
Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

CS 483 - Data Structures and Algorithm Analysis
Lecture VII: Chapter 7

R. Paul Wiegand

George Mason University, Department of Computer Science

March 29, 2006

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Outline

1 Introduction: Space vs. Time Tradeoff

2 Sorting by Counting

3 String Matching

4 Hashing

5 B-Trees

6 Homework

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Space vs. Time Tradeoff Introduction

input enhancement — Preprocess the problem’s input and store
additional information to accelerate problem solving

Counting methods for sorting
Improvements to string matching algorithm

prestructuring — Use extra space to facilitate faster and/or flexible
access to data

Hashing
Indexing with B-trees

Sometimes we gain time efficiency at the expense of
space (or vice-versa)
Sometimes we gain time efficiency while gaining
space efficiency (e.g., adjacency list representation &
graph traversal algorithms)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Comparison Count Sort

ComparisonCountingSort(A[0 . . . n− 1])

for i ← 0 to n − 1 do Count[i]← 0
for i ← 0 to n − 2 do

for j ← i + 1 to n − 1 do

if A[i] < A[j] then

Count[j]← Count[j] + 1
else Count[j]← Count[j] + 1

for i ← 0 to n − 1 do S[Count[i]]← A[i]
return S

A = 64 31 84 96 19 47

0 0 0 0 0 0
3 0 1 1 0 0
3 1 2 2 0 1
3 1 4 3 0 1
3 1 4 5 0 1
3 1 4 5 0 2
3 1 4 5 0 2

init

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

S

C (n) =
∑n−2

i=0

∑n−1
j=i+1 1 = n(n−1)

2 ∈ Θ(n2)
For each element to be sorted, count
the total number of elements smaller
than this element.

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Distribution Counting

ComparisonCountingSort(A[0 . . . n − 1])

for j ← 0 to u − ℓ do D[j]← 0
for i ← 0 to n − 1 do D[A[i]− ℓ]← D[A[i]− ℓ] + 1
for j ← 1 to u − ℓ do D[j]← D[j − 1] + D[j]
for i ← n − 1 downto 0 do

j ←− A[i]− ℓ
S[D[j]− 1]←− A[i]
D[j]←− D[j]− 1

Sometimes the input is
constrained

Fixed array of
values
Each in [ℓ, u]

Sometimes we want
additional information
information

}

After accumulation...

D[0 . . . 2] S[0 . . . 5]
A[i = 5] = 12 1 4 6 12

A[i = 4] = 12 1 3 6 12 12
A[i = 3] = 13 1 2 6 12 12 13

A[i = 2] = 12 1 2 5 12 12 12 13
A[i = 1] = 11 1 2 5 11 12 12 12 13
A[i = 0] = 13 0 1 5 11 12 12 12 13 13

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

String Matching Basics

We have a pattern string and a text string

We want to find the position of the first
occurrence of the pattern in the text

Recall brute force:

Align the pattern at the start of the text
Compare each character of the pattern
to each of the text
If there’s a mismatch, shift the pattern
one to the right and repeat
If the pattern matches, you are done
If the end of the pattern is reached, shift
the pattern one to the right and repeat
Θ(nm) in the worst case

But why shift only one each time?

Example:
text = “FOUR SCORE ...”
pattern = “FATHER”

F O U R S C
F A T H E R

F A T H E R
F A T H E

· · ·

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Horspool’s Algorithm

Idea: When we shift, make as large a shift as possible

Match pattern from right to left

Consider character c of the text that was aligned against the last
character of the pattern

t(c) =

{

m, if c is not in the first m − 1 characters
dist from rightmost c in first m − 1 characters, otherwise

Still Θ(n) in Avg case, Θ(nm) in worst case

But on average, must faster than brute force

ShiftTable(P [0 . . . m − 1])

for j ← 0 to m − 2 do T [P [j]]← m − 1− j

return T

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Horspool’s Algorithm

Idea: When we shift, make as large a shift as possible

Match pattern from right to left

Consider character c of the text that was aligned against the last
character of the pattern

t(c) =

{

m, if c is not in the first m − 1 characters
dist from rightmost c in first m − 1 characters, otherwise

Still Θ(n) in Avg case, Θ(nm) in worst case

But on average, must faster than brute force

ShiftTable(P [0 . . . m − 1])

for j ← 0 to m − 2 do T [P [j]]← m − 1− j

return T

May repeatedly over-
write shift value for a
given character

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Horspool’s Algorithm (2)

1.) No c in the pattern, shift entire
pattern length

· · · O R E A N · · ·
D I D

D I D

2.) c is in pattern but this is not
the last one, shift to align right-
most c in pattern

