
Outline Introduction Solving Induction

CS 483 - Data Structures and Algorithm Analysis

A Short Word on Recurrences

R. Paul Wiegand

George Mason University, Department of Computer Science

February 22, 2006

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Introduction Solving Induction

Outline

1 Introduction to Recurrences

2 Solving Recurrences

3 Induction

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Introduction Solving Induction

What Is a Recurrence Relation?

Definition (Coren et al. 2001)

A recurrence [relation] is an equation or
inequality that describes a function in
terms of its values on smaller inputs.

Examples:

x(n) = x
(

n

2

)

+ 5 for n > 0, x(1) = 0

T (n) =

{

9 if n = 1
2T (n − 2) + 2n if n > 1

Etc.

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Introduction Solving Induction

Recurrences And Sequences

It is also useful to think in terms of sequences:

A sequence is an ordered list of numbers

E.g., 2, 4, 6, 8, 10, 12, . . . (positive even numbers)

We often refer to a sequence using a variable, say x , and we often
indicate an element of the sequence with an index, xi

We might also use something called the generic term, x(n) —where
x(n) represents the nth number in the x sequence

We can then use the generic term as a function to help define the
sequence: x(n) = 2n for n ≥ 0

Alternatively, we could define the sequence by showing how to step
from one element to another: x(n) = x(n − 1) + n for
n > 0, x(0) = 0

It is clear now why an initial condition is needed ... there can be
many sequences defined by a recurrence, the initial condition tells
you which one by specifying the starting position of the sequence

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Introduction Solving Induction

Why and What Now?

“This is complicated. Why would I express a sequence or a function in
this way? What do I do with it now?”

Sometimes it is the most natural way to so

For example: When analyzing recursive functions, it is typically very
natural to express the running time as a recurrence

On the other hand, it is a lot easier to deal with the closed form (an
algebraic form where the function appears only on the left-hand-side
of the [in]equality, and where more complicated notational elements
such as summations are resolved)

Moreover, we need the closed form to express the order of growth of
an algorithm’s efficiency properly

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Introduction Solving Induction

What Is Solving A Recurrence?

Simply, solving a recurrence is to find the closed form of the relation

An exact solution will be the fully specified algebraic closed form of
the recurrence

For example: Find the exact solution of x(n) = x(n − 1) + n for n > 0
subject to initial condition x(0) = 0

Answer: x(n) =
n(n+1)

2
for n ≥ 0

But typically, we are interested in asymptotic bounds on the
solution

For example: Find the asymptotic solution of

T (n) =



Θ(1) if n = 1
2T (n/2) + Θ(n) if n > 1

Answer: Θ(n lg n)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Introduction Solving Induction

Forward Substitution

We start with initial term(s) of a sequence given by initial conditions

We use the recurrence equation itself to generate several terms

We look for a pattern that can be expressed in closed form

Example: x(n) = 2x(n − 1) + 1 for n > 1, x(1) = 1

x(1) = 1

x(2) = 2 · x(1) + 1 = 2 · 1 + 1 = 3

x(3) = 2 · x(2) + 1 = 2 · 3 + 1 = 7

x(4) = 2 · x(3) + 1 = 2 · 7 + 1 = 15

Each number is one less than consecutive powers of two
(2, 4, 8, 16, ...), so the solution is probably something
like x(n) = 2n − 1.

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Introduction Solving Induction

Backward Substitition

We start at the penultimate step of the sequence (e.g., x(n − 1))

We express the final step in terms of the recurrence relation

We repeat this process for the ante-penultimate step, etc.

Example: x(n) = x(n − 1) + n for n > 1, x(1) = 1

x(n) = x(n − 1) + n

= [x(n − 2) + n − 1] + n = x(n − 2) + (n − 1) + n

= [x(n − 3) + n − 2] + (n − 1) + n = x(n − 3) + (n − 2) + (n − 1) + n

after i substitutions ...

 x(n − i) + (n − i + 1) + (n − i + 2) + · · · + n

...to the initial condition

 x(0) + 1 + 2 + · · · + n = n(n + 1)/2

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Introduction Solving Induction

Solving versus Proving

Technically, to “solve” a recurrence is just to elicit its closed form
solution

When someone else looks at your solution (or you 15 minutes later),
you’d like to have a way to convince him or her that it is correct

To do that, you must prove it is true

Substitution and recurrence trees are not proofs, they merely help
with intuition ... they help you guess the solution

Typically, we prove that a closed form solution is (asymptotically)
correct by induction...

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Introduction Solving Induction

Some Preliminaries

To obtain closed form asymptotic bounds on a recurrence, we use

induction and the definitions for Big-O and Big-Ω.

Definition (MathWorld)

The truth of an infinite sequence of propositions Pi for i = {1, . . . ,∞}
is established if (1) P1 is true, and (2) Pk ⇒ P(k+1) for all k . This
principle is sometimes also known as the method of induction.

Definition

O (g(n)) = {t(n) : ∃c , n0 > 0 such that 0 ≤ t(n) ≤ c · g(n) ∀n ≥ n0}.

Definition

Ω (g(n)) = {t(n) : ∃c , n0 > 0 such that 0 ≤ c · g(n) ≤ t(n) ∀n ≥ n0}.

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Introduction Solving Induction

Proof By Induction

Consider the recurrence relation

Posit a guess for the asymptotic closed form solution

Write down the inequality from the Big-O/Ω definition(s)

Use the definition and substitution to show that the definition
holds after a step of the recurrence

Indicate the constant values for which the definition holds

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Introduction Solving Induction

Proof By Induction

Consider the recurrence relation

Posit a guess for the asymptotic closed form solution

Write down the inequality from the Big-O/Ω definition(s)

Use the definition and substitution to show that the definition
holds after a step of the recurrence

Indicate the constant values for which the definition holds

Example:

Recurrence: T (n) = 2T (⌊n/2⌋) + n

Asymptotic solution: T (n) ∈ O(n lg n)

Big-O Definition: T (n) ≤ cn lg n

Given it holds for n, assume it holds for
⌊n/2⌋ : T (⌊n/2⌋) ≤ c ⌊n/2⌋ lg(⌊n/2⌋)

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II



Outline Introduction Solving Induction

Proof By Induction

Consider the recurrence relation

Posit a guess for the asymptotic closed form solution

Write down the inequality from the Big-O/Ω definition(s)

Use the definition and substitution to show that the definition
holds after a step of the recurrence

Indicate the constant values for which the definition holds

Example:

Recurrence: T (n) = 2T (⌊n/2⌋) + n

Asymptotic solution: T (n) ∈ O(n lg n)

Big-O Definition: T (n) ≤ cn lg n

Given it holds for n, assume it holds for
⌊n/2⌋ : T (⌊n/2⌋) ≤ c ⌊n/2⌋ lg(⌊n/2⌋)

Substituting into the recurrence:

T (n) ≤ 2 (c ⌊n/2⌋ lg(⌊n/2⌋)) + n

≤ cn lg(n/2) + n

= cn lg n − cn lg 2 + n

= cn lg n − cn + n

≤ cn lg n

R. Paul Wiegand George Mason University, Department of Computer Science

CS483 Lecture II


	Outline
	Introduction to Recurrences
	Solving Recurrences
	Induction

