

4. Monitors

Problems with semaphores:

- shared variables and the semaphores that protect them are global variables

- Operations on shared variables and semaphores distributed throughout program

- difficult to determine how a semaphore is being used (mutual exclusion or condition

synchronization) without examining all of the code.

The monitor concept was developed by Tony Hoare and Per Brinch Hansen in the early

‘70’s to overcome these problems. (Same time period in which the concept of

information hiding [Parnas 1972] and the class construct [Dahl et al. 1970] originated.)

Monitors support data encapsulation and information hiding and are easily adapted to an

object-oriented environment.

4.1 Definition of Monitors

A monitor encapsulates shared data, all the operations on the data, and any

synchronization required for accessing the data.

Object-oriented definition: a monitor is a synchronization object that is an instance of a

special monitor class.

- A monitor class defines private variables and public and private access methods.

- The variables of a monitor represent shared data.

- Threads communicate by calling monitor methods that access shared variables.

4.1.1 Mutual Exclusion

At most one thread is allowed to execute inside a monitor at any time.

- Mutual exclusion is automatically provided by the monitor’s implementation.

- If a thread calls a monitor method, but another thread is already executing inside the

monitor, the calling thread must wait outside the monitor.

- A monitor has an entry queue to hold the calling threads that are waiting to enter the

monitor.

4.1.2 Condition Variables and SC Signaling

Condition synchronization is achieved using condition variables and operations wait()

and signal().

A condition variable cv is declared as

 conditionVariable cv;

- Operation cv.wait() is used to block a thread (analogous to a P operation).

- Operation cv.signal() unblocks a thread (analogous to a V operation).

A monitor has one entry queue plus one queue associated with each condition variable.

For example, Listing 4.1 shows the structure of monitor class boundedBuffer. Class

boundedBuffer inherits from class monitor. It has five data members, condition variables

named notFull and notEmpty, and monitor methods deposit() and withdraw().

Fig. 4.2 is a graphical view of class boundedBuffer, which shows its entry queue and the

queues associated with condition variables notFull and notEmpty.

class boundedBuffer extends monitor {
 public void deposit(…) { … }
 public int withdraw (…) { … }
 public boundedBuffer() { … }

 private int fullSlots = 0; // # of full slots in the buffer
 private int capacity = 0; // capacity of the buffer
 private int [] buffer = null; // circular buffer of ints
 // in is index for next deposit, out is index for next withdrawal
 private int in = 0, out = 0;
 // producer waits on notFull when the buffer is full
 private conditionVariable notFull;
 // consumer waits on notEmpty when the buffer is empty
 private conditionVariable notEmpty;
}
 Listing 4.1 Monitor class boundedBuffer.

deposit() {..}

withdraw() {..}
entry queue

notFull

notEmpty
Figure 4.2 Graphical view of monitor class boundedBuffer.

A thread that is executing inside a monitor method blocks itself on condition variable cv

by executing cv.wait():

� releases mutual exclusion (to allow another thread to enter the monitor)

� blocks the thread on the rear of the queue for cv.

A thread blocked on condition variable cv is awakened by cv.signal();

- If there are no threads blocked on cv, signal() has no effect; otherwise, signal()

awakens the thread at the front of the queue for cv.

- For now, we will assume that the “signal-and-continue” (SC) discipline is used. After

a thread executes an SC signal to awaken a waiting thread, the signaling thread

continues executing in the monitor and the awakened thread is moved to the entry

queue; the awakened thread does not reenter the monitor immediately.

A: denotes the set of threads that have been awakened by signal() operations and are

waiting to reenter the monitor,

S: denotes the set of signaling threads,

C: denotes the set of threads that have called a monitor method but have not yet entered

the monitor. (The threads in sets A and C wait in the entry queue.)

=> The relative priority associated with these three sets of threads is S > C = A.

cv.signalAll() wakes up all the threads that are blocked on condition variable cv.

cv.empty() returns true if the queue for cv is empty, and false otherwise.

cv.length() returns the current length of the queue for cv.

