Outline	Count Sorts 00	String Matching 000	Hashing 00000	B-Trees 00000	Homework 00

CS 483 - Data Structures and Algorithm Analysis Lecture VII: Chapter 7

R. Paul Wiegand

George Mason University, Department of Computer Science

March 29, 2006

R. Paul Wiegand CS483 Lecture II George Mason University, Department of Computer Science

Outline		Count Sorts	String Matching 000	Hashing 00000	B-Trees 00000	Homework 00
Outlin	e					

- 1 Introduction: Space vs. Time Tradeoff
- 2 Sorting by Counting
- 3 String Matching
- 4 Hashing
- 5 B-Trees

George Mason University, Department of Computer Science

Outline	Introduction	Count Sorts	String Matching	Hashing	
	•				

Space vs. Time Tradeoff Introduction

input enhancement — Preprocess the problem's input and store additional information to accelerate problem solving

- Counting methods for sorting
- Improvements to string matching algorithm
- prestructuring Use extra space to facilitate faster and/or flexible access to data
 - Hashing
 - Indexing with B-trees
 - Sometimes we gain time efficiency at the expense of space (or vice-versa)
 - Sometimes we gain time efficiency while gaining space efficiency (e.g., adjacency list representation & graph traversal algorithms)

Outline	Count Sorts	String Matching		
	•0			

Comparison Count Sort

COMPARISONCOUNTINGSORT($A[0 \dots n-1]$)

for $i \leftarrow 0$ to n-1 do $Count[i] \leftarrow 0$ for $i \leftarrow 0$ to n-2 do for $j \leftarrow i+1$ to n-1 do if A[i] < A[j] then $Count[j] \leftarrow Count[j] + 1$ else $Count[j] \leftarrow Count[j] + 1$ for $i \leftarrow 0$ to n-1 do $S[Count[i]] \leftarrow A[i]$ return S

$$A = \begin{bmatrix} 64 & 31 & 84 & 96 & 19 & 47 \\ init & 0 & 0 & 0 & 0 & 0 \\ i = 0 & 3 & 0 & 1 & 1 & 0 & 0 \\ i = 1 & 3 & 1 & 2 & 2 & 0 & 1 \\ i = 2 & 3 & 1 & 4 & 3 & 0 & 1 \\ i = 3 & 3 & 1 & 4 & 5 & 0 & 1 \\ i = 4 & 3 & 1 & 4 & 5 & 0 & 2 \\ i = 5 & 3 & 1 & 4 & 5 & 0 & 2 \\ \end{bmatrix}$$

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \frac{n(n-1)}{2} \in \Theta(n^2)$$

For each element to be sorted, count the total number of elements smaller than this element.

Outline	Count Sorts ⊙●	String Matching	Hashing 00000	B-Trees 00000	Homework 00

Distribution Counting

ComparisonCou	NTI	٩GS	ORT	(A[0	n — 1	1])	
for $j \leftarrow 0$ to $u - \ell$ do $D[j] \leftarrow 0$ for $i \leftarrow 0$ to $n - 1$ do $D[A[i] - \ell] \leftarrow D[A[i] - \ell] + 1$ for $j \leftarrow 1$ to $u - \ell$ do $D[j] \leftarrow D[j - 1] + D[j]$ for $i \leftarrow n - 1$ downto 0 do $j \leftarrow A[i] - \ell$ $S[D[i] - 1] \leftarrow A[i]$								
$D[j] \leftarrow D[j] - 1$		ſ	A	ter a		uiatio	n	
	D	[0	2]			<i>S</i> [0	5]	
A[i = 5] = 12	1	4	6					12
A[i = 4] = 12	1	3	6				12	12
A[i = 3] = 13	1	2	6				12	12
A[i=2] = 12	1	2	5			12	12	12
A[i = 1] = 11	1	2	5		11	12	12	12
A[i = 0] = 13	0	1	5		11	12	12	12
-						•	•	

- Sometimes the input is constrained
 - Fixed array of values
 - Each in $[\ell, u]$
- Sometimes we want additional information information

George Mason University, Department of Computer Science

13

13

13

13

13

Outline	Count Sorts	String Matching ●○○	Hashing 00000	B-Trees 00000	Homework 00

String Matching Basics

- We have a *pattern* string and a *text* string
- We want to find the position of the first occurrence of the pattern in the text
- Recall brute force:
 - Align the pattern at the start of the text
 - Compare each character of the pattern to each of the text
 - If there's a mismatch, shift the pattern one to the right and repeat
 - If the pattern matches, you are done
 - If the end of the pattern is reached, shift the pattern one to the right and repeat
 - $\Theta(nm)$ in the worst case
- But why shift only one each time?

Example:

text = "FOUR SCORE ...' pattern = "FATHER"

F	0	U	R		S	С
F	Α	Т	Н	E	R	
	F	А	Т	Н	E	R
		F	А	Т	Н	Е

Outline		Count Sorts 00	String Matching ○●○	Hashing 00000	B-Trees 00000	Homework 00
Horsp	ool's Algo	orithm				

- Idea: When we shift, make as large a shift as possible
- Match pattern from right to left
- Consider character c of the text that was aligned against the last character of the pattern

 $t(c) = \begin{cases} m, \text{if } c \text{ is not in the first } m-1 \text{ characters} \\ \text{dist from rightmost } c \text{ in first } m-1 \text{ characters, otherwise} \end{cases}$

- Still $\Theta(n)$ in Avg case, $\Theta(nm)$ in worst case
- But on average, must faster than brute force

SHIFTTABLE($P[0 \dots m-1]$) for $j \leftarrow 0$ to m-2 do $T[P[j]] \leftarrow m-1-j$ return T

Outline		Count Sorts 00	String Matching ○●○	Hashing 00000	B-Trees 00000	Homework 00
Horsp	ool's Algo	orithm				

- Idea: When we shift, make as large a shift as possible
- Match pattern from right to left
- Consider character c of the text that was aligned against the last character of the pattern

 $t(c) = \begin{cases} m, \text{if } c \text{ is not in the first } m-1 \text{ characters} \\ \text{dist from rightmost } c \text{ in first } m-1 \text{ characters, otherwise} \end{cases}$

• Still $\Theta(n)$ in Avg case, $\Theta(nm)$ in worst case

But on average, must faster than brute force

May repeatedly overwrite shift value for a given character

SHIFT TABLE ($P[0 \dots m - 1]$)

for
$$j \leftarrow 0$$
 to $m-2$ do $T[P[j]] \leftarrow m-1-j$ return T

George Mason University, Department of Computer Science

Outline	Count Sorts	String Matching ○○●	Hashing 00000	B-Trees 00000	Homework 00

Horspool's Algorithm (2)

1.) No c in the pattern, shift entire pattern length

··· O R E A N ··· D I D D I D D I D

2.) c is in pattern but this is not the last one, shift to align rightmost c in pattern

3.) c is last character in pattern & no others in remaining m-1, shift entire pattern length

4.) c is last character in pattern & \exists others in remaining m - 1, shift to align rightmost c in pattern

George Mason University, Department of Computer Science

Outline		Count Sorts 00	String Matching 000	Hashing ●0000	B-Trees 00000	Homework 00
-	D · · · ·					

The Basics of Hashing

- Hashes are often useful for implementing *dictionaries* (basic operations: INSERT, SEARCH, & DELETE)
- Construct a data type to store records by key value (*Hash Table*), generally an array $H[0 \dots m 1]$
- Use the key to access the table by computing its address with a predefined *Hash Function*, h(k)
 - If keys are nonnegative integers, a simple hash function is $h(k) = k \mod m$
 - For strings of a fixed length, we might use: $h(k) = \left(\sum_{i=0}^{\ell-1} ord(c_i)\right) \mod m$
 - Or, where C is a larger constant than any $ord(c_i)$: $h \leftarrow 0$; for $i \leftarrow 0$ to $\ell - 1$ do $h \leftarrow (h \cdot C + ord(c_i))$

Outline		Count Sorts 00	String Matching 000	Hashing 0●000	B-Trees 00000	Homework 00
Collis	ions					

- Hash functions should try to:
 - 1 Distribute keys in the table as evenly as possible
 - **2** Be easy to compute
- When the hash functions computes the same value for different keys, a *collision* occurs
 - When m < n (n is the number of keys inserted into the table), this will occur
 - Even when $m \ge n$ it is still possible (depending on the data and the hash function)
 - Hash implementations need to have a collision resolution method, such as:
 - Open hashing (separate chaining)
 - Closed hashing (open addressing)

