| Outline | Introduction<br>000 | Solving<br>0000      | Induction<br>00 |
|---------|---------------------|----------------------|-----------------|
|         |                     |                      |                 |
|         |                     |                      |                 |
|         |                     |                      |                 |
|         |                     |                      |                 |
| C       | S 483 - Data Struct | ures and Algorithm A | Analysis        |

### A Short Word on Recurrences

### R. Paul Wiegand

### George Mason University, Department of Computer Science

February 22, 2006

A (10) F (10) F (10) George Mason University, Department of Computer Science

3

R. Paul Wiegand CS483 Lecture II

| Outline | Introduction<br>000 | Solving<br>0000 | Induction<br>00 |
|---------|---------------------|-----------------|-----------------|
|         |                     |                 |                 |
|         |                     |                 |                 |









George Mason University, Department of Computer Science

< 🗇 🕨

R. Paul Wiegand CS483 Lecture II

Solving

# What Is a Recurrence Relation?

### Definition (Coren et al. 2001)

A *recurrence [relation]* is an equation or inequality that describes a function in terms of its values on smaller inputs.

### **Examples:**

• 
$$x(n) = x\left(\frac{n}{2}\right) + 5$$
 for  $n > 0$ ,  $x(1) = 0$   
•  $T(n) = \begin{cases} 9 & \text{if } n = 1\\ 2T(n-2) + 2n & \text{if } n > 1 \end{cases}$   
• Etc.

R. Paul Wiegand CS483 Lecture II George Mason University, Department of Computer Science

**A** ►

# **Recurrences And Sequences**

It is also useful to think in terms of sequences:

- A sequence is an ordered list of numbers
- E.g., 2, 4, 6, 8, 10, 12, ... (positive even numbers)
- We often refer to a sequence using a variable, say x, and we often indicate an element of the sequence with an index,  $x_i$
- We might also use something called the generic term, x(n) where x(n) represents the  $n^{th}$  number in the x sequence
- We can then use the generic term as a *function* to help define the sequence: x(n) = 2n for  $n \ge 0$
- Alternatively, we could define the sequence by showing how to step from one element to another: x(n) = x(n-1) + n for n > 0, x(0) = 0
- It is clear now why an initial condition is needed ... there can be many sequences defined by a recurrence, the initial condition tells you which one by specifying the starting position of the sequence

| Outline   | Introduction<br>○○● | Solving<br>0000 | Induction<br>00 |
|-----------|---------------------|-----------------|-----------------|
|           |                     |                 |                 |
| Why and ' | What Now?           |                 |                 |

"This is complicated. Why would I express a sequence or a function in this way? What do I do with it now?"

- Sometimes it is the most natural way to so
- For example: When analyzing recursive functions, it is typically very natural to express the running time as a recurrence
- On the other hand, it is a lot easier to deal with the *closed form* (an algebraic form where the function appears only on the left-hand-side of the [in]equality, and where more complicated notational elements such as summations are resolved)
- Moreover, we need the closed form to express the order of growth of an algorithm's efficiency properly

| Introduction | Solving | Induction |
|--------------|---------|-----------|
| 000          | •000    | 00        |
|              |         |           |

# What Is *Solving* A Recurrence?

- Simply, solving a recurrence is to find the closed form of the relation
- An exact solution will be the fully specified algebraic closed form of the recurrence
  - For example: Find the exact solution of x(n) = x(n 1) + n for n > 0 subject to initial condition x(0) = 0
  - Answer:  $x(n) = \frac{n(n+1)}{2}$  for  $n \ge 0$
- But typically, we are interested in asymptotic bounds on the solution

| Outline | Introductio | on Solving<br>o•oo | Induction<br>00 |
|---------|-------------|--------------------|-----------------|
|         |             |                    |                 |
| _       |             |                    |                 |

# Forward Substitution

- We start with initial term(s) of a sequence given by initial conditions
- We use the recurrence equation itself to generate several terms
- We look for a pattern that can be expressed in closed form

**Example:** x(n) = 2x(n-1) + 1 for n > 1, x(1) = 1

$$\begin{array}{rcl} x(1) &=& 1 \\ x(2) &=& 2 \cdot x(1) + 1 = 2 \cdot 1 + 1 = 3 \\ x(3) &=& 2 \cdot x(2) + 1 = 2 \cdot 3 + 1 = 7 \\ x(4) &=& 2 \cdot x(3) + 1 = 2 \cdot 7 + 1 = 15 \end{array}$$

Each number is one less than consecutive powers of two (2, 4, 8, 16, ...), so the solution is probably something like  $x(n) = 2^n - 1$ .

| Outline | Introduction<br>000 | Solving<br>○○●○ | Induction<br>00 |
|---------|---------------------|-----------------|-----------------|
|         |                     |                 |                 |
|         |                     |                 |                 |

## Backward Substitition

- We start at the penultimate step of the sequence (e.g., x(n-1))
- We express the final step in terms of the recurrence relation
- We repeat this process for the ante-penultimate step, etc.

