CS 483 - Data Structures and Algorithm Analysis

 A Short Word on RecurrencesR. Paul Wiegand

George Mason University, Department of Computer Science
February 22, 2006

Outline

1 Introduction to Recurrences

2 Solving Recurrences

3 Induction

What Is a Recurrence Relation?

Definition (Coren et al. 2001)

A recurrence [relation] is an equation or inequality that describes a function in terms of its values on smaller inputs.

Examples:

- $x(n)=x\left(\frac{n}{2}\right)+5$ for $n>0, x(1)=0$
- $T(n)= \begin{cases}9 & \text { if } n=1 \\ 2 T(n-2)+2 n & \text { if } n>1\end{cases}$
- Etc.

Recurrences And Sequences

It is also useful to think in terms of sequences：
－A sequence is an ordered list of numbers
－E．g．，2，4，6，8，10，12，．．．（positive even numbers）
－We often refer to a sequence using a variable，say x ，and we often indicate an element of the sequence with an index，x_{i}
－We might also use something called the generic term，$x(n)$－where $x(n)$ represents the $n^{t h}$ number in the x sequence
－We can then use the generic term as a function to help define the sequence：$x(n)=2 n$ for $n \geq 0$
■ Alternatively，we could define the sequence by showing how to step from one element to another：$x(n)=x(n-1)+n$ for

$$
n>0, \quad x(0)=0
$$

－It is clear now why an initial condition is needed ．．．there can be many sequences defined by a recurrence，the initial condition tells you which one by specifying the starting position of the sequence

Why and What Now?

"This is complicated. Why would I express a sequence or a function in this way? What do I do with it now?"

- Sometimes it is the most natural way to so
- For example: When analyzing recursive functions, it is typically very natural to express the running time as a recurrence
- On the other hand, it is a lot easier to deal with the closed form (an algebraic form where the function appears only on the left-hand-side of the [in]equality, and where more complicated notational elements such as summations are resolved)
- Moreover, we need the closed form to express the order of growth of an algorithm's efficiency properly

What Is Solving A Recurrence?

■ Simply, solving a recurrence is to find the closed form of the relation

- An exact solution will be the fully specified algebraic closed form of the recurrence
\square For example: Find the exact solution of $x(n)=x(n-1)+n$ for $n>0$ subject to initial condition $x(0)=0$
- Answer: $x(n)=\frac{n(n+1)}{2}$ for $n \geq 0$

■ But typically, we are interested in asymptotic bounds on the solution

■ For example: Find the asymptotic solution of

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 T(n / 2)+\Theta(n) & \text { if } n>1\end{cases}
$$

- Answer: $\Theta(n \lg n)$

Forward Substitution

- We start with initial term(s) of a sequence given by initial conditions
- We use the recurrence equation itself to generate several terms
- We look for a pattern that can be expressed in closed form

Example: $\times(n)=2 x(n-1)+1$ for $n>1, \times(1)=1$

$$
\begin{aligned}
x(1) & =1 \\
x(2) & =2 \cdot x(1)+1=2 \cdot 1+1=3 \\
x(3) & =2 \cdot x(2)+1=2 \cdot 3+1=7 \\
x(4) & =2 \cdot x(3)+1=2 \cdot 7+1=15
\end{aligned}
$$

Each number is one less than consecutive powers of two $(2,4,8,16, \ldots)$, so the solution is probably something like $x(n)=2^{n}-1$.