Listing 4.3 shows a complete boundedBuffer monitor.

class boundedBuffer extends monitor {
 private int fullSlots = 0; // number of full slots in the buffer
 private int capacity = 0; // capacity of the buffer
 private int[] buffer = null; // circular buffer of ints
 private int in = 0, out = 0;
 private conditionVariable notFull = new conditionVariable();
 private conditionVariable notEmpty = new conditionVariable();
 public boundedBuffer(int bufferCapacity) {
 capacity = bufferCapacity;buffer = new int[bufferCapacity];}
 public void deposit(int value) {
 while (fullSlots == capacity)
 notFull.wait();
 buffer[in] = value; in = (in + 1) % capacity; ++fullSlots;
 notEmpty.signal(); //alternatively:if (fullSlots == 1) notEmpty.signal();
 }
 public int withdraw() {
 int value;
 while (fullSlots == 0)
 notEmpty.wait();
 value = buffer[out]; out = (out + 1) % capacity; --fullSlots;
 notFull.signal(); //alternatively:if (fullSlots == capacity–1) notFull.signal();
 return value;
 }
}

Listing 4.3 Monitor class boundedBuffer.

deposit() {..}

withdraw() {..}
C2 P1 C1

deposit() {..}

withdraw() {..}
C2 P1

C1

deposit() { }

withdraw() {..}
C2

P1
C1

deposit() {..}

withdraw() {..}
C1

(a) (b)

(c) (d)

entry queue

entry queue

entry queue

entry queue

wait

notFull

notFull

notFull

notEmpty

notEmpty

notEmpty

notEmpty

Assume that the buffer is empty and that the thread at the front of the entry queue is

Consumer1 (C1). The queues for condition variables notFull and notEmpty are also

assumed to be empty (Fig. 4.4a).

When Consumer1 enters method withdraw(), it executes the statement

 while (fullSlots == 0)

 notEmpty.wait();

Since the buffer is empty, Consumer1 blocks itself by executing a wait() operation on

condition variable notEmpty (Fig. 4.4b)

Producer1 (P1) then enters the monitor. Since the buffer is not full, Producer1 deposits an

item and executes notEmpty.signal().

This signal operation awakens Consumer1 and moves Consumer1 to the rear of the entry

queue behind Consumer2 (C2) (Fig. 4.4c).

After its signal() operation, Producer1 can continue executing in the monitor, but since

there are no more statements to execute, Producer1 exits the monitor.

Consumer2 now barges ahead of Consumer1 and consumes an item. Consumer2 executes

notFull.signal(), but there are no Producers waiting so the signal has no effect.

When Consumer2 exits the monitor, Consumer1 is allowed to reenter, but the loop

condition (fullSlots == 0) is true again:

 while (fullSlots == 0)

 notEmpty.wait();

Thus, Consumer1 is blocked once more on condition variable notEmpty (Fig4.4d). Even

though Consumer1 entered the monitor first, it is Consumer2 that consumes the first item.

This example illustrates why the wait() operations in an SC monitor are usually found

inside while-loops: A thread waiting on a condition variable cannot assume that the

condition it is waiting for will be true when it reenters the monitor.

4.2 Monitor-Based Solutions to Concurrent Programming Problems

These solutions assume that condition variable queues are First-Come-First-Serve.

4.2.1 Simulating Counting Semaphores

4.2.1.1 Solution 1. Listing 4.5 shows an SC monitor with methods P() and V() that

simulates a counting semaphore. In this implementation, a waiting thread may get stuck

forever in the while-loop in method P():

- assume that the value of permits is 0 when thread T1 calls P(). Since the loop

condition (permits == 0) is true, T1 will block itself by executing a wait operation.

- assume some other thread executes V() and signals T1. Thread T1 will join the entry

queue behind threads that have called P() and are waiting to enter for the first time.

- These other threads can enter the monitor and decrement permits before T1 has a

chance to reenter the monitor and examine its loop condition. If the value of permits is

0 when T1 eventually evaluates its loop condition, T1 will block itself again by

issuing another wait operation.

class countingSemaphore1 extends monitor {
 private int permits; // The value of permits is never negative.
 private conditionVariable permitAvailable = new conditionVariable();
 public countingSemaphore1(int initialPermits) { permits = initialPermits;}
 public void P() {
 while (permits == 0)
 permitAvailable.wait();
 --permits;
 }
 public void V() {
 ++permits;
 permitAvailable.signal();
 }
}
Listing 4.5 Class countingSemaphore1.

4.2.1.2 Solution 2. The SC monitor in Listing 4.6 does not suffer from a starvation

problem. Threads that call P() cannot barge ahead of signaled threads and “steal” their

permits.

Consider the scenario that we described in Solution 1:

- If thread T1 calls P() when the value of permits is 0, T1 will decrement permits to –1

and block itself by executing a wait operation.

- When some other thread executes V(), it will increment permits to 0 and signal T1.

Threads ahead of T1 in the entry queue can enter the monitor and decrement permits

before T1 is allowed to reenter the monitor.

- However, these threads will block themselves on the wait operation in P(), since

permits will have a negative value.

- Thread T1 will eventually be allowed to reenter the monitor. Since there are no

statements after the wait operation, T1 will complete its P() operation.

� In this solution, a waiting thread that is signaled is guaranteed to get a permit.

class countingSemaphore2 extends monitor {
 private int permits; // The value of permits may be negative.
 private conditionVariable permitAvailable = new conditionVariable();
 public countingSemaphore2(int initialPermits) { permits = initialPermits;}
 public void P() {
 --permits;
 if (permits < 0)
 permitAvailable.wait();
 }
 public void V() {
 ++permits;
 permitAvailable.signal();
 }
}

Listing 4.6 Class countingSemaphore2.

4.2.2 Simulating Binary Semaphores

In the SC monitor in Listing 4.7, Threads in P() wait on condition variable allowP while

threads in V() wait on condition variable allowV. Waiting threads may get stuck forever

in the while-loops in methods P() and V().

class binarySemaphore extends monitor {
 private int permits;
 private conditionVariable allowP = new conditionVariable();
 private conditionVariable allowV = new conditionVariable();
 public binarySemaphore(int initialPermits) { permits = initialPermits;}
 public void P() {
 while (permits == 0)
 allowP.wait();
 permits = 0;
 allowV.signal();
 }
 public void V() {
 while (permits == 1)
 allowV.wait();
 permits = 1;
 allowP.signal();
 }
}

Listing 4.7 Class binarySemaphore.

4.2.3 Dining Philosophers

4.2.3.1 Solution 1. In the SC monitor in Listing 4.8, a philosopher picks up two

chopsticks only if both of them are available. Each philosopher has three possible states:

thinking, hungry and eating:

- A hungry philosopher can eat if her two neighbors are not eating.

- A philosopher blocks herself on a condition variable if she is hungry but unable to eat.

- After eating, a philosopher will unblock a hungry neighbor who is able to eat.

This solution is deadlock-free, but not starvation-free, since a philosopher can starve if

one of its neighbors is always eating

However, the chance of a philosopher starving may be so highly unlikely that perhaps it

can be safely ignored?

4.2.3.2 Solution 2. In Listing 4.9, each philosopher has an additional state called

“starving”:

- A hungry philosopher is not allowed to eat if she has a starving neighbor, even if both

chopsticks are available.

- Two neighboring philosophers are not allowed to be starving at the same time.

� a hungry philosopher enters the “starving” state if she cannot eat and her two

neighbors are not starving.

This solution avoids starvation. If there are five philosophers, then no more than four

philosophers can eat before a given hungry philosopher is allowed to eat. However, some

philosophers may not be allowed to eat even when both chopsticks are available.

Compared to Solution 1, this solution limits the maximum time that a philosopher can be

hungry, but it can also increase the average time that philosophers are hungry.

class diningPhilosopher1 extends monitor {
 final int n = …; // number of philosophers
 final int thinking = 0; final int hungry = 1; final int eating = 2;
 int state[] = new int[n]; // state[i] indicates the state of philosopher i
 // philosopher i blocks herself on self[i] when she is hungry but unable to eat
 conditionVariable[] self = new conditionVariable[n];
 diningPhilosopher1() {
 for (int i = 0; i < n; i++) state[i] = thinking;
 for (int j = 0; j < n; j++) self[j] = new conditionVariable();
 }
 public void pickUp(int i) {
 state[i] = hungry;
 test(i); // change state to eating if philosopher i is able to eat
 if (state[i] != eating)
 self[i].wait();
 }
 public void putDown(int i) {
 state[i] = thinