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ABSTRACT

With the booming deployment of smart homes, concerns about user
privacy keep growing. Recent research has shown that encrypted
wireless traffic of IoT devices can be exploited by packet-sniffing
attacks to reveal users’ privacy-sensitive information (e.g., the time
when residents leave their home and go to work), which may be
used to launch further attacks (e.g., a break-in). To address the grow-
ing concerns, we propose SNIFFMISLEAD, a non-intrusive (i.e., with-
out modifying IoT devices, hubs, or platforms) privacy-protecting
approach, based on packet injection, against wireless packet sniffers.
Instead of randomly injecting packets, which is ineffective against
a smarter attacker, SNIFFMISLEAD proposes the notion of phantom
users, “people” who do not exist in the physical world. From an
attacker’s perspective, however, they are perceived as real users.
SNIFFMISLEAD places multiple phantom users in a smart home,
which can effectively prevent an attacker from inferring useful in-
formation. We design a top-down approach to synthesize phantom
users’ behaviors, construct the sequence of decoy device events
and commands, and then inject corresponding packets into the
home. We show how SNIFFMISLEAD ensures logical integrity and
contextual consistency of injected packets, as well as how it makes
a phantom user indistinguishable from a real user. Our evaluation
results from a smart home testbed demonstrate that SNIFFMISLEAD
significantly reduces an attacker’s privacy-inferring capabilities,
bringing the accuracy from 94.8% down to 3.5%.
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1 INTRODUCTION

The development of smart homes is flourishing, as inexpensive IoT
devices become prevalent and IoT integration platforms, such as
SmartThings, Google, and Amazon, emerge to enable interoper-
ability between devices. As IoT devices usually communicate with
hubs or clouds via wireless protocols such as ZigBee, BLE, Z-Wave,
and WiFi, they are prone to wireless packet sniffing attacks.

Although encryption is used to protect wireless communica-
tion, recent works [1, 8, 9, 19, 57, 64, 79] have shown that privacy-
sensitive information, such as device states and user behaviors,
can be inferred from wireless packets. Packets of different IoT
devices and their events and commands tend to show different
patterns, called packet-level signatures [64, 79], from which a wire-
less packet sniffer can infer device types, actions, and states (e.g.,
OPEN/CLOSED of a contact sensor on a door), without knowing the
encryption key. As IoT devices and users become increasingly cou-
pled, it is feasible to infer user behaviors (e.g., the time she leaves
home) [1, 18, 27, 41, 72, 73]. The privacy-sensitive information can
facilitate further attacks, such as breaks-in when no one is home,
crimes targeting users who live alone, selling personal information
to criminals for profits, and blackmail [21, 25]. Such side-channel
attacks are easy to launch, though difficult to detect.
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Many countermeasures against these side-channel attacks have
been proposed, which we group into two main categories. The first
includes traffic shaping and packet padding to reduce the traffic
variability among different devices [6, 9, 44, 64, 65, 71]. Counter-
measures in this category suffer from the following limitations:
1) They require modifications of IoT firmware; 2) Changes in pro-
tocols (e.g., number of padding packets) may cause compatibility
issues among IoT devices, hubs, and backend servers; 3) The redun-
dant packets and padding bytes impose significant communication
and energy overheads on resource-constrained IoT devices [9]. The
second category of countermeasures is event spoofing via packet
injection [1, 7, 64], which simulates decoy events of IoT devices to
confuse an attacker from being able to distinguish between real and
decoy events. However, a robust, efficient, and automated method
for event spoofing is still an open research problem [7], especially
since packet injection from IoT devices also requires modifications
to IoT firmware and/or an extension to the protocols by adding a
decoy-event flag [1].

Therefore, one may propose a non-intrusive solution, i.e., with-
out modifying IoT firmware or underlying communication pro-
tocols, by implementing one of the aforementioned countermea-
sure approaches using a stand-alone device. However, this intu-
itive method will not work for the following reasons. First, it is
unknown how a stand-alone device can predict upcoming traffic
and then proactively perform shaping, and it is unlikely to pad en-
crypted packets, using a stand-alone device, without knowing the
session keys. Second, the defense of injecting random packets from
a stand-alone device is weak, as existing traffic analysis is resilient
to noises [1, 39, 40]. Finally, the stand-alone device may purposely
inject traffic to simulate some IoT events in order to fool attackers.
However, for example, if a security defense injects traffic simulating
motion-active events even after users have left their homes, then
based on logical conflicts [7], an attacker can detect they are fake
events, by using either causal relationship analysis [2, 10, 69] or
context and integrity detection [26, 32, 37, 52]. As another exam-
ple, assume the motion sensor regularly triggers light-on events in
the presence of real users. Then based on missing light-on events,
an attacker can infer the motion-active events are fake. Similarly,
assuming a door is unlocked only when a presence sensor has been
reported on, a fake door-unlock event can be easily recognized by
attackers, presuming the presence-on state is false.

We propose a novel and effective defense, called SNIFFMISLEAD,
against wireless packet sniffers: a non-intrusive and resilient privacy-
protecting solution via packet injection using a stand-alone device,
without modifying IoT devices, hubs, platforms, or communication
protocols, based on the notion of phantom users. Phantom users
do not exist in the physical world but, from the perspective of an
attacker, “live” in a smart home and act as real users would. The
primary challenge is that, when analyzing real-time traffic, phan-
tom users should remain indistinguishable from real users. To that
end, we propose a top-down approach to simulate logically-sound
phantom users by first designing their behaviors. Next, for each
behavior, we construct a sequence of device events and commands
consistent with the home context (e.g., a phantom user should not
lock a door if it is already locked; the phantom user should not turn
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off the light if someone is still in the room). Finally, correspond-
ing to each event and command of an IoT device, we inject decoy
packets into the target smart home network.!

Behaviors of phantom users are designed to be as different from
each other (e.g., one phantom user is cooking, and another watching
TV) and involve as many diverse IoT devices as possible at any given
moment, such that attackers are not confident whether an inferred
device state is real or not. Behaviors of phantom users are also
designed to be different from those of real users, so attackers are not
sure whether an inferred user behavior or home state is real or due
to a phantom user. By simulating phantom users, SNIFFMISLEAD
ensures logical integrity (i.e., decoy device events can correctly
compose behaviors of a phantom user) and contextual consistency
(i-e., a phantom user inside the “multi-user” smart home do not
introduce conflicts) of injected packets and simulated decoy device
events, preventing attackers from making reliable inferences about
device states or behaviors of real users (e.g., the attacker observes
that a user is watching TV, when, in fact, no one is home).

Through this work, we make the following contributions:

o Unlike existing works, SNIFFMISLEAD is a stand-alone and
non-intrusive countermeasure against wireless packet snif-
fers. It works independently and causes no changes to IoT
devices or the underlying communication protocols. It is a
plug-and-play solution, i.e., requiring no additional configu-
ration efforts from users.

e We propose the notion of phantom users and use a top-down
approach to synthesize their behaviors and inject correspond-
ing packets into the target smart home, ensuring that phan-
tom users remain indistinguishable from real users.

e We build a prototype of SNIFFMISLEAD and evaluate it in a
real-world smart home. Our results show that SNIFFMISLEAD
significantly undermines a wireless sniffing attacker’s capa-
bility (from 94.8% to 3.5%) of inferring user behaviors, as he
is unsure whether his inference is coming from a phantom
or real user.

The remainder of this paper is structured as follows. Section 2
outlines related work. Section 3 discusses the threat model we
adopted, our goals, and anticipated design challenges. Section 4
presents the design and workflow of SNIFFMISLEAD. Section 5 dis-
cusses how to learn the needed information from a smart home.
Section 6 discusses how to inject decoy packets that simulate phan-
tom users. Section 7 presents our experimental setup. Section 8
summarizes our evaluation results. Section 9 addresses limitations
of SNIFFMISLEAD and discusses potential follow-up studies. The
paper is concluded in Section 10.

2 RELATED WORK

Side-Channel Analysis Based on Sniffed Packets. A growing
body of work uses network traffic side-channel analysis to infer
states of IoT devices. It relies on the limited-purpose nature of IoT
devices, and there is a one-to-one mapping between traffic pat-
terns and device events. A series of papers by Apthorpe et al. [6-9]
use traffic volume-based signatures to infer device events. Home-
Snitch [42] identifies IoT events based on an observation that the

!For the sake of brevity, both events and commands of IoT devices will be collectively
referred to as device events for the rest of this paper.
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client (i.e., the IoT device) and server take turns in a request-reply
communication style. HoMonit [79] uses side-channel information
on encrypted wireless packets to monitor the misbehavior of smart
apps. It was found that device events can be inferred using packet
size and direction, which agrees with the observation from Ping-
Pong [64]. To infer sensitive information based on side-channel
information, some methods rely on machine learning [1, 36, 54, 55],
while others use statistical analysis [1, 19, 42, 46].

Existing Defenses. Existing IoT privacy-protection work can be
divided into three main categories: privacy protection against 1)
IoT apps [11, 12, 25, 35, 61, 77], 2) IoT platforms [14, 15, 72], and 3)
traffic sniffers [1, 7, 9, 20]. For example, FlowFence [25] protects
sensitive data from being leaked via IoT apps by enforcing a data
flow control mechanism. PFirewall [15] is a semantics-aware cus-
tomizable data flow control system for smart homes to protect user
privacy from IoT platforms, by filtering and obfuscating data gen-
erated by IoT devices. SNIFFMISLEAD belongs to the third category.
Several approaches have been proposed to obfuscate network traf-
fic to defend against network traffic side-channel analysis. Packet
padding [23, 44, 71] adds dummy bytes to each packet. Packets can
be padded to a fixed length or with a random number of bytes to
confuse inference methods that rely on individual packet lengths.
Traffic shaping [6, 20, 65] purposely delays packets to a fixed rate.
It can confuse inference methods that rely on packet inter-arrival
times and volume over time. Packet padding and traffic shaping
require changes of IoT firmware/protocols, cause high overhead to
devices; e.g., traffic shaping may delay packets too much, harming
user experience. Traffic injection and event spoofing [1, 7, 64] add
dummy packets or decoy events to make it difficult for an attacker
to distinguish which ones are real. These countermeasures, with-
out a global view of events at the protected home, are ineffective
against advanced methods, such as traffic analysis [1, 39, 40], causal
relationship analysis [2, 10, 69], and context and integrity detec-
tion [26, 32, 37, 52]. Plus, they also require modifications to IoT
firmware and/or an extension to the protocols by adding a decoy-
event flag [1], because they use IoT devices to add dummy packets
or decoy events.

3 THREAT MODEL, GOALS, AND
CHALLENGES

In this section, we first present the threat model, which includes
the smart home environment and attackers that we consider. Next,
we describe the goals and design challenges of SNIFFMISLEAD.

3.1 Threat Model

As shown in Figure 1, an IoT device uses a wireless connection to
communicate with either a hub or router, both of which are prone
to packet sniffing. We consider a passive attacker similar to recent
works [1, 8, 9, 64], who can remotely control a wireless packet
sniffer (e.g., based on a compromised IoT device), located within
the wireless range of a target smart home, to eavesdrop on wireless
traffic inside the house. The attacker is not physically close to the
home and thus, for instance, cannot see who is entering or leaving
the home; none of existing countermeasures, such as traffic shaping
and packet padding, are able to fool such attackers. SNIFFMISLEAD
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Figure 1: Attackers versus SNIFFMISLEAD in a smart home
environment.

is deployed inside a smart home and injects decoy packets into the
wireless network of the home, to confuse and mislead the attacker.

Attackers’ Capabilities. Major IoT communication protocols, such
as ZigBee [24], Z-Wave [51], and BLE [49], require mandatory en-
cryption. Besides, most WiFi-based IoT devices use encryption. For
example, the survey [5] lists the devices that use encryption in
Table II; among 45 devices evaluated in the paper, only three use
unencrypted wireless communications. Although most wireless
packets of smart home devices are encrypted, traffic metadata (e.g.,
timestamps, lengths, and directions) is still available to attackers.
Attackers also have access to unencrypted packet headers, which
are used to extract valuable information such as Network and MAC
addresses. Via side-channel analysis, attackers can use these data
to infer privacy-sensitive information about the target home, such
as IoT device types, device states, and user behaviors. Attackers
can leverage various analysis techniques to identify packets in-
jected randomly [1, 39, 40] and spoofed events that violate causal
relationship [2, 7, 10, 69], context and integrity [26, 32, 37, 52].

For the small number of IoT devices that send unencrypted
packets, attackers can see the meaningful information about an
IoT device from the payload directly and thus need not use any
side-channel analysis method. SNIFFMISLEAD is designed to defend
against side-channel analysis on encrypted packets. Countermea-
sures against information leakage from unencrypted packets are
out of the scope of this work.

Attackers’ Limitations. 1) Attackers are passive; i.e., they sniff
quietly and do not proactively inject packets in the target smart
home. It is straightforward to extend SNIFFMISLEAD to fight active
attacks that inject IoT packets, e.g., by comparing the received
packets against the ground truth of IoT device states based on
log from IoT platforms [69]. Such an extension falls beyond the
contributions of this work. 2) We focus on side-channel attacks, so
attacks on encryption and communication protocols are out of scope
of this paper. Therefore, attackers cannot break the encryption and
claim access to the clear-text communication.

Attackers’ Goals. Attackers have three main goals: 1) They want
to infer states of IoT devices. For example, is the window open
during night? 2) They want to infer user behaviors and habits
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inside the target home. For instance, when does the user go to bed?
3) They want to infer privacy- and security-sensitive states of the
home overall. For example, has everyone left the house?

A cyber-attacker can steal the information from a large number
of homes at scale and sell it to criminals, who may leverage it for,
e.g., breaks-in, attacking users who live alone, or blackmailing.

3.2 Goals and Challenges

Our Goals. We propose SNIFFMISLEAD, an effective solution for
privacy protection, against wireless packet sniffers in smart homes
with the following goals in mind: 1) Being non-intrusive and easy
to deploy; 2) Bringing no side effects to the target home (e.g., does
not disrupt the normal operations of IoT devices); 3) Dramatically
impairing the capability of attackers in attaining their goals.

We clarify that SNIFFMISLEAD is not to prevent attackers from
inferring information, since real wireless traffic can still be sniffed
by attackers. Instead, due to the added phantom users, many result-
ing fake events are injected. As a result, given an inferred event, the
attacker has a very low confidence whether it is a real or injected
one. Similarly, given an inferred behavior of a user, the attacker
does not know whether the user is a real or phantom user.

Challenges. As discussed previously, it is challenging to perform
traffic shaping and packet padding using a stand-alone device.
Packet injection and event spoofing, injected randomly or intu-
itively, are also inefficient. Real device events, triggered by user
behaviors, are self-consistent with rich semantics and full context.
Decoy events, on the other hand, with a lack of logical integrity,
may suffer from being distinguished from logically-complete ones.
In addition, some decoy events are unable to “change” the semantics
of the user behaviors or context of the target smart home. Therefore,
they fail to prevent attackers from inferring correct user behaviors
(e.g., a decoy light-off event in the living room may not change the
inference result that a real user is watching TV). Thus, a comprehen-
sive approach is essential to make injected packets and simulated
events indistinguishable from real ones and retain enough logi-
cality and capacity to change the target smart home’s semantics
and context. Placing logically-sound phantom users, therefore, is a
feasible and much-needed choice, though it is not trivial to do so.
We need to understand what behaviors compose a phantom user in
the target home, what device events compose a behavior, and how
to inject packets to simulate device events.

In order for SNIFFMISLEAD to work independently without con-
figuration effort from the user, it has to generate a packet-injection
policy on its own. The device list, automation rules of device events,

2 are unknown to

and device-event-level features of user behaviors
SNIFFMISLEAD since they dynamically vary from home to home.
A fixed policy is therefore insufficient. The policy should be adap-
tive to ensure that phantom users can pass off as humans. There-
fore, in order to learn from the target smart home and use its
unique features to generate resilient policies for placing phantom
users, SNIFFMISLEAD would need to be implemented from scratch.
SNIFFMISLEAD also has been programmed to avoid logical conflicts
between phantom and real users (e.g., a phantom user wants to
turn off the light while a real user wishes to keep it on).

2We define the device-event-level feature of a user behavior as the pattern indicating
how device events can construct an ongoing activity.
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Causing no change to the target smart home means that real
wireless traffic from IoT devices cannot be blocked or modified.
Plus, IoT devices at a home are subject to changes, e.g., adding or
removing devices. SNIFFMISLEAD needs to respond to those changes
to preserve contextual consistency.

4 SYSTEM OVERVIEW

In this section, we discuss how we achieve the targeted goals and
overcome the proposed design challenges. We first present the
features of SNIFFMISLEAD and then describe its workflow in detail.

4.1 Features of SNIFFMISLEAD
SNIFFMISLEAD has the following features:

e Itis a non-intrusive solution that does not require any modi-
fications to IoT devices, hubs, platforms, or communication
protocols. It is a plug-and-play solution that uses a stand-
alone device. It works independently without needing any
configuration effort from users or prior knowledge of the
target home (e.g., attributes of smart devices).

It is an automatic wireless packet injection and event spoof-

ing tool. It uses a top-down approach (i.e., behaviors —

device events — wireless packets) to place phantom users in

a home, which, from an attacker’s perspective, would seem

as if there are “real” users in the home. By ensuring logical

integrity and contextual consistency of injected packets and
simulated decoy device events, it is difficult for attackers to
distinguish phantom users from real ones.

e To generate comprehensive, adaptive policies for placing
phantom users, SNIFFMISLEAD learns required information
(i.e., traffic patterns of smart devices, device-event-level fea-
tures of user behaviors, associations among behaviors, and
real users’ daily routines) on its own by analyzing encrypted
wireless traffic of the target smart home. The policies, along
with any changes in the target smart home, are continuously
and dynamically updated.

e SNIFFMISLEAD injects packets only based on the target home’s
traffic pattern, independent of underlying physical layers, de-
vice types, layout, or house structures. It can simultaneously
handle multiple network protocols by including different
packet sniffers and transmitters.

4.2 Workflow of SNIFFMISLEAD

SNIFFMISLEAD has two modules: 1) Smart Home Learning Module
(Section 5), and 2) User Privacy Protection Module (Section 6).

Smart Home Learning Module. This module learns required
information from the target smart home to prepare for policy gen-
eration. It consists of the following four steps, shown in Figure 2:
1) Collecting a training set that contains wireless network traffic
generated by IoT devices (Section 5.1); 2) Extracting packet-level
signatures of device events from the training set (Section 5.2); 3) Ex-
tracting device-event-level features of user behaviors (Section 5.3),
using the output from Step 2; and 4) Obtaining logical associa-
tions among behaviors and real users’ daily routines (Section 5.4).
Learned information will be stored in a database. SNIFFMISLEAD
continuously inspects changed traffic patterns caused by changes
in user behaviors and IoT devices, and updates its database.
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Figure 3: Workflow of SNIFFMISLEAD.

User Privacy Protection Module. This module generates poli-
cies based on information learned from the Smart Home Learning
Module above and decides on how to use a top-down approach
to simulate phantom users. Behaviors for phantom users are gen-
erated every day, based on logical associations among behaviors
and real users’ daily routines (Section 6.1). Then, for each behavior
of a phantom user, the corresponding device event sequence is
generated, based on the device-event-level features of this behavior
(Section 6.2). Finally, based on packet-level signatures of device
events, decoy packets (corresponding to the device event sequence)
are created (Section 6.3).

Figure 3 shows the building blocks of the two modules and the
workflow of SNIFFMISLEAD. We use an example to briefly discuss
how SNIFFMISLEAD protects user privacy. In a typical smart home
with common IoT devices (e.g., motion sensors, smart outlets, lights),
SNIFFMISLEAD would create phantom users and set their behaviors
(e.g., waking up at 6:50 a.m., having breakfast at 7 a.m., watching
TV at 8 a.m., and so on). When it is time for a phantom user’s
behavior to happen (i.e., it is 7 a.m. to have breakfast), this behavior
is converted to a sequence of device events (e.g., OPEN of a contact
sensor; ACTIVE of a motion sensor; ON of the kitchen lights; ON of an
outlet; ON of the oven). Finally, based on each device event’s unique

RAID °21, October 6-8, 2021, San Sebastian, Spain

packet-level signature, wireless packets are generated for each
device using a packet transmitter. When injected decoy packets
are captured by a wireless packet sniffer and mapped to device
events and user behaviors by the attacker, it will be difficult for the
attacker to reliably infer device states or behaviors of real users
(e.g., in fact, no one is having breakfast at 7 a.m.).

5 SMART HOME LEARNING

In this section, we discuss how SNIFFMISLEAD learns required in-
formation from the target smart home by sniffing its encrypted
wireless traffic, with no configuration effort from users or prior
knowledge of the smart home.

There may exist correlations [16, 17, 28, 52] between IoT devices
in the smart home, in the form of co-present or temporally-related
device events. These device events cause network communications
among IoT devices, hubs, and routers. These correlations can be
attributed to three correlation channels: 1) Automation rules (i.e.,
smart apps) [13, 15], which directly determine trigger-condition-
action relationships among IoT devices (e.g., a button is configured
to flip a light); 2) Physical interactions [22], i.e., changes in physical
properties (e.g., humidity, motion, and smoke) may cause actions
of nearby devices to respond to these changes (e.g., turning on a
smart light can affect an illuminance sensor nearby; the rise of
temperature could be captured by both an air conditioner and a
temperature sensor, resulting in two consecutive events); 3) User
behaviors [29], i.e., while user behaviors impose changes on devices,
device states also reflect user behaviors (e.g., when a user returns
home, there should be consecutive events, such as OPEN of a contact
sensor for door opening and ACTIVE of a motion sensor for the
user’s moving).

SNIFFMISLEAD learns these correlations from network messages
(i.e., wireless traffic) of the target smart home, and exact network-
level and device-level features, which are used for injecting packets
of decoy device events.

5.1 Step 1: Data Collection

The first step is to form a training set by collecting related wireless
packets from smart home network traffic. Multiple packet sniffers,
for different protocols, automate this procedure using shell scripts.
Since the network identifier is usually unique and unencrypted
and can be seen from the packet header, it can be used to identify
devices [38, 50, 64, 79]. For example, the Network Address in the
ZigBee packet header can be used to distinguish ZigBee devices,
as it is created and assigned when a device joins the smart home
network and remains unchanged until it leaves the current network
and joins another network.

Each found network identifier is treated as a separate device,
with a device identifier assigned to it, denoted as <Deviceldentifier,
NetworkIdentifier>. Collected packets are grouped by devices,
and SNIFFMISLEAD uses Deviceldentifier to distinguish IoT devices
in the target smart home. Whenever a smart home user adds or
deletes a device, the corresponding device list and existing network
identifier are updated. SNIFFMISLEAD continuously responds to
these changes and update its database.
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Since packets triggered by device events always have encrypted
payloads, those without payloads and/or unrelated to users’ op-
erations and behaviors (e.g., beacon packets that are mainly used
to acknowledge data transmission and maintain established con-
nections) are discarded. For re-transmitted packets, SNIFFMISLEAD
only uses the first one and discards the others.

5.2 Step 2: Extracting Network Patterns of
Device Events

IoT device events usually have unique network patterns, summa-
rized as packet-level signatures [64, 79]. Side-channel data, such as
lengths, rates, and directions of packets, can identify device events.
A packet is defined as a tuple of (timestamp, length, direction).
Each device event triggers a time-ordered sequence of wireless
packets. SNIFFMISLEAD will then establish a one-to-one mapping
between a device event e; and its network pattern Patterne;.

A burst, presented as b = {packety, packety, - - -, packety}, is
a sequence of network packets from one device, where the time
interval between any two consecutive packets is less than a pre-
determined threshold g [59, 79]. Grouped packets from Step 1 are
partitioned into a set of bursts. If the packet directions match, Lev-
enshtein Ratio [43, 74] between these bursts is calculated to indicate
the level of similarity. A high Levenshtein Ratio means a high simi-
larity. It is validated that the average Levenshtein Ratio is stable for
device events of the same type (i.e., 0.98 for ZigBee and 0.98 for Z-
Wave) and distinguishable for events of different types (i.e., 0.17 for
ZigBee and 0.25 for Z-Wave) [79]. Based on our empirical obser-
vations from our testbed, we select 0.8 as the Levenshtein Ratio
threshold: y. Bursts, whose Levenshtein Ratio is greater than y, are
grouped together: B = {b1, b2, -+ , by }. Then the network pattern
of a device event e is calculated as:

Pattern, = arg max Z R(bi,bj) ¢Y)
bi€B  vp B

where R is the Levenshtein Ratio of b; and b;.

A device usually has multiple states. Transitions among states,
caused by device events, usually correspond to some rules (e.g.,
ON — OFF — ON for a light). After extracting network patterns of
device events, the traffic stream in the training set is converted into
a device event stream. Based on that, SNIFFMISLEAD can then build
finite state machines for each device to indicate transition rules,
which are used later for simulating decoy device events. Each smart
device may have one or more finite state machines.

5.3 Step 3: Extracting Features of Behaviors

A behavior usually triggers specific device events following a fea-
ture (e.g., involved device events and their occurrence time), de-
noted as a device-event-level feature, which, in turn, can also be
used to predict an ongoing behavior [1, 9, 19]. To generate appro-
priate behaviors of phantom users, SNIFFMISLEAD needs to find
device-event-level features of behaviors in the target smart home.
However, it is challenging to extract the feature of each behavior.
Based on our observations, due to variability in the trigger of device
events between different instances of the same behavior, one or a
few devices cannot determine a specific behavior. Device events

Xuanyu Liu, Qiang Zeng and Xiaojiang Du, et al.

also often get multiplexed from two or more behaviors, due to one
or multiple users concurrently undertaking many behaviors.

To tackle the challenges mentioned above, SNIFFMISLEAD first
segments the device event stream from the training set, with the
notion that each segment represents a behavior accurately (Sec-
tion 5.3.1). Next, based on these segments, device-event-level fea-
tures of behaviors are extracted (Section 5.3.2). SNIFFMISLEAD does
not need to know the specific behavior. It simply assigns each
behavior a unique identifier and maps it to its feature, denoted
as <BehaviorIdentifier, Behavior Feature>. SNIFFMISLEAD utilizes
the features of behaviors to generate decoy device events and sim-
ulate a decoy behavior.

5.3.1 Segmentation of Device Event Streams. A device event stream
is partitioned into a set of segments S = {s1,s2,- - -, s;}, where s; is
a segment, and denoted as s; = {e1, ez, -, ej}, and e; is a device
event. The partition is performed based on three factors: 1) the
time interval among device events, 2) the proximity among device
events, and 3) the frequency of device events’ occurrence, all three
of which have proved to be effective for de-multiplexing device
events [33].

Time-Interval-Based Segmentation. The goal of this step is to
separate temporally-distinct behaviors. We introduce two types of
time intervals: inter-event time interval ¢, and inter-segment time
interval t;. We observe that for most behaviors, inter-segment time
intervals are significantly larger than inter-event time intervals.
When applying the segmentation criterion, a non-negative temporal
threshold 7 is required. If device events belong to a segment, any
inter-event time interval between them is less than 7, and any
inter-segment time interval is longer than z:

max(tl) < r < min(})

where t} is the inter-event time interval between event e;—; and e;;
t; is the inter-segment time interval between segment s;—; and s;.

Proximity-Based Segmentation. The probability of device events
from a neighboring behavior being wrongly assigned to a segment
is exponentially higher than the probability of events that come
from behaviors further apart in time [33]. If two device event sets
E; and E; in neighboring segments belong to the same behavior and
should be re-partitioned into one segment, the following conditions
must be met:
VE, € £, max(P/F) < PV,
k s n

where P}/ is the number of occurrences of E; and E j in neighboring

segments; P! ¥ is the number of occurrences of two device event set
E;j and Ej. in the same segment; £ is the set of all the device event
sets that are partitioned into the same segment with Ej.

Frequency-Based Segmentation. We observe that when behav-
iors get multiplexed together within the same segment, the fre-
quency of device triggering is different for different behaviors. Con-
sidering there are two device event sets E; and E; in one segment,
if Ej has a stronger association with E; and they are considered to
belong to the same behavior, the following conditions must be met:

VEk eM, max(ij) < Fij,

where F;; is the the number of occurrences of E; and E;j in the same
segment; F . is the number of occurrences of E; and Ey in the same
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segment; M is the set of all the device event sets that found in the
same segment with E;.

5.3.2 Extracting Deterministic and Non-Deterministic Attributes of
Behaviors. As mentioned previously, there are variations for dif-
ferent instances of the same behavior. Similar segments should be
separated from dissimilar ones. The behavior feature is denoted as a
tuple, Feature = (Event, Time), where Event indicates the involved
device events and Time is the events’ temporal information. Seg-
ments are converted into these tuples first. Since we do not know
the number of behaviors, we adopt the K-means algorithm with a
gap statistic [62]. Similar segments are clustered into a group. Then,
features of behaviors are extracted from each group.

Different instances of a particular behavior may have an inher-
ent pattern. The feature of a behavior consists of two parts: deter-
ministic attributes and non-deterministic attributes. For a behavior,
some attributes may remain unchanged. For example, for a cooking-
related behavior, the kitchen light is turned on after a motion sensor
detects the presence of a user nearby. This attribute is determinis-
tic, i.e., it can be found every time a cooking behavior takes place.
Besides deterministic attributes, there are also varying attributes.
For example, a microwave, refrigerator, or tea kettle is not always
used during cooking. These attributes are non-deterministic. They
represent changes and randomness while deterministic attributes
are a behavior’s inherent features. SNIFFMISLEAD extracts both at-
tributes from the group of segments. The feature of a behavior b
can be represented as:

Featurep, = F(b) = fy U fu, (2)

where f; and f;, are deterministic and non-deterministic attributes
respectively.

5.4 Step 4: Extracting Behavior Associations

After extracting features of behaviors, the device event stream in
the training set is converted into a behavior stream. The behaviors
of real smart home users typically follow some patterns, denoted
as daily routines. To create credible phantom users and make them
different from real users, we need to extract those patterns based on
the behavior stream. We consider three major associations among
behaviors in a target home:

Behavior-to-Time Associations. Behavior-to-time associations
represent relationships between behaviors and their occurrence
time, concerning the hour of the day, day, week, and month. Ac-
cording to [73], we select a one-hour time slice, which sufficiently
captures associations, minimizes the number of segments created,
and prevents over-fitting by ensuring a maximum of twenty-four
clusters for a day. The probability of a behavior b; happening at
time t; = {hj, dj, wi, m; }:

Pt (bi, i) = pp(bi, hi) - pa(bi, di) - pw(bi, wi) - pm(bismi)  (3)

where h; is hour, d; is day, w; is week, m; is month, whereas py,, pg,
pw, and py, denote the probability of the behavior happens during
the hour, day, week, and month, respectively.

Behavior-to-Behavior Association. When one behavior takes
place, others may follow, e.g., eating breakfast after waking up. We
use a directed acyclic graph (DAG) to represent this association,
where nodes represent behaviors and edges indicate probabilistic
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dependencies. The graph provides a compact representation of a
joint probability distribution, which describes that the probability
of one behavior, b;, is dependent on the probabilities of previous
behaviors - parents(b;):
i
Py(bi) = [ | p(bjlparents(b;)) @
j=1

Temporal Relationships among Behaviors. There exist tempo-
ral relationships among behaviors. Behaviors may occur one after
the other, concurrently or interleaved with each other, modeled as
sequential, concurrent, and interleaved behaviors [41], respectively.
Sequential behaviors are those that take place when one behavior
is performed before or after another. Concurrent behaviors share
the same time intervals, either fully or partially, and occur either
when one user performs two different behaviors simultaneously
or when multiple users perform behaviors simultaneously. Inter-
leaved behaviors indicate that a behavior may occur within another
behavior that is long and complicated. The temporal relationship
between two behaviors may not be unique. For two behaviors, b;
and b, their temporal relationships are represented as:

T (bibj) = T(tl, 1l e, t]), )

where ¢! and ¢} are the start and end time of behavior b;, and tg and
t] are the start and end time of behavior b 7. Temporal relationships

are, in fact, the results of comparison of té, té, tg ,and té .