Backward Substitition

\square We start at the penultimate step of the sequence (e.g., $x(n-1)$)
■ We express the final step in terms of the recurrence relation
■ We repeat this process for the ante-penultimate step, etc.
Example: $x(n)=x(n-1)+n$ for $n>1, x(1)=1$

$$
\begin{aligned}
x(n)= & x(n-1)+n \\
= & {[x(n-2)+n-1]+n=x(n-2)+(n-1)+n } \\
= & {[x(n-3)+n-2]+(n-1)+n=x(n-3)+(n-2)+(n-1)+n } \\
& \text { after } i \text { substitutions } \cdots \\
\rightsquigarrow & x(n-i)+(n-i+1)+(n-i+2)+\cdots+n \\
& \cdots \text { to the initial condition } \\
\rightsquigarrow & x(0)+1+2+\cdots+n=n(n+1) / 2
\end{aligned}
$$

Solving versus Proving

- Technically, to "solve" a recurrence is just to elicit its closed form solution
- When someone else looks at your solution (or you 15 minutes later), you'd like to have a way to convince him or her that it is correct
- To do that, you must prove it is true
- Substitution and recurrence trees are not proofs, they merely help with intuition ... they help you guess the solution
- Typically, we prove that a closed form solution is (asymptotically) correct by induction...

Some Preliminaries

To obtain closed form asymptotic bounds on a recurrence, we use induction and the definitions for Big-O and Big- Ω.

Definition (MathWorld)

The truth of an infinite sequence of propositions P_{i} for $i=\{1, \ldots, \infty\}$ is established if (1) P_{1} is true, and (2) $P_{k} \Rightarrow P_{(k+1)}$ for all k. This principle is sometimes also known as the method of induction.

Definition

$O(g(n))=\left\{t(n): \exists c, n_{0}>0\right.$ such that $\left.0 \leq t(n) \leq c \cdot g(n) \forall n \geq n_{0}\right\}$.

Definition

$\Omega(g(n))=\left\{t(n): \exists c, n_{0}>0\right.$ such that $\left.0 \leq c \cdot g(n) \leq t(n) \forall n \geq n_{0}\right\}$.

Proof By Induction

- Consider the recurrence relation

■ Posit a guess for the asymptotic closed form solution

- Write down the inequality from the $\operatorname{Big}-\mathrm{O} / \Omega$ definition(s)

■ Use the definition and substitution to show that the definition holds after a step of the recurrence
■ Indicate the constant values for which the definition holds

Proof By Induction

- Consider the recurrence relation

■ Posit a guess for the asymptotic closed form solution

- Write down the inequality from the $\operatorname{Big}-\mathrm{O} / \Omega$ definition(s)

■ Use the definition and substitution to show that the definition holds after a step of the recurrence
■ Indicate the constant values for which the definition holds
Example:

- Recurrence: $T(n)=2 T(\lfloor n / 2\rfloor)+n$
- Asymptotic solution: $T(n) \in O(n \lg n)$
- Big-O Definition: $T(n) \leq c n \lg n$
- Given it holds for n, assume it holds for
$\lfloor n / 2\rfloor: T(\lfloor n / 2\rfloor) \leq c\lfloor n / 2\rfloor \lg (\lfloor n / 2\rfloor)$

Proof By Induction

- Consider the recurrence relation

■ Posit a guess for the asymptotic closed form solution

- Write down the inequality from the $\operatorname{Big}-\mathrm{O} / \Omega$ definition(s)

■ Use the definition and substitution to show that the definition holds after a step of the recurrence
■ Indicate the constant values for which the definition holds

Example:

- Recurrence: $T(n)=2 T(\lfloor n / 2\rfloor)+n$
- Asymptotic solution: $T(n) \in O(n \lg n)$
- Big-O Definition: $T(n) \leq c n \lg n$
- Given it holds for n, assume it holds for $\lfloor n / 2\rfloor: T(\lfloor n / 2\rfloor) \leq c\lfloor n / 2\rfloor \lg (\lfloor n / 2\rfloor)$
- Substituting into the recurrence:

$$
\begin{aligned}
T(n) & \leq 2(c\lfloor n / 2\rfloor \lg (\lfloor n / 2\rfloor))+n \\
& \leq c n \lg (n / 2)+n \\
& =c n \lg n-c n \lg 2+n \\
& =c n \lg n-c n+n \\
& \leq c n \lg n
\end{aligned}
$$

