node and that node is connected to \(j\)
- \(A^{k}=A \cdot A \cdot A \cdots\)
- The value at \(A_{i j}^{k}\) will be the number of paths of length \(k\) that connect \(i\) and \(j\)

\section*{Optimization}
- One optimization problem is maximization- argmax \(\{f(x)\}\), find the argument value for \(x\) that gives us \(\max \{f(x)\}\)
- We may also be asked to minimize a function
- It turns out that this is the same problem:
\(\max \{f(x)\}=-\max \{-f(x)\}\)
- This works for virtually any domain - so if you can solve maximization, you can solve minimization
- Moreover, the standard calculus method is a type of reduction:
- Calculate the derivative, \(f^{\prime}(x)=\frac{d}{d x} f(x)\)
- Solve for \(f^{\prime}(0)\)
- Assuming the derivatives can be calculated, this reduces to the problem of finding critical points

\section*{Linear Programming}
- Linear programming problems involve optimizing a linear function subject to linear constraints
- There exists a general form for many LP problems:
maximize \(\quad c_{1} x_{1}+\cdots+c_{n} x_{n}\)
subject to \(\quad a_{i 1} x_{1}+\cdots+a_{i n} x_{n}\{\leq,=, \geq\} b_{i} \quad \forall i \in[1, m]\)
\(x_{1} \geq 0, \ldots, x_{n} \geq 0\)
- Many (many) problems in computer science can be reduced to such problems (e.g., the fractional knap-sack problem)
- There are a variety of well-known methods for solving them:
- The simplex method, which has an exponential worst-case bound, but whose average case is typically quite good
- Karmarkar's algorithm, which guarantees a polynomial worst-case bound and has done well empirical
- A much harder, related class of problems are integer linear programming, which are known to be NP-hard in general (e.g., the 0-1 knap-sack problem)

\section*{Book Topics Skipped in Lecture}
- In section 6.6:

■ Reduction to Graph Problems (pp. 239-240)

\section*{Assignments}

■ This week's assignments:
■ Section 6.3: Problems 1, 4, \& 7
- Section 6.4: Problems 1 \& 6
- Section 6.5: Problems 4, 6, 7 \& 8
- Section 6.6: Problems 1, 8, \& 9```