**Example:** x(n) = x(n-1) + n for n > 1, x(1) = 1

$$\begin{array}{lll} x(n) &=& x(n-1)+n \\ &=& [x(n-2)+n-1]+n = x(n-2)+(n-1)+n \\ &=& [x(n-3)+n-2]+(n-1)+n = x(n-3)+(n-2)+(n-1)+n \\ &\quad \text{after } i \text{ substitutions } \dots \\ &\rightsquigarrow & x(n-i)+(n-i+1)+(n-i+2)+\dots+n \\ &\quad \dots \text{ to the initial condition} \\ &\rightsquigarrow & x(0)+1+2+\dots+n = n(n+1)/2 \end{array}$$

< 回 ト < 三 ト < 三 ト

| Outline | Introduction | Solving | Induction |
|---------|--------------|---------|-----------|
|         | 000          | ○○○●    | 00        |
|         |              |         |           |

# Solving versus Proving

- Technically, to "solve" a recurrence is just to elicit its closed form solution
- When someone else looks at your solution (or you 15 minutes later), you'd like to have a way to convince him or her that it is correct
- To do that, you must *prove* it is true
- Substitution and recurrence trees are *not* proofs, they merely help with intuition ... they help you *guess* the solution
- Typically, we prove that a closed form solution is (asymptotically) correct by *induction*...

| $\cap$ |    |      |  |
|--------|----|------|--|
| U      | uτ | line |  |
|        |    |      |  |

| Outline | Introduction | Solving | Induction |
|---------|--------------|---------|-----------|
|         | 000          | 0000    | ●0        |
|         |              |         |           |

# Some Preliminaries

To obtain closed form asymptotic bounds on a recurrence, we use induction and the definitions for Big-O and Big- $\Omega$ .

## Definition (MathWorld)

The truth of an infinite sequence of propositions  $P_i$  for  $i = \{1, ..., \infty\}$ is established if (1)  $P_1$  is true, and (2)  $P_k \Rightarrow P_{(k+1)}$  for all k. This principle is sometimes also known as the method of induction.

### Definition

$$O\left(g(n)\right) = \{t(n) : \exists c, n_0 > 0 \text{ such that } 0 \leq t(n) \leq c \cdot g(n) \forall n \geq n_0\}.$$

### Definition

 $\Omega(g(n)) = \{t(n) : \exists c, n_0 > 0 \text{ such that } 0 < c \cdot g(n) < t(n) \ \forall n > n_0\}.$ 

- 4 回 ト 4 回 ト 4 回 ト

| Outline | Introduction | Solving | Induction |
|---------|--------------|---------|-----------|
|         |              |         | 00        |
|         |              |         |           |
|         |              |         |           |
|         |              |         |           |
|         |              |         |           |

# Proof By Induction

- Consider the recurrence relation
- Posit a guess for the asymptotic closed form solution
- Write down the inequality from the Big-O/ $\Omega$  definition(s)
- Use the definition and substitution to show that the definition holds after a step of the recurrence
- Indicate the constant values for which the definition holds

| Outline | Solving | Induction |
|---------|---------|-----------|
|         |         | 00        |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |

# Proof By Induction

- Consider the recurrence relation
- Posit a guess for the asymptotic closed form solution
- Write down the inequality from the Big-O/ $\Omega$  definition(s)
- Use the definition and substitution to show that the definition holds after a step of the recurrence
- Indicate the constant values for which the definition holds

#### Example:

- Recurrence:  $T(n) = 2T(\lfloor n/2 \rfloor) + n$
- Asymptotic solution:  $T(n) \in O(n \lg n)$
- Big-O Definition:  $T(n) \leq cn \lg n$
- Given it holds for *n*, assume it holds for  $\lfloor n/2 \rfloor$ :  $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)$

・ 同 ト ・ ヨ ト ・ ヨ ト

| Outline | Introduction<br>000 | Solving<br>0000 | Induction<br>○● |
|---------|---------------------|-----------------|-----------------|
|         |                     |                 |                 |
|         |                     |                 |                 |

# **Proof By Induction**

- Consider the recurrence relation
- Posit a guess for the asymptotic closed form solution
- Write down the inequality from the Big-O/ $\Omega$  definition(s)
- Use the definition and substitution to show that the definition holds after a step of the recurrence
- Indicate the constant values for which the definition holds

#### Example:

- Recurrence:  $T(n) = 2T(\lfloor n/2 \rfloor) + n$
- Asymptotic solution:  $T(n) \in O(n \lg n)$
- Big-O Definition:  $T(n) \leq cn \lg n$
- Given it holds for *n*, assume it holds for  $\lfloor n/2 \rfloor$ :  $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)$

- Substituting into the recurrence:
  - $T(n) \leq 2(c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)) + n$  $\leq cn \lg(n/2) + n$ 
    - =  $cn \lg n cn \lg 2 + n$
    - =  $cn \lg n cn + n$
  - <u>≤ cn lg n</u> ∢□▶ ∢ ₫▶ ∢ ≣▶ ∢ ≣▶ ≣ ∽) ९ ()