CS 483 - Data Structures and Algorithm Analysis
Lecture VII: Chapter 7

R. Paul Wiegand

George Mason University, Department of Computer Science

March 29, 2006

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Outline

Outline

Introduction: Space vs. Time Tradeoff
Sorting by Counting

String Matching

Hashing

B-Trees

@ Homework

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Introduction
[ ]

Space vs. Time Tradeoff Introduction

input enhancement — Preprocess the problem'’s input and store
additional information to accelerate problem solving
m Counting methods for sorting
m Improvements to string matching algorithm

prestructuring — Use extra space to facilitate faster and/or flexible
access to data

m Hashing
m Indexing with B-trees

m Sometimes we gain time efficiency at the expense of
space (or vice-versa)

m Sometimes we gain time efficiency while gaining
space efficiency (e.g., adjacency list representation &
graph traversal algorithms)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Count Sorts
[ o)

Comparison Count Sort

A=[64 [ 31 [ 84 | 9 | 19 | 47

| - N .Q init | 0 0 0 0 0 0
CoMPARISONCOUNTINGSORT(A[O ... o3 T o T 11 To o
for i« 0 to n—1 do Count[i] — 0 i=13]1]2]2]0]1
for i+ 0 to n—2 do =213 11430 1

for j«<—i+1 to n—1 do i=3] 3 1 4 5 0 1

if A[i] < A[j] then i=4 3 ] 1[4 ]5]0]2
Count[j] < Count[j] +1 i=5' 3| 1| 4]5]0]2
else Countlj] < Count[j] + 1 S
for i < 0 to n—1 do S[Count[i]] — A[i]
return S
n( ) For each element to be sorted, count

C(n) = Z; Z —,+1

S @(n2) the total number of elements smaller
than this element.

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Count Sorts
oce

Distribution Counting

m Sometimes the input is
constrained

COMPARISONCOUNTINGSORT(A[0 ...n—1])

for j«— 0 to u—¢ do D[j]< 0

for i 0 to n—1 do D[A[i] - ] — D[A[i] — 4 + 1 = Fixed array of
for j« 1 to u—£ do D[j] + D[j — 1] + D[j] values
for i+ n—1 downto O do m Eachin [(7 u]
je—Alil-¢ .
S[D[j] — 1] «— A[i] | After accumulation... | m Sometimes we want
D[j] «— D[j]—1 additional information
( information
D[o-..2] S[o...5]
Ali=5]=12[1]4]6 12
Ali=4=12[1[3]6 12 | 12
Ai=3]=13 [1 |26 o 12 3
Ali=21=12 125 12 12 | 12 13
Ali=1=11 |1 ] 2]5 11 | 12 | 12 12 13
Ali=01=13 [0 [ 1|5 11 | 12 [ 12 | 12 | 13 | 13

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



String Matching
@00

String Matching Basics

m We have a pattern string and a text string

m We want to find the position of the first
occurrence of the pattern in the text
Example:
m Recall brute force: text = “FOUR SCORE ..’
m Align the pattern at the start of the text pattern = “FATHER"
m Compare each character of the pattern
to each of the text

, . . F O U R S C

m If there's a r.nlsmatch, shift the pattern F A T H E R
one to the right and repeat F A T H E R
F A T H E

m If the pattern matches, you are done

m If the end of the pattern is reached, shift
the pattern one to the right and repeat

m O(nm) in the worst case

m But why shift only one each time?

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



String Matching
(o] le}

Horspool's Algorithm

m ldea: When we shift, make as large a shift as possible
m Match pattern from right to left

m Consider character c of the text that was aligned against the last
character of the pattern

t(c) = m, if ¢ is not in the first m — 1 characters
~ ]| dist from rightmost c in first m — 1 characters, otherwise

m Still ©(n) in Avg case, ©(nm) in worst case
m But on average, must faster than brute force
SHIFTTABLE(P[0...m — 1))

for j« 0 to m—2do T[P[j]]l <~ m—1—
return T

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



String Matching
(o] le}

Horspool's Algorithm

m ldea: When we shift, make as large a shift as possible
m Match pattern from right to left

m Consider character c of the text that was aligned against the last
character of the pattern

t(c) = m, if ¢ is not in the first m — 1 characters
~ ]| dist from rightmost c in first m — 1 characters, otherwise

m Still ©(n) in Avg case, ©(nm) in worst case May repeatedly over-
write shift value for a
m But on average, must faster than brute force given character

SHIFTTABLE(P[0...m — 1])

for j«0to m—2do T[P[j]]l<— m—1—
return T

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



String Matching
ooe

Horspool's Algorithm (2)

1.) No cin the pattern, shift entire 8 Ff g A N
pattern length D I D
2.) cis in pattern but this is not .. A N @ S E
the last one, shift to align right- E D | T

most ¢ in pattern E @ I T

3.) cis last character in pattern & - S E V E N

no others in remaining m—1, shift G | V E

entire pattern length G |1
4.) cis last character in pattern & ... Y E A @ S

3 others in remaining m — 1, shift R E A R

to align rightmost ¢ in pattern @ E A

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Hashing
0000

The Basics of Hashing

m Hashes are often useful for implementing dictionaries (basic
operations: INSERT, SEARCH, & DELETE)
m Construct a data type to store records by key value (Hash Table),
generally an array H[0...m — 1]
m Use the key to access the table by computing its address with a
predefined Hash Function, h(k)
m If keys are nonnegative integers, a simple hash function is
h(k) =k mod m
m For strings of a fixed length, we might use:
h(k) = (Z - ord(c,)) mod m
m Or, where C is a larger constant than any ord(c;):
h«—0; for i« 0 to £—1 do h« (h- C+ ord(c;))

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Hashing
(o] Jelele]

Collisions

m Hash functions should try to:

Distribute keys in the table as evenly as possible
Be easy to compute

m When the hash functions computes the same value for different
keys, a collision occurs

m When m < n (n is the number of keys inserted into the table),
this will occur
m Even when m > n it is still possible (depending on the data
and the hash function)
m Hash implementations need to have a collision resolution
method, such as:
m Open hashing (separate chaining)
m Closed hashing (open addressing)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Hashing
[e]e] Tele]

Open Hashing

m Each cell in the hash table is a Exar5nple:
. . m:
linked list h(k) = (suitvalue + cardvalue) mod m
H H HP {Q7<> ' Qe } = {427 28,14, 0}
m Values are stored in list, collisions (K.Q 1A} = {13,12,11, 1}

are handled by chaining values

m If n keys are distributed evenly, hk) [ 4 0 T 1 1 2 5
each list is about the same size:

m Joad factor— o = - @

3l

m Average number of nodes visited 54 94 Ko A
during a successful search: 7¢
o -

S~1+ >

m Average number of nodes visited
during an unsuccessful search:
U~ a«

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Open Hashing

Hashing
[e]e] Tele]

m Each cell in the hash table is a
linked list

m Values are stored in list, collisions

are handled by chaining values

m If n keys are distributed evenly,
each list is about the same size:

m Joad factor— o = -

m Average number of nodes visited
during a successful search:
S~1+3

m Average number of nodes visited
during an unsuccessful search:

U~ «
R. Paul Wiegand

Example:

m=25

h(k) = (suitvalue + cardvalue) mod m
{070 FIVEY } = {427 28,14, 0}
{K,Q,J,A} ={13,12,11,1}

3l

When load factor is near 1
& keys are well distributed,
access is ©(1) on average

George Mason University, Department of Computer Science

CS483 Lecture Il



Hashing
000e0o

Closed Hashing with Linear Probing

m All keys are stored in table

Example:
m On collisions, we shift right until we Data [ Ay [ 5& | 94 | 74 | Ko
find an open position hky [ 4 J o[ 1]47?2

m At the end, we wrap back to the start

m DELETE is problematic (mark & skip)
m Avg. # comparisons when successful: Ao
S~1(1 1 5& Ao
~2 T 1 5& | % As
. 5% | %90 | 7a As
m Avg. # comparisons when 5a | 9a [ 7a | Ko | Ac

unsuccessful: U ~ 1 (1 - ﬁ)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Hashing
0000e

Clustering & Double Hashing

—— Unsuccessful
—— Successful

150 200
|
—

# comparisons
100
|
——

N

0.2 0.4 0.6 0.8

R. Paul Wiegand George Mason Univer: Department of Computer Scien

CS483 Lecture Il



Hashing
0000e

Clustering & Double Hashing

m The main problem is clustering

200
|

m A cluster is a sequence of consecutive

T Unpuecessiul filled positions in the table

—— Successful

m One possible solution: double hash

m Use a second hash function to
compute the probe interval

hao(k) =m—2—k mod (m—2)
We need hp(k) and m to be

T T T T “relatively prime” (only common
02 04 06 08 divisor is 1)

m Choosing a prime m ensures this

100 150
| |
—_

# comparisons

N

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Hashing
0000e

Clustering & Double Hashing

m The main problem is clustering

200
|

m A cluster is a sequence of consecutive

T Unpuecessiul filled positions in the table

—— Successful

m One possible solution: double hash

m Use a second hash function to
compute the probe interval

hao(k) =m—2—k mod (m—2)
We need hp(k) and m to be

T T T T “relatively prime” (only common
02 04 06 08 divisor is 1)

m Choosing a prime m ensures this

100 150
| |
—_

# comparisons

N

a

m We can still have problems as a approaches 1
m Only solution: rehash (scan table & relocate into a bigger table)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Storing Data on Disk

m Often we need access to data stored on disk
m There can be a large number of data records

m And the records are typically indexed— indexes provide key values
and information about the record’s location

m In such cases, we typically are less interested in counting key
comparisons and more interested in counting disk accesses

m B-Trees extend the idea of 2-3 Trees to make such considerations
easier

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



B-Trees

IK*II [I& ] [[%] ]

AAAAL

Data records stored in leaves in increasing order of the keys

Each parental node contains m — 1 (distinct) ordered keys
All keys in Ty are smaller than Kj, all keys in Ty are in [K1, K3), etc.

Every B-Tree of order m > 2 must satisfy:
m Root is leaf or has between 2 and m children
m Internal nodes (~ root V leaf) have b/w [m/2] and m children
m The tree is (perfectly) balanced; all leaves at same level

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Searching in a B-Tree

4,7,10 | |11,14| |15,16,19| |20,24| 25,28 40, 43, 46 60, 68, 80

m Keys are ordered in the node, so we can use binary search to find
the pointer to follow

But we don't care about key comparisons, we care about disk access

|

m We usually choose the order of a B-Tree s.t. the node size
corresponds with disk pages

m How many nodes do we have to consider? Height plus 1 ...

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Analyzing Search

m What is the height of a B-Tree?

m Find: smallest # of keys a B-Tree of order m and height h can
have:

m Root has at least one key

m Level 1 has at least two nodes with at least [m/2] — 1 keys

m Level 2 has at least 2 [m/2] nodes with at least [m/2] —1 keys

m For a B-Tree of order m with n nodes and height h:

n> 1430 2[m/2] " ([m/2] = 1) +2[m/2]""}

Which reduces to: n<4[m/21"1 -1
So height is: h < |_Iog(m/2] nf:lj +1

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Analyzing Search

m What is the height of a B-Tree?

m Find: smallest # of keys a B-Tree of order m and height h can
have:

m Root has at least one key

m Level 1 has at least two nodes with at least [m/2] — 1 keys

m Level 2 has at least 2 [m/2] nodes with at least [m/2] —1 keys

m For a B-Tree of order m with n nodes and height h:

n> 1430 2[m/2] " ([m/2] = 1) +2[m/2]""}

Which reduces to: n<4[m/21"1 -1
So height is: h < |_Iog(m/2] nf:lj +1

m Since m is a constant (even if very large), this is O(log n)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Inserting in a B-Tree

[ EINNECE N

[[125 ]34 ][ % [

m There are a variety of INSERT functions for B-Trees

m Here's a simple one:
m Find the appropriate leaf & insert key
m If there are too many keys:
m Split node in half
m Promote smallest key of new node to parent
m This may percolate up the tree

m Analysis is difficult, but this is also O(log n)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Homework
[ o)

Book Topics Skipped in Lecture

m In section 7.2:
m Boyer-Moore Algorithm (pp. 255-259)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



Homework
oce

Assignments

m This week's assignments:

m Section 7.1: Problems 3 & 7
m Section 7.2: Problems 2,5, & 7
m Section 7.3: Problems 1, 2, & 8
m Section 7.4: Problems 3 & 4

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture Il



	Outline
	Introduction: Space vs. Time Tradeoff
	Sorting by Counting
	String Matching
	Hashing
	B-Trees
	Homework