6 USER PRIVACY PROTECTION

After obtaining the required information from the target smart
home, SNIFFMISLEAD starts to generate policies that decide how
to protect user privacy. In this section, we discuss how to use a
top-down approach to simulate phantom users. SNIFFMISLEAD first
generates behaviors of phantom users. Then, for each behavior, it
constructs the sequence of device events. Finally, corresponding to
each device event, decoy packets are injected into the target home.

6.1 Generating Behaviors for Phantom Users

We define a behavior pattern, BP, as a set of behaviors that describe
what a phantom user do in a day, denoted as: BP = {< by, 1y >
,< b1, t1 >, < by, ty >+, < by, by >}, where b; is a behavior and
t; =< otj,dt; > is its temporal information including occurrence
time ot; and duration time dt;. For example, behaviors such as
“7 am., 5 minutes for getting up; 11 a.m., 1 hour for cooking; 2 p.m.,
2 hours for working; 7 p.m., 3 hours for watching TV” are part of
one behavior pattern.

A phantom user that has fixed behavior patterns would cause
attackers suspicious. To overcome this, SNIFFMISLEAD generates
dynamic behaviors for phantom users every day. Based on the
learned three behavior associations (Section 5.4), a behavior b; of
a phantom user, along with its time t;, is determined using the
function A:

< bi, t; >= A(Pt, Py, T, pari, ei), (6)

where P; and P}, are probability functions of behavior occurrence
(Equations 3 and 4); 7 is temporal relationships among behaviors
(Equation 5); par; indicates behaviors of a phantom user that already
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happened before moment ot;; e; is a random noise, which brings
some randomness.

A concern of dynamic behavior generation is the possibility of
overfitting the model; if there is a high similarity between real and
phantom users, attackers may still be able to infer a real user’s
behaviors. Hence, phantom users’ behavior patterns should be dif-
ferent from those of real users. Since the behavior-to-time and
behavior-to-behavior associations of real users (i.e., P; and $},) can
be used to predict real users’ behaviors, SNIFFMISLEAD determines
the occurrence time of a phantom user’s behavior, to ensure that real
and phantom users are doing different things. Based on behavior-to-
behavior associations and temporal relationships among behaviors
(i.e., Pp and T), the next behavior of a phantom user is determined
according to previous behaviors and their duration. As a result,
assigned behaviors to a phantom user are logically-sound, prob-
abilistic, and unpredictable. Behavior patterns of phantom users
are designed to be as different from each other as possible, to in-
volve more smart devices at any given moment. The function of
generating a behavior pattern BP for a phantom user in a day is
summarized as:

BP = B(A, < by, ty >), 7)

where A is the function of generating a behavior b; along with its

time t; (Equation 6); by is the first behavior in a day, i.e., waking up,

with time ¢y being randomly determined from a time window.
The algorithm of B is shown in Algorithm 1.

Algorithm 1 Daily Behavior Generation for a Phantom User.

Input: Py, Py, T, < bo, to >;
Output: Daily behavior pattern BP = {< by, ty >,< b1,t; >

s <bptp >}
initial < by, ty >, add < by, ty > to BP;
repeat
pari =< bg,ty >, < by, t1 >, -+, < bj_1,ti—1 >;

< bi, tj >= AP, Py, T, pari, ei);
add < bj, t; > to BP;
until end of the day

SNIFFMISLEAD does not have a limit of the number of phantom
users to be simulated in a smart home. Intuitively, the accuracy
of attackers inferring user behaviors decreases if the number of
phantom users increases. Nevertheless, on the other hand, it be-
comes unreal to have too many phantom users because each home
realistically has a limited number of residents from the perspective
of a bystander. Therefore, it is better to strike a balance between
the two aspects. After SNIFFMISLEAD learns the attributes of the
target smart home, it can train a behavior inference model. After
deployment of SNIFFMISLEAD, it attempts to increase the number of
phantom users (i.e., adding one per every day, up to an upper limit)
and form a dataset (i.e., combining real and decoy events). Then,
SNIFFMISLEAD uses its inference model on the dataset to measure
the accuracy of inferring real behaviors. We define the accuracy
here as the ratio of correctly-inferred behaviors to all behaviors of
the same type. When the accuracy decreases to any extent less than
the low rate, A, the current number of phantom users is deemed
appropriate. The value A is configurable.
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6.2 Generating Device Event Sequence

After behavior patterns for phantom users are generated, SNIFFMis-
LEAD needs to set the sequence of each behavior’s device events.
As device-event-level features of behaviors have been learned (Sec-
tion 5.3.2), SNIFFMISLEAD generates device event sequences based
on deterministic attributes first and then non-deterministic ones.

However, behaviors are usually not independent. Previous be-
haviors may influence the latter ones (e.g., a phantom may need to
turn off the light when leaving home if the light has been turned on
in a previous behavior). Therefore, when generating device events
for current behavior, information about previous behaviors needs
consideration as well. This helps create reasonable device events
and enables a more natural transition between two neighboring
behaviors. Finite state machines of smart devices (Section 5.2) are
also used to ensure the correctness of state changes. The generated
behavior pattern of a phantom user is parsed first; for each pair,
ap =< by, ty >, the function of generating device event sequence
for the behavior b, and its time t,, is summarized below:

in,on = S(F (bn), tn, vn-1, €n), 8

where ¥ (by,) is the device-event-level feature of b, (Equation 2);
ty is the time information about b,; v,—1 includes information
about the previous behavior b,_1, and e, is a random noise. The
function S has two outputs: iy, an initial version of a sequence of
device events, and vy, information about current behavior that may
influence the next behavior.

The contextual information in a smart home should be consis-
tent with each other. Hence, simulated decoy events of a device
should not cause any conflict among the home users (both real and
phantom), in the same smart home setting. E.g., a phantom user
turns off the light while another phantom user is “in” the room.
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To this end, SNIFFMISLEAD needs to continuously maintain the
decoy context of the target smart home, which, from an attacker’s
perspective, includes both real and phantom users. SNIFFMISLEAD
keeps monitoring real home context (i.e., real states of smart devices
and real user behaviors) by monitoring real wireless traffic from
the target smart home. The decoy home context is generated by
combining the real home context with the influence of phantom
user behaviors. The function to ensure context consistency and
integrity of device event sequence is summarized below:

on, cn = C(in, cn-1), 9

where iy, is the output from function S (Equation 8); c¢,—1 is the
context information; o, is the output to help generate final version
of the device event sequence; ¢, is the updated context.

The function to generate the final device event sequence, dep,
for behavior-time pair a, =< by, t; > is summarized below:

den = g(on)s (10)

where oy, is the output from function C (Equation 9).

The overall workflow of generating device event sequence for
a phantom user’s behavior pattern is given in Figure 4, and the
algorithm is presented in Algorithm 2.