· · · A N D S E · · ·

E D I T

E D I T

3.) c is last character in pattern &
no others in remaining m−1, shift
entire pattern length

· · · S E V E N · · ·
G I V E

G I · · ·

4.) c is last character in pattern &
∃ others in remaining m − 1, shift
to align rightmost c in pattern

· · · Y E A R S · · ·

R E A R

R E A · · ·

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

The Basics of Hashing

Hashes are often useful for implementing dictionaries (basic
operations: Insert, Search, & Delete)

Construct a data type to store records by key value (Hash Table),
generally an array H [0 . . .m − 1]

Use the key to access the table by computing its address with a
predefined Hash Function, h(k)

If keys are nonnegative integers, a simple hash function is
h(k) = k mod m

For strings of a fixed length, we might use:

h(k) =
(

∑ℓ−1
i=0 ord(ci)

)

mod m

Or, where C is a larger constant than any ord(ci):
h← 0; for i ← 0 to ℓ− 1 do h← (h · C + ord(ci))

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Collisions

Hash functions should try to:

1 Distribute keys in the table as evenly as possible
2 Be easy to compute

When the hash functions computes the same value for different
keys, a collision occurs

When m < n (n is the number of keys inserted into the table),
this will occur
Even when m ≥ n it is still possible (depending on the data
and the hash function)
Hash implementations need to have a collision resolution
method, such as:

Open hashing (separate chaining)
Closed hashing (open addressing)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Open Hashing

Each cell in the hash table is a
linked list

Values are stored in list, collisions
are handled by chaining values

If n keys are distributed evenly,
each list is about the same size: n

m

load factor — α = n
m

Average number of nodes visited
during a successful search:
S ≈ 1 + α

2

Average number of nodes visited
during an unsuccessful search:
U ≈ α

Example:
m = 5
h(k) = (suitvalue + cardvalue) mod m

{♠,♦ ,♥ ,♣ } = {42, 28, 14, 0}
{K ,Q, J, A} = {13, 12, 11, 1}

Data A♦ 5♣ 9♠ 7♠ K♥

h(k) 4 0 1 4 2

0 1 2 3 4

5♣ 9♠ K♥ A♦

7♠

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Open Hashing

Each cell in the hash table is a
linked list

Values are stored in list, collisions
are handled by chaining values

If n keys are distributed evenly,
each list is about the same size: n

m

load factor — α = n
m

Average number of nodes visited
during a successful search:
S ≈ 1 + α

2

Average number of nodes visited
during an unsuccessful search:
U ≈ α

Example:
m = 5
h(k) = (suitvalue + cardvalue) mod m

{♠,♦ ,♥ ,♣ } = {42, 28, 14, 0}
{K ,Q, J, A} = {13, 12, 11, 1}

Data A♦ 5♣ 9♠ 7♠ K♥

h(k) 4 0 1 4 2

0 1 2 3 4

5♣ 9♠ K♥ A♦

7♠

When load factor is near 1
& keys are well distributed,
access is Θ(1) on average

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Closed Hashing with Linear Probing

All keys are stored in table

On collisions, we shift right until we
find an open position

At the end, we wrap back to the start

Delete is problematic (mark & skip)

Avg. # comparisons when successful:

S ≈ 1
2

(

1− 1
1−α

)

Avg. # comparisons when

unsuccessful: U ≈ 1
2

(

1− 1
(1−α)2

)

Example:
Data A♦ 5♣ 9♠ 7♠ K♥

h(k) 4 0 1 4 2

0 1 2 3 4

A♦

5♣ A♦

5♣ 9♠ A♦

5♣ 9♠ 7♠ A♦

5♣ 9♠ 7♠ K♥ A♦

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Clustering & Double Hashing

0.2 0.4 0.6 0.8

0
50

10
0

15
0

20
0

α

co

m
pa

ris
on

s

Unsuccessful
Successful

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Clustering & Double Hashing

0.2 0.4 0.6 0.8

0
50

10
0

15
0

20
0

α

co

m
pa

ris
on

s

Unsuccessful
Successful

The main problem is clustering

A cluster is a sequence of consecutive
filled positions in the table

One possible solution: double hash

Use a second hash function to
compute the probe interval
h2(k) = m− 2− k mod (m − 2)
We need h2(k) and m to be
“relatively prime” (only common
divisor is 1)
Choosing a prime m ensures this

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Clustering & Double Hashing

0.2 0.4 0.6 0.8

0
50

10
0

15
0

20
0

α

co

m
pa

ris
on

s

Unsuccessful
Successful

The main problem is clustering

A cluster is a sequence of consecutive
filled positions in the table

One possible solution: double hash

Use a second hash function to
compute the probe interval
h2(k) = m− 2− k mod (m − 2)
We need h2(k) and m to be
“relatively prime” (only common
divisor is 1)
Choosing a prime m ensures this

We can still have problems as α approaches 1
Only solution: rehash (scan table & relocate into a bigger table)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Storing Data on Disk

Often we need access to data stored on disk

There can be a large number of data records

And the records are typically indexed— indexes provide key values
and information about the record’s location

In such cases, we typically are less interested in counting key
comparisons and more interested in counting disk accesses

B-Trees extend the idea of 2-3 Trees to make such considerations
easier

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

B-Trees K 1 K j K m � 1. . .
T 0 T 1 T j � 1 T j

. . .
T m � 2 T m � 1

Data records stored in leaves in increasing order of the keys

Each parental node contains m− 1 (distinct) ordered keys

All keys in T0 are smaller than K1, all keys in T1 are in [K1, K2), etc.

Every B-Tree of order m > 2 must satisfy:

Root is leaf or has between 2 and m children
Internal nodes (∼ root ∨ leaf) have b/w ⌈m/2⌉ and m children
The tree is (perfectly) balanced; all leaves at same level

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Searching in a B-Tree 2 0 5 1 6 02 5 3 4 4 01 1 1 54 , 7 , 1 0 3 4 , 3 8 4 0 , 4 3 , 4 6 5 1 , 5 5 6 0 , 6 8 , 8 02 0 , 2 41 1 , 1 4 1 5 , 1 6 , 1 9 2 5 , 2 8
Keys are ordered in the node, so we can use binary search to find
the pointer to follow

But we don’t care about key comparisons, we care about disk access

We usually choose the order of a B-Tree s.t. the node size
corresponds with disk pages

How many nodes do we have to consider? Height plus 1 ...

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Analyzing Search

What is the height of a B-Tree?

Find: smallest # of keys a B-Tree of order m and height h can
have:

Root has at least one key
Level 1 has at least two nodes with at least ⌈m/2⌉ − 1 keys
Level 2 has at least 2 ⌈m/2⌉ nodes with at least ⌈m/2⌉−1 keys
For a B-Tree of order m with n nodes and height h:

n ≥ 1 +
Ph−1

i=1 2 ⌈m/2⌉i−1 (⌈m/2⌉ − 1) + 2 ⌈m/2⌉h−1

Which reduces to: n ≤ 4 ⌈m/2⌉h−1 − 1

So height is: h ≤
¨

log⌈m/2⌉
n+1
4

˝

+ 1

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Analyzing Search

What is the height of a B-Tree?

Find: smallest # of keys a B-Tree of order m and height h can
have:

Root has at least one key
Level 1 has at least two nodes with at least ⌈m/2⌉ − 1 keys
Level 2 has at least 2 ⌈m/2⌉ nodes with at least ⌈m/2⌉−1 keys
For a B-Tree of order m with n nodes and height h:

n ≥ 1 +
Ph−1

i=1 2 ⌈m/2⌉i−1 (⌈m/2⌉ − 1) + 2 ⌈m/2⌉h−1

Which reduces to: n ≤ 4 ⌈m/2⌉h−1 − 1

So height is: h ≤
¨

log⌈m/2⌉
n+1
4

˝

+ 1

Since m is a constant (even if very large), this is O(log n)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Inserting in a B-Tree 2 0 5 1 6 0 6 82 5 3 4 4 01 1 1 54 , 7 , 1 0 3 4 , 3 8 4 0 , 4 3 , 4 6 5 1 , 5 52 0 , 2 41 1 , 1 4 1 5 , 1 6 , 1 9 2 5 , 2 8 6 0 , 6 5 6 8 , 8 06 0 , 6 5 6 8 , 8 0
There are a variety of Insert functions for B-Trees

Here’s a simple one:

Find the appropriate leaf & insert key
If there are too many keys:

Split node in half
Promote smallest key of new node to parent
This may percolate up the tree

Analysis is difficult, but this is also O(log n)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Book Topics Skipped in Lecture

In section 7.2:

Boyer-Moore Algorithm (pp. 255–259)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

Outline Introduction Count Sorts String Matching Hashing B-Trees Homework

Assignments

This week’s assignments:

Section 7.1: Problems 3 & 7
Section 7.2: Problems 2, 5, & 7
Section 7.3: Problems 1, 2, & 8
Section 7.4: Problems 3 & 4

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II

	Outline
	Introduction: Space vs. Time Tradeoff
	Sorting by Counting
	String Matching
	Hashing
	B-Trees
	Homework