Outline	Count Sorts 00	String Matching 000	Hashing 00●00	B-Trees 00000	Homework 00

Open Hashing

- Each cell in the hash table is a linked list
- Values are stored in list, collisions are handled by *chaining* values
- If n keys are distributed evenly, each list is about the same size: n/m
- load factor $\alpha = \frac{n}{m}$
- Average number of nodes visited during a successful search:
 S ≈ 1 + α/2
- Average number of nodes visited during an unsuccessful search:

 $U \approx \alpha$

R. Paul Wiegand CS483 Lecture II

Example: m = 5 $h(k) = (suitvalue + cardvalue) \mod m$ $\{a, 0, 0, 0, a\} = \{42, 28, 14, 0\}$ $\{K, Q, J, A\} = \{13, 12, 11, 1\}$

Data
$$A_{\Diamond}$$
 5 9_{\bigstar} 7 K_{\heartsuit}
 $h(k)$ 4 0 1 4 2

George Mason University, Department of Computer Science

Outline	Count Sorts 00	String Matching 000	Hashing 00●00	B-Trees 00000	Homework 00

Open Hashing

- Each cell in the hash table is a linked list
- Values are stored in list, collisions are handled by *chaining* values
- If n keys are distributed evenly, each list is about the same size: n/m

• load factor —
$$\alpha = \frac{n}{m}$$

- Average number of nodes visited during a successful search:
 S ≈ 1 + α/2
- Average number of nodes visited during an unsuccessful search:

 $U \approx \alpha$

Example: m = 5 $h(k) = (suitvalue + cardvalue) \mod m$ $\{ \blacklozenge, \diamondsuit, \because, \clubsuit \} = \{42, 28, 14, 0\}$ $\{ K, Q, J, A\} = \{13, 12, 11, 1\}$

Data
$$A_{\Diamond}$$
 5 9_{\bigstar} 7 K_{\heartsuit}
 $h(k)$ 4 0 1 4 2

When load factor is near 1 & keys are well distributed, access is $\Theta(1)$ on average

Outline	Count Sorts 00	String Matching 000	Hashing 000●0	B-Trees 00000	Homework 00

Closed Hashing with Linear Probing

- All keys are stored in table
- On collisions, we shift right until we find an open position
- At the end, we wrap back to the start
- DELETE is problematic (mark & skip)
- Avg. # comparisons when successful: $S \approx \frac{1}{2} \left(1 - \frac{1}{1-\alpha} \right)$
- Avg. # comparisons when unsuccessful: $U \approx \frac{1}{2} \left(1 - \frac{1}{(1-\alpha)^2} \right)$

Example:Data A_{\Diamond} 5_{\bullet} 9_{\bullet} 7_{\bullet} K_{\heartsuit} h(k)40142

Outline	Count Sorts	String Matching	Hashing	
			00000	

Clustering & Double Hashing

α

George Mason University, Department of Computer Science

Outline	Count Sorts 00	String Matching 000	Hashing 0000●	B-Trees 00000	Homework 00

Clustering & Double Hashing

α

- The main problem is *clustering*
- A *cluster* is a sequence of consecutive filled positions in the table
- One possible solution: *double hash*
 - Use a second hash function to compute the probe interval
 - $h_2(k) = m 2 k \mod (m 2)$
 - We need h₂(k) and m to be "relatively prime" (only common divisor is 1)
 - Choosing a prime *m* ensures this

George Mason University, Department of Computer Science

Outline	Count Sorts 00	String Matching 000	Hashing 0000●	B-Trees 00000	Homework 00

Clustering & Double Hashing

- The main problem is *clustering*
- A *cluster* is a sequence of consecutive filled positions in the table
- One possible solution: *double hash*
 - Use a second hash function to compute the probe interval
 - $h_2(k) = m 2 k \mod (m 2)$
 - We need h₂(k) and m to be "relatively prime" (only common divisor is 1)
 - Choosing a prime *m* ensures this
- We can *still* have problems as α approaches 1
- Only solution: rehash (scan table & relocate into a bigger table)

Outline	Count Sorts	String Matching 000	Hashing 00000	B-Trees ●0000	Homework 00

Storing Data on Disk

- Often we need access to data stored on disk
- There can be a large number of data records
- And the records are typically *indexed* indexes provide key values and information about the record's location
- In such cases, we typically are less interested in counting key comparisons and more interested in counting disk accesses
- B-Trees extend the idea of 2-3 Trees to make such considerations easier

Outline	Count Sorts	String Matching	Hashing 00000	B-Trees 0●000	Homework 00

B-Trees

- Data records stored in *leaves* in increasing order of the keys
- Each parental node contains m-1 (distinct) ordered keys
- All keys in T_0 are smaller than K_1 , all keys in T_1 are in $[K_1, K_2)$, etc.
- Every B-Tree of order m > 2 must satisfy:
 - Root is leaf or has between 2 and m children
 - Internal nodes (\sim root \lor leaf) have b/w $\lceil m/2 \rceil$ and m children
 - The tree is (perfectly) balanced; all leaves at same level

Outline	Count Sorts 00	String Matching 000	Hashing 00000	B-Trees 00●00	Homework 00

Searching in a B-Tree

- Keys are ordered in the node, so we can use binary search to find the pointer to follow
- But we don't care about key comparisons, we care about disk access
- We usually choose the *order* of a B-Tree s.t. the node size corresponds with disk pages
- How many nodes do we have to consider? Height plus 1 ...

Outline	Count Sorts 00	String Matching	Hashing 00000	B-Trees 000●0	Homework 00

Analyzing Search

- What is the height of a B-Tree?
- Find: smallest # of keys a B-Tree of order m and height h can have:
 - Root has at least one key
 - Level 1 has at least two nodes with at least $\lceil m/2 \rceil 1$ keys
 - Level 2 has at least $2 \lceil m/2 \rceil$ nodes with at least $\lceil m/2 \rceil 1$ keys
 - For a B-Tree of order *m* with *n* nodes and height *h*:

$$n \ge 1 + \sum_{i=1}^{h-1} 2 \lceil m/2 \rceil^{i-1} (\lceil m/2 \rceil - 1) + 2 \lceil m/2 \rceil^{h-1}$$
Which reduces to:

$$n \le 4 \lceil m/2 \rceil^{h-1} - 1$$
So height is:

$$h \le |\log_{\lceil m/2 \rceil} \frac{n+1}{4}| + 1$$

Outline	Count Sorts 00	String Matching	Hashing 00000	B-Trees 000●0	Homework 00

Analyzing Search

- What is the height of a B-Tree?
- Find: smallest # of keys a B-Tree of order m and height h can have:
 - Root has at least one key
 - Level 1 has at least two nodes with at least $\lceil m/2 \rceil 1$ keys
 - Level 2 has at least $2 \lceil m/2 \rceil$ nodes with at least $\lceil m/2 \rceil 1$ keys
 - For a B-Tree of order *m* with *n* nodes and height *h*:
 - $n \ge 1 + \sum_{i=1}^{h-1} 2 \lceil m/2 \rceil^{i-1} (\lceil m/2 \rceil 1) + 2 \lceil m/2 \rceil^{h-1}$ Which reduces to: $n \le 4 \lceil m/2 \rceil^{h-1} - 1$ So height is: $h \le |\log_{\lceil m/2 \rceil} \frac{n+1}{4}| + 1$
 - Since *m* is a constant (even if very large), this is *O*(log *n*)

Outline	Count Sorts 00	String Matching 000	Hashing 00000	B-Trees 0000●	Homework 00

Inserting in a B-Tree

■ There are a variety of INSERT functions for B-Trees

- Here's a simple one:
 - Find the appropriate leaf & insert key
 - If there are too many keys:
 - Split node in half
 - Promote smallest key of new node to parent
 - This may percolate up the tree

Analysis is difficult, but this is also O(log n)

Outline	Count Sorts	String Matching	Hashing	Homework
				•0

Book Topics Skipped in Lecture

In section 7.2:

Boyer-Moore Algorithm (pp. 255–259)

ৰ্চা > ব্টা> ব্টা> ব্টা> ব্টা> ট্রা> বি George Mason University, Department of Computer Science

Outline	Count Sorts	String Matching 000	Hashing 00000	B-Trees 00000	Homework ○●

Assignments

This week's assignments:

Section 7.1: Problems 3 & 7

Section 7.2: Problems 2, 5, & 7

Section 7.3: Problems 1, 2, & 8

Section 7.4: Problems 3 & 4

George Mason University, Department of Computer Science