Algorithm 2 Device Event Generation for a Phantom User

Input: Behavior pattern BP for a phantom user;

Output: Device event sequence DE = {dey,dey, - - - ,dep};
parse BP to a list of behavior-time pairs: < b, ty >, < by,t1 >
sy < bmytm >3
initial vg, cg based on < by, ty >;n =1;
repeat

in,on = S(F (bn), tn, vn-1, €n);
On,Cn = C(ins Crz—l);
de, = g(on)Z
add de, to DE;
n=n+1;
untiln > m

6.3 Packet Injection

After the device event sequence is generated, SNIFFMISLEAD injects
decoy packets, corresponding to each device event. In order to
fool attackers, SNIFFMISLEAD needs to make sure that there is no
difference between injected packets and real ones. Given a device
event, SNIFFMISLEAD obtains the corresponding communication
protocol, network identifier, and traffic pattern from the network
pattern database (Sections 5.1 and 5.2). Fields in packet headers,
transmitted in clear-text, will be filled with meaningful data and
then padded with meaningless payloads to the appropriate lengths;
here, the payloads are considered to be encrypted by attackers.
Below we describe two details. 1) By default, the ZigBee pro-
tocol does not have ACK frames. However, 802.15.4 [4] supports
ACK frames as an option. If SNIFFMISLEAD notices that a device
indeed sends ACK frames, SNIFFMISLEAD also forge them for that
device. This is necessary because our fake ZigBee packets will be
discarded by the destination device (as SNIFFMISLEAD cannot gener-
ate valid message authentication code); thus, SNIFFMISLEAD needs
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to generate the corresponding ACK frames to fool the attacker. Our
evaluation does not find devices that send ACK frames, though.
2) If a device uses MAC randomization [67] (which is not seen in
our evaluation), SNIFFMISLEAD can observe this and uses the latest
MAC address for forging packets. Again, as SNIFFMISLEAD does
not have the session key, the forged packets will be discarded by
the destination device.

Finally, the created packets are injected via a packet transmitter.
SNIFFMISLEAD can be extended to simultaneously support multiple
wireless network protocols that contain packet-level signatures
(e.g., WiFi, ZigBee, and BLE). For example, to handle the ZigBee-
WiFi case (a ZigBee frame is sent to some bridge node that forwards
it to the cloud via WiFi), SNIFFMISLEAD can be extended to inject
both ZigBee and WiFi packets. That is, SNIFFMISLEAD uses a ZigBee
transmitter to inject a fake ZigBee packet and a WiFi transmitter
to inject a fake WiFi packet.

Injected Packets in Meshed Networks. Routing/relay nodes in
meshed networks only check layer 2 (e.g., MAC layer) and layer 3
(e.g., network layer) header, and they do not check the (encrypted)
payloads [4]. Only the final destination node authenticates the
payloads. According to the ZigBee routing mechanism, as long as
we can forge a ZigBee frame with the correct MAC-layer header
(including the next-hop MAC address) and network layer header
(including the final destination network address), the packet can be
correctly forwarded, and an attacker can not identify it.

7 EXPERIMENTAL SETUP

In this section, we present our experimental testbed (Section 7.1),
selected thresholds (Section 7.2), and the attackers’ methods used
to evaluate the effectiveness of SNIFFMISLEAD (Section 7.3).

7.1 Testbed

We configure a smart home in an apartment, using commercial IoT
devices. The testbed setup is shown in Figure 5. Samsung Smart-
Things platform [56] is selected because it is one of the most popular
and representative smart home platforms [34]. We use several Zig-
Bee devices because many smart home IoT devices use ZigBee [31].
We employ a commercial, off-the-shelf sniffer, TelosB Dongle [60],
and an open-source software tool, killerbee [48], to collect Zig-
Bee traffic and inject decoy packets. There is one real user, with
part-time roommates and irregular visitors, in our experimental en-
vironment, who is told to behave as he normally would in his home.
Several common smart apps and automation rules are installed
and configured. Compared to a multi-user scenario, a single-user
smart home environment is more vulnerable to the proposed threat
as it is easier to infer a single ongoing user behavior in a smart
home [1]. Meanwhile, since both SNIFFMISLEAD and existing meth-
ods [3, 33] can de-multiplex concurrent activities from multiple
users, the number of real users should not affect the experimental
results much.

After deployment, SNIFFMISLEAD immediately starts to obtain
the required information from the target smart home. Consequen-
tial wireless packets are dumped and grouped according to source
and destination addresses. The dump files are then used to extract
network patterns of device events, device-event-level features of
behaviors, behavior associations, and the real user’s daily routines.



RAID °21, October 6-8, 2021, San Sebastian, Spain

Xuanyu Liu, Qiang Zeng and Xiaojiang Du, et al.

@Table Lamp
Closet Light

@ Hallway
Motion

Kitchen Motion

@ Livingroom
Motion

Closet Motion

Kettle Plug

Rice Cooker Plug
Computer Plug
Phone Plug

Fan Plug

Front Door

Closet Contact

@ 6-in-1 Sensor

<8 AQI Station

@ Sound Sensor

Bathroom
Light

@ Bed Button

@2 Desk Button
Contact

@ Kitchen Button

Floor Plan

Presence Sensor

ﬁ Alarm Siren

Device List

Figure 5: The experimental setup: a smart home with multiple IoT devices.

Temporal Threshold (s)
1 2 3 4 5 6 7 8

100 100
90 ST o8
80 g S
70 / '\\ 96 g
o 60 /2 e 94 =
550 N S
) \. 92 g
© 30 90 &£
20
10 88
0 86
05 075 1 125 15 175 2 225
Burst Threshold (s)
-@- Burst Threshold Temporal Threshold

Figure 6: Evaluation results of the two thresholds. The
lower x-axis shows different burst thresholds. The left y-
axis shows the average F1 score of inferring device events
with different burst thresholds. The upper x-axis shows dif-
ferent temporal thresholds. The right y-axis shows the aver-
age precision of correctly segmented event set within a be-
havior with different temporal thresholds.

After the first day of learning, SNIFFMISLEAD is able to generate
policies for placing phantom users. It continuously learns the smart
home, updates its database, and improves its policies. In our testbed,
the default value of A (Section 6.1) is set to 5%, and it takes eight
days to finalize the number of phantom users as eight. On average,
the real user in our experimental environment generates 30 behav-
iors each day. To protect the user privacy, each phantom user is
assigned a behavior pattern daily, with an average of 30 behaviors,
1500 simulated device events, and more than 11000 injected packets.

7.2 Threshold Selection

We need to find an appropriate burst threshold § (Section 5.2) and
temporal threshold 7 (Section 5.3.1), both of which may directly
impact the effectiveness of SNIFFMISLEAD.

Captured wireless packets, belonging to the same device, are
clustered by the burst threshold . Based on our observations, pack-
ets triggered by a device event are usually transmitted one-by-one
in a very short time interval, less than one second in most cases.
HoMonit [79] measures its burst threshold with integer values,
ranging from 0 to 10 seconds, and finds that the best threshold is
1 second. We perform experiments on our dataset, and the burst
threshold f used is from 0.5 to 2, with an interval of 0.25. We use
the F1 score to indicate the accuracy of whether a device event
is inferred. For each value of f, the average F1 score of all device
events is calculated to denote its efficiency. As shown in Figure 6,
the F1 score achieves the maximum when the threshold is 1 second.
Hence, the burst threshold f is set to 1 second.

Device events belonging to temporally-distinct behaviors are
clustered by the temporal threshold 7. Below are the observations
from an existing work [33]: For one of their datasets, Cairo [70],
only 1% of events have an inter-event time interval of 60 seconds
and higher, and 93% of behaviors have inter-behavior time intervals
of more than 60 seconds. For another dataset, KasterenA [66], 88%
of events have an inter-event time interval less than 120 seconds,
while only 22% of the behaviors have an inter-behavior time interval
less than 120 seconds. Hence, we measure the temporal threshold ¢
from 60 to 600 seconds with an interval of 60, based on our dataset.
The precision is defined as the fraction of the correctly segmented
event sets within a behavior. As shown in Figure 6, the precision
achieves the maximum when the threshold is 120 seconds. Hence,
the temporal threshold 7 is set to 120 seconds.

7.3 Playing the Role of an Attacker

To evaluate the effectiveness of SNIFFMISLEAD, we play the role of
an attacker and make use of possible methods to verify whether user
behaviors can still be correctly inferred in the presence of phantom
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users and whether SNIFFMISLEAD can be defeated. To infer a user
behavior, attackers usually perform a two-stage attack [1], including
device event inference and user behavior inference. First, based
on individual packet-level signatures, attackers infer device events
from encrypted wireless traffic. Next, according to the inferred
device events, attackers predict user behaviors. The probability of
correctly inferring behaviors relies on the effectiveness of both
stages. To defeat SNIFFMISLEAD, we consider a strong assumption
of the attacker: he has prior knowledge of the target home, i.e., he
knows the device list, the traffic pattern of each device, the home
and device layout, and the configured automation rules. Based on
existing works (e.g., causal relationship analysis [2, 10, 69] and
context and integrity detection [26, 32, 37, 52]), we design rules to
represent the prior knowledge and build a model to maintain the
home context, both denoted as filters, and aimed to discard decoy
packets or events that do not satisfy these rules or conform to the
home context.

