CS 483 - Data Structures and Algorithm Analysis

 Lecture VII: Chapter 7
R. Paul Wiegand

George Mason University, Department of Computer Science
March 29, 2006

Outline

1 Introduction: Space vs. Time Tradeoff
2 Sorting by Counting
3 String Matching
4 Hashing
5 B-Trees
6 Homework

Space vs. Time Tradeoff Introduction

input enhancement - Preprocess the problem's input and store additional information to accelerate problem solving

- Counting methods for sorting
- Improvements to string matching algorithm
prestructuring - Use extra space to facilitate faster and/or flexible access to data
- Hashing
- Indexing with B-trees

■ Sometimes we gain time efficiency at the expense of space (or vice-versa)

- Sometimes we gain time efficiency while gaining space efficiency (e.g., adjacency list representation \& graph traversal algorithms)

Comparison Count Sort

ComparisonCountingSort(A[0 ...n-1])

$$
\begin{aligned}
& \text { for } i \leftarrow 0 \text { to } n-1 \text { do Count }[i] \leftarrow 0 \\
& \text { for } i \leftarrow 0 \text { to } n-2 \text { do } \\
& \text { for } j \leftarrow i+1 \text { to } n-1 \text { do } \\
& \quad \text { if } A[i]<A[j] \text { then } \\
& \quad \text { Count }[j] \leftarrow \operatorname{Count}[j]+1 \\
& \quad \text { else Count }[j] \leftarrow \operatorname{Count}[j]+1 \\
& \text { for } i \leftarrow 0 \text { to } n-1 \text { do } S[\operatorname{Count}[i]] \leftarrow A[i] \\
& \text { return } S
\end{aligned}
$$

$$
C(n)=\sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1=\frac{n(n-1)}{2} \in \Theta\left(n^{2}\right)
$$

For each element to be sorted, count the total number of elements smaller than this element.

Distribution Counting

ComparisonCountingSort(A[0 ...n-1])

$$
\text { for } j \leftarrow 0 \text { to } u-\ell \text { do } D[j] \leftarrow 0
$$

$$
\text { for } i \leftarrow 0 \text { to } n-1 \text { do } D[A[i]-\ell] \leftarrow D[A[i]-\ell]+1
$$

$$
\text { for } j \leftarrow 1 \text { to } u-\ell \text { do } D[j] \leftarrow D[j-1]+D[j]
$$

$$
\text { for } i \leftarrow n-1 \text { downto } 0 \text { do }
$$

$$
j \longleftarrow A[i]-\ell
$$

$$
S[D[j]-1] \longleftarrow A[i]
$$

After accumulation...

$$
D[j] \longleftarrow D[j]-1
$$

$D[0 \ldots 2]$				$S[0 \ldots 5]$				inform	
$A[i=5]=12$	1	4	6				12		
$A[i=4]=12$	1	3	6			12	12		
$A[i=3]=13$	1	2	6			12	12		13
$A[i=2]=12$	1	2	5		12	12	12		13
$A[i=1]=11$	1	2	5	11	12	12	12		13
$A[i=0]=13$	0	1	5	11	12	12	12	13	13

String Matching Basics

■ We have a pattern string and a text string

- We want to find the position of the first occurrence of the pattern in the text
- Recall brute force:

■ Align the pattern at the start of the text

Example:

text $=$ "FOUR SCORE ...' pattern = "FATHER"

■ Compare each character of the pattern to each of the text
■ If there's a mismatch, shift the pattern one to the right and repeat

- If the pattern matches, you are done

F	O	U	R		S	C
F	A	T	H	E	R	
	F	A	T	H	E	R
		F	A	T	H	E

- If the end of the pattern is reached, shift the pattern one to the right and repeat
■ $\Theta(n m)$ in the worst case
■ But why shift only one each time?

Horspool's Algorithm

■ Idea: When we shift, make as large a shift as possible

- Match pattern from right to left
- Consider character c of the text that was aligned against the last character of the pattern
$t(c)=\left\{\begin{array}{l}m, \text { if } c \text { is not in the first } m-1 \text { characters } \\ \text { dist from rightmost } c \text { in first } m-1 \text { characters, otherwise }\end{array}\right.$
- Still $\Theta(n)$ in Avg case, $\Theta(n m)$ in worst case
- But on average, must faster than brute force

$$
\begin{aligned}
& \operatorname{SHIFTTABLE}(P[0 \ldots m-1]) \\
& \text { for } j \leftarrow 0 \text { to } m-2 \text { do } T[P[j]] \leftarrow m-1-j \\
& \text { return } T
\end{aligned}
$$

Horspool's Algorithm

■ Idea: When we shift, make as large a shift as possible

- Match pattern from right to left
- Consider character c of the text that was aligned against the last character of the pattern
$t(c)=\left\{\begin{array}{l}m, \text { if } c \text { is not in the first } m-1 \text { characters } \\ \text { dist from rightmost } c \text { in first } m-1 \text { characters, otherwise }\end{array}\right.$
- Still $\Theta(n)$ in Avg case, $\Theta(n m)$ in worst case
- But on average, must faster than brute force

May repeatedly overwrite shift value for a given character

$$
\begin{aligned}
& \operatorname{SHIFTTABLE}(P[0 \ldots m-1]) \\
& \text { for } j \leftarrow 0 \text { to } m-2 \text { do } T[P[j]] \leftarrow m-1-j \\
& \text { return } T
\end{aligned}
$$

Horspool's Algorithm (2)

1.) No c in the pattern, shift entire pattern length

\cdots	O	R	E	A	N	\cdots
	D	I	D			

D I D
2.) c is in pattern but this is not the last one, shift to align rightmost c in pattern
3.) c is last character in pattern \& no others in remaining $m-1$, shift entire pattern length
4.) c is last character in pattern \&
\exists others in remaining $m-1$, shift to align rightmost c in pattern

The Basics of Hashing

■ Hashes are often useful for implementing dictionaries (basic operations: Insert, Search, \& Delete)
■ Construct a data type to store records by key value (Hash Table), generally an array $H[0 \ldots m-1]$
■ Use the key to access the table by computing its address with a predefined Hash Function, $h(k)$

- If keys are nonnegative integers, a simple hash function is $h(k)=k \bmod m$
- For strings of a fixed length, we might use:

$$
h(k)=\left(\sum_{i=0}^{\ell-1} \operatorname{ord}\left(c_{i}\right)\right) \bmod m
$$

- Or, where C is a larger constant than any $\operatorname{ord}\left(c_{i}\right)$:

$$
h \leftarrow 0 \text {; for } i \leftarrow 0 \text { to } \ell-1 \text { do } h \leftarrow\left(h \cdot C+\operatorname{ord}\left(c_{i}\right)\right)
$$

Collisions

- Hash functions should try to:

1 Distribute keys in the table as evenly as possible
2 Be easy to compute

- When the hash functions computes the same value for different keys, a collision occurs
- When $m<n$ (n is the number of keys inserted into the table), this will occur
- Even when $m \geq n$ it is still possible (depending on the data and the hash function)
- Hash implementations need to have a collision resolution method, such as:

■ Open hashing (separate chaining)
■ Closed hashing (open addressing)

Open Hashing

- Each cell in the hash table is a linked list
- Values are stored in list, collisions are handled by chaining values
- If n keys are distributed evenly, each list is about the same size: $\frac{n}{m}$
- load factor- $\alpha=\frac{n}{m}$
- Average number of nodes visited during a successful search:

Example:

$$
\begin{aligned}
& m=5 \\
& h(k)=(\text { suitvalue }+ \text { cardvalue }) \bmod m \\
& \left\{\begin{array}{l}
m, \Delta, \infty, \infty\}=\{42,28,14,0\} \\
\{K, Q, J, A\}=\{13,12,11,1\}
\end{array}\right.
\end{aligned}
$$

Data

A_{\diamond}	5_{∞}	9_{\uparrow}	7_{\uparrow}	K_{\odot}
4	0	1	4	2

$S \approx 1+\frac{\alpha}{2}$

- Average number of nodes visited during an unsuccessful search:

$$
U \approx \alpha
$$

Open Hashing

- Each cell in the hash table is a linked list
- Values are stored in list, collisions are handled by chaining values
■ If n keys are distributed evenly, each list is about the same size: $\frac{n}{m}$
- load factor- $\alpha=\frac{n}{m}$

■ Average number of nodes visited during a successful search:
$S \approx 1+\frac{\alpha}{2}$

- Average number of nodes visited during an unsuccessful search:

Example:

$$
\begin{aligned}
& m=5 \\
& h(k)=(\text { suitvalue }+ \text { cardvalue }) \text { mod } m \\
& \{\oplus, \diamond, \infty, \infty\}=\{42,28,14,0\} \\
& \{K, Q, J, A\}=\{13,12,11,1\}
\end{aligned}
$$

Data

A_{\diamond}	5_{∞}	9_{\uparrow}	7_{\uparrow}	K_{\odot}
4	0	1	4	2

When load factor is near 1 \& keys are well distributed, access is $\Theta(1)$ on average $U \approx \alpha$

Closed Hashing with Linear Probing

- All keys are stored in table

■ On collisions, we shift right until we find an open position

- At the end, we wrap back to the start
- Delete is problematic (mark \& skip)
- Avg. \# comparisons when successful: $S \approx \frac{1}{2}\left(1-\frac{1}{1-\alpha}\right)$
- Avg. \# comparisons when unsuccessful: $U \approx \frac{1}{2}\left(1-\frac{1}{(1-\alpha)^{2}}\right)$

Example:

Data					
$h(k)$	A_{\diamond}	$5_{\&}$	9_{\uparrow}	7_{\oplus}	K_{\odot}
	4	0	1	4	2

0	1	2	3	4
				A_{\diamond}
5\%				A_{\diamond}
5\%	$9{ }_{\text {a }}$			A_{\diamond}
5\%	$9{ }_{\text {a }}$	7		A_{\diamond}
5\%	9	7	K_{\odot}	A_{\diamond}

Clustering \& Double Hashing

Clustering \& Double Hashing

α

- The main problem is clustering
- A cluster is a sequence of consecutive filled positions in the table
- One possible solution: double hash
- Use a second hash function to compute the probe interval
- $h_{2}(k)=m-2-k \bmod (m-2)$
- We need $h_{2}(k)$ and m to be "relatively prime" (only common divisor is 1)
■ Choosing a prime m ensures this

Clustering \& Double Hashing

- The main problem is clustering
- A cluster is a sequence of consecutive filled positions in the table
- One possible solution: double hash

■ Use a second hash function to compute the probe interval

- $h_{2}(k)=m-2-k \bmod (m-2)$
- We need $h_{2}(k)$ and m to be "relatively prime" (only common divisor is 1)
- Choosing a prime m ensures this
- We can still have problems as α approaches 1
- Only solution: rehash (scan table \& relocate into a bigger table)

Storing Data on Disk

■ Often we need access to data stored on disk

- There can be a large number of data records
- And the records are typically indexed - indexes provide key values and information about the record's location
- In such cases, we typically are less interested in counting key comparisons and more interested in counting disk accesses
- B-Trees extend the idea of 2-3 Trees to make such considerations easier

B-Trees

- Data records stored in leaves in increasing order of the keys
- Each parental node contains $m-1$ (distinct) ordered keys

■ All keys in T_{0} are smaller than K_{1}, all keys in T_{1} are in $\left[K_{1}, K_{2}\right)$, etc.
■ Every B-Tree of order $m>2$ must satisfy:

- Root is leaf or has between 2 and m children
- Internal nodes (\sim root \vee leaf) have $\mathrm{b} / \mathrm{w}\lceil m / 2\rceil$ and m children
- The tree is (perfectly) balanced; all leaves at same level

Searching in a B-Tree

- Keys are ordered in the node, so we can use binary search to find the pointer to follow
■ But we don't care about key comparisons, we care about disk access
■ We usually choose the order of a B-Tree s.t. the node size corresponds with disk pages
- How many nodes do we have to consider? Height plus 1 ...

Analyzing Search

- What is the height of a B-Tree?

■ Find: smallest \# of keys a B-Tree of order m and height h can have:

- Root has at least one key
- Level 1 has at least two nodes with at least $\lceil m / 2\rceil-1$ keys
- Level 2 has at least $2\lceil\mathrm{~m} / 2\rceil$ nodes with at least $\lceil m / 2\rceil-1$ keys
- For a B-Tree of order m with n nodes and height h :

$$
n \geq 1+\sum_{i=1}^{h-1} 2\lceil m / 2\rceil^{i-1}(\lceil m / 2\rceil-1)+2\lceil m / 2\rceil^{h-1}
$$

- Which reduces to: $n \leq 4\lceil m / 2\rceil^{h-1}-1$
- So height is:

$$
h \leq\left\lfloor\log _{\lceil m / 2\rceil} \frac{n+1}{4}\right\rfloor+1
$$

Analyzing Search

■ What is the height of a B -Tree?
■ Find: smallest \# of keys a B-Tree of order m and height h can have:

- Root has at least one key
- Level 1 has at least two nodes with at least $\lceil m / 2\rceil-1$ keys
- Level 2 has at least $2\lceil\mathrm{~m} / 2\rceil$ nodes with at least $\lceil m / 2\rceil-1$ keys
- For a B-Tree of order m with n nodes and height h :

$$
n \geq 1+\sum_{i=1}^{h-1} 2\lceil m / 2\rceil^{i-1}(\lceil m / 2\rceil-1)+2\lceil m / 2\rceil^{h-1}
$$

- Which reduces to: $n \leq 4\lceil m / 2\rceil^{h-1}-1$
- So height is:

$$
h \leq\left\lfloor\log _{\lceil m / 2\rceil} \frac{n+1}{4}\right\rfloor+1
$$

■ Since m is a constant (even if very large), this is $O(\log n)$

Inserting in a B-Tree

- There are a variety of Insert functions for B-Trees
- Here's a simple one:
- Find the appropriate leaf \& insert key
- If there are too many keys:
- Split node in half

■ Promote smallest key of new node to parent

- This may percolate up the tree

■ Analysis is difficult, but this is also $O(\log n)$

Book Topics Skipped in Lecture

- In section 7.2:

■ Boyer-Moore Algorithm (pp. 255-259)

Assignments

■ This week's assignments:

- Section 7.1: Problems 3 \& 7
- Section 7.2: Problems 2, 5, \& 7
- Section 7.3: Problems 1, 2, \& 8

■ Section 7.4: Problems 3 \& 4