Device Event Inference. The attacker needs to train a detector
to infer device events, hence network patterns of device events
should be exacted first. Unlike the unsupervised method used by
SNIFFMISLEAD (Section 5.2), supervised methods are used to train
a detector for device event inference, since attackers may have a
supervised learning dataset in advance. Each device event is manu-
ally triggered 100 times. To extract their feature vectors, generated
packets are dumped, marked, and then clustered. After obtaining
feature vectors with labels from the packet sequence, a supervised
learning algorithm is then applied to the dataset. One supervised
learning algorithm is trained, namely Random Forest (RF) classifier,
as it yields good results of device event inference [1]. The algorithm
is used to detect whether injected packets by SNIFFMISLEAD can be
recognized as expected device events by an attacker and whether
decoy packets are distinguishable from real ones.

User Behavior Inference. After device events are inferred, an-
other detector is needed for attackers to infer user behaviors. Re-
cent works show good performance of using Hidden Markov Model
(HMM) to infer user behaviors in a smart home environment [1, 33,
45, 52]. We choose to use HMM for behavior inference. The charac-
teristics of smart homes make HMM quite suitable to be applied in
a smart home environment [1, 53]. User behaviors are considered
as hidden states. User behaviors cause changes to the state of IoT
devices, defined as visible states. Each hidden state generates one of
the defined visible states. Any user behavior in a smart home can be
predicted by observing the states of the IoT devices. An attacker’s
goal would be to infer the hidden state (i.e., user behaviors) from
the visible state (i.e., states of IoT devices) using HMM. States of
IoT devices can be illustrated with binary output, “1” for the active
status and “0” for inactive status. For a specific time, the smart home
state can be represented as an n-bit binary number with m = 2"
possible states, where n is the total number of device states in the
smart home. The most likely sequence of hidden states can be found
by observing smart devices, using the Viterbi algorithm [68]. The
proposed HMM detector for user behavior inference is trained us-
ing real smart home traffic, without SNIFFMISLEAD. This detector is
then used to test the effectiveness of inferring user behaviors, after
SNIFFMISLEAD is used.
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Table 1: Results of device event inference

‘ Real events ‘ Decoy events

Device Event ‘ Recall(%) ‘ Precision(%) ‘ F1(%) ‘ Recall(%) ‘ Precision(%) ‘ F1(%)
Contact Sensor open 97 98 97.5 97 98 97.5
Motion Sensor active 98 98 98 98 98 98

Plug turn on 100 99 99.5 100 100 100

Button click 100 100 100 100 100 100

Presence Sensor | present 94 93 93.5 92 94 93
Alarm Siren alarm 93 91 92 93 91 92
Water Leak Sensor wet 95 98 96.5 96 97 96.5

Table 2: Results of user behavior inference

Precision (%) \ Num
0 1 2 3 4 5 6 |78
Behavior
Leave home 99 |54 |31 26|23 |17 |10| 8|6
Return home 98 |54 |34 | 28 | 26|18 |11 |7 |5
Fall asleep 95 51|32 |25|24[20|11|6 |4
Wake up 96 [ 53 130 |25|22|18| 11|63
Cooking 91 | 45| 27 | 16 | 12 | 11 8 |42
Toilet use 92 |43 | 29 | 28 | 15 9 9 |42
Bathing 94148 |30 |20 |17 |10 | 8 | 6| 4
Getting dressed 95139(30 (22|14 8|7 |5]|3
Working 94 | 46 |29 | 20|16 | 10| 8 | 5|3
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Figure 7: Evaluation results of SNIFFMisLEAD with differ-
ent number of phantom users. The x-axis shows number of
phantom users. The left y-axis shows the average accuracy
of correctly inferring real user behaviors. The right y-axis
shows the increase of CPU and RAM usage, compared with
the case when there is no phantom user.

8 EVALUATION RESULTS

We present the evaluation results in this section, including the
effectiveness of privacy protection (Section 8.1) and the overhead
and influence to smart home (Section 8.2).

8.1 Efficiency of Privacy Protection

In our experiment, SNIFFMISLEAD is used to simulate phantom
users, starting from one user incrementally. We play the role of an
attacker, using the two detectors to infer device events and user
behaviors, and the filters to discard injected decoy packets and
events (both discussed in Section 7.3).
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Table 1 shows the evaluation results of inferring some device
events. The recall of the device event inference is the ratio of suc-
cessful inferred events to all triggered events. The precision of
device event inference is the ratio of correctly-inferred events to all
inferred events. The F1 score is simply the harmonic mean of pre-
cision and recall. There are no noticeable differences in the recall,
precision, or F1 score, between real and decoy packets, meaning
that an attacker would recognize the injected packets as expected
device events of real users. These decoy events would “change”
device states, from the attacker’s perspective, causing the attacker
to infer wrong device states. However, it needs to be emphasized
that SNIFFMISLEAD can not always prevent attackers from inferring
correct device states as a decoy event sometimes lets the device
be “in” its real state (e.g., three successive events: (real) ON — (de-
coy) OFF — (decoy) ON). We measure the percentage of cases when
the attacker knows a device’s state correctly with the existence of
SNIFFMISLEAD. The percentage tends to be % and k is the number
of mutually-exclusive states of a smart device, during the long-run
period. For instance, a light has two mutually-exclusive states (i.e.,
ON and OFF), and the attacker can only infer its state for 50% of the
time, which is not better than a blind guess.

Table 2 shows the evaluation results of inferring nine typical user
behaviors, with different numbers of phantom users. The precision
of behavior inference is the ratio of correctly-inferred real user
behaviors to all behaviors of the same type caused by real users.
The average precision is calculated to indicate the effectiveness
of SNIFFMISLEAD simulating different number of phantom users.
As shown in Figure 7, the average precision of the behavior in-
ference decreases as the number of phantom users increases. We
find that using eight phantom users is very effective in our testbed,
undermining a wireless sniffing attacker’s capability of behavior
inferences from 94.8% to 3.5%, also less than A. When attackers
have lots of behavior inferring errors, user privacy is protected.
In our experimental environment, on average, each day, the real
user generates about 30 behaviors while our system approximately
injects 240 fake behaviors (in the case of 8 phantom users), and
only one real-user behavior is correctly inferred.

We design SNIFFMISLEAD as a much more advanced solution
than random event injection, which is an intuitive solution that uses
random noise to hide real events. We perform micro-benchmark
experiments to evaluate random event injection against an attacker.
We modify killerbee [48] to randomly generate device events for the
target smart home and use TelosB Dongle [60] to inject correspond-
ing packets. Without the filters, random event injection seemed
to have some effect. The average accuracy of inferring real user
behaviors decreases by 52% because methods like HMM detectors
only care about the current states of devices, and randomly injected
events can change device states to some extent. However, they are
still less efficient than SNIFFMIsLEAD. With the existence of the
filters, the efficiency of random event injection becomes even worse.
Results show that around 76% of random events are discarded. After
that, we use the HMM detector and obtain an average accuracy
of 93%, implying that random event injection could hardly protect
user privacy. This is because many randomly injected decoy events
could not change the home context (i.e., they cannot “change” what
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a real user is doing) or they suffer from logical errors. On the con-
trary, only less than 0.05% decoy events injected by SNIFFMISLEAD
are discarded, i.e., SNIFFMISLEAD still works well facing such filters.

To sum up, SNIFFMISLEAD is a much more robust solution than
straightforward and intuitive methods (e.g., random event injection).
In our experiment, SNIFFMISLEAD can defend against attackers who
use sniffers to analyze packet-level signatures of wireless pack-
ets and infer device states and user behaviors. SNIFFMISLEAD can
protect user privacy at both device-state and user-behavior levels.

8.2 Overhead and Influence to Smart Home

Injected packets may cause network latency or performance over-
head to the smart home infrastructure, because those packets may
need to be filtered out by smart devices. Since the SmartThings Hub
is close-sourced, we can not measure the overhead directly. Instead,
we use a Raspberry Pi 3B and deploy it with OpenHub [58], to sim-
ulate the network functions of SmartThings Hub, as injected decoy
packets are filtered at the network level. The CPU and RAM usage
of the Raspberry Pi 3B are recorded every second, with and with-
out SNIFFMISLEAD, with different numbers of phantom users. The
average usage of CPU and RAM is calculated to show the overhead.
Figure 7 gives the evaluation results. The CPU overhead ranges
from 0.1% to 0.4%, and the RAM overhead ranges from 0.3% to 0.45%.
Both overheads are small and acceptable. With more phantom users
simulated, the overhead increases, which is reasonable.

SNIFFMISLEAD has a very small impact on the power consump-
tion of battery-operated devices. First, ZigBee end devices that are
powered by batteries are not designed to be awakened by RF sig-
nals. Instead, they use periodic polling and stay in the sleep mode
otherwise [47]. It means that our injected packets do not wake up
the device and hence do not increase the RF power consumption.
Second, we have a detailed experiment on a Raspberry Pi 3B as
for the computing power consumption. The injected packets only
increase the CPU usage by 0.4%. Lastly, SNIFFMISLEAD only injects
packets when needed. Compared with other defenses, such as con-
tinuously injecting a lot of packets randomly, SNIFFMISLEAD has
its strength.

SNIFFMISLEAD achieves its goals by injecting decoy packets.
People may worry if those injected packets could have side ef-
fects, such as accidental device state changes or network latency
to their smart home. Actually, SNIFFMISLEAD causes no security
violation. IoT protocols are usually designed to drop invalid pack-
ets [24, 30, 63] (e.g., to prevent a replay attack or message spoofing).
Using SNIFFMISLEAD, payloads of injected packets are meaningless.
Also, SNIFFMISLEAD only injects packets when needed, avoiding
unnecessary packet injections. To detect if there are possible device
state errors caused by SNIFFMISLEAD, we develop a smart app and
install it in the SmartThings platform in our testbed, which is used
to monitor smart devices’ state changes. Each time packets of a
decoy event are injected, the current states of devices are checked
to detect any unexpected state change. Our experimental results
show that the injected packets cause no device state errors. The
timestamps of device events available in the SmartThings console
are used to calculate the latency of events. In two settings: whether
SNIFFMISLEAD is deployed or not, the average latency of each event
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shows no significant difference. Moreover, according to the feed-
back from the user involved in our experiment, no noticeable delay
was experienced. All the above shows that SNIFFMISLEAD runs in a
secure and non-intrusive manner, and causes no side effects to the
target smart home and the users.

9 DISCUSSION
9.1 Generality and Applicability

In our current work, we evaluate SNIFFMISLEAD in the SmartThings
platform with ZigBee devices. All the functions of SNIFFMISLEAD
are only based on the network traffic patterns of the target smart
home, having nothing to do with specific platforms or protocols.
With some modifications, SNIFFMISLEAD can be applied to other
smart home platforms and devices using other network proto-
cols. Most IoT devices in a smart home environment are power-
constrained, and the employed wireless protocols are lightweight
(e.g., Z-Wave, ZigBee, BLE, and WiFi). These lightweight proto-
cols, which are typically designed for low transmission rate and
reduced data redundancy for low power consumption, containing
packet-level signatures.

In this work, we mainly consider wireless packet sniffers. We do
not consider other types of attackers, such as Wide Area Network
(WAN) sniffers [64], which target outbound traffic between a home
router and an Internet Service Provider (ISP) network. However,
SNIFFMISLEAD can be modified to defend against WAN sniffers. The
idea of injecting packets into a wired network to simulate phantom
users would still work, e.g., the home router can be modified to run
the function of SNIFFMISLEAD.

Side-channel information leakage of encrypted wireless network
traffic has its beneficial use; for example, it enables detection of
misbehaving smart apps [79]. A concern is that SNIFFMISLEAD’s
injected packets may decrease this kind of security tool’s detection
accuracy. One solution is that SNIFFMISLEAD gets integrated with
these security tools, which thus knows which packets are injected
by SNIFFMISLEAD.

9.2 Limitations

Real users may cause conflicts in device statuses, which cannot
be avoided by SNIFFMISLEAD as SNIFFMISLEAD cannot predict the
behaviors of real users. For example, SNIFFMISLEAD creates a fake
"Window-Opened" event at 10:00, and then a real user opens the
window, creating a "Window-Opened" event at 10:15 again. An
attacker who observes the two events may know that the event at
10:00 is fake and that the one at 10:15 is real because SNIFFMISLEAD
does not create a "Window-Opened" event for a window that is
already open. To deal with this, our future work plans to extend
SNIFFMISLEAD as follows. First, it could inject packets after the
conflicts arise to mislead the attacker’s inference about the cur-
rent statuses of IoT devices. For example, if a phantom user closes
the window soon (with a random duration) after 10:15, then the
attacker is not sure about the current status of the window. Second,
SNIFFMISLEAD could occasionally create a small number of conflicts,
so the attacker is not sure whether a conflict has been caused by the
real user or SNIFFMISLEAD. For example, it can sometimes inject a
fake "Window-Opened" event after a real "Window-Opened" event.
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SNIFFMISLEAD cannot inject decoy packets for IoT devices that
use cellular networks (e.g., 4G/5G) over a licensed spectrum, be-
cause SNIFFMISLEAD cannot use a licensed spectrum. Note that
most existing IoT devices do not use cellular networks, which incur
monthly fees.

Another potential limitation of SNIFFMISLEAD is that an attacker
may try to identify packets injected by SNIFFMISLEAD using wire-
less channel characteristics, e.g., received signal strength indicator
(RSSI) and channel-state information (CSI).

The literature (e.g., [78]) shows localization based on RSSI does
not perform well when the receiver is placed in a room different
from that contains IoT devices and SNIFFMISLEAD. Moreover, RSSI-
based localization is considered inaccurate, particularly in indoor
environments [76]. We can defeat RSSI-based localization by placing
a SNIFFMISLEAD instance in each room. An instance only injects
packets for devices in the same room (i.e., presumably devices with
strong RSSI), so the attacker cannot distinguish a SNIFFMISLEAD
instance from other IoT devices. A detailed study of this aspect will
be our future work.

An attacker who has control of a device for collecting CSI is able
to perform more precise localization and thus can distinguish be-
tween packets from SNIFFMISLEAD and those from real IoT devices.
The threat model of this work (Section 3.1) is mainly concerned
with a remote attacker who sniffs packets based on a compromised
IoT device at the target home. Note that collecting CSI requires a
special network interface card (NIC) [75], and most IoT devices do
not have this kind of NIC.

A local attacker who can physically place a device with a spe-
cial NIC very close the target home can collect CSI, and in this
case SNIFFMISLEAD will fail, which we admit as a limitation. To
successfully launch this attack, the attacker needs to be physically
very close to the target home and place a device near the home.
The attacker takes risks because he may be captured by the home’s
security camera or doorbell camera.

On the other hand, SNIFFMISLEAD still has its values, as it can
defeat most remote attackers, who can harvest privacy-sensitive
information of a large number of smart homes at scale.

10 CONCLUSION

We proposed SNIFFMISLEAD, which can effectively defend against
passive attackers who sniff encrypted wireless traffic to infer user
privacy-sensitive information. SNIFFMISLEAD is a non-intrusive
wireless packet injection tool, developed using a stand-alone de-
vice, without modifying IoT devices, hubs, platforms, or communi-
cation protocols. It works without requiring manual configurations.
SNIFFMISLEAD uses a top-down approach to place indistinguish-
able phantom users, who “live” in a home like real users would,
preventing attackers from making reliable inferences about device
states and user behaviors. The real smart home testbed evaluation
showed that SNIFFMISLEAD significantly reduced a wireless sniffing
attacker’s capability of behavior inference; as a result, the attackers
could not be able to tell whether an inferred event was real or not
and could not distinguish between real and phantom users. There-
fore, SNIFFMISLEAD can provide effective, resilient and self-adaptive
privacy protection for smart homes.
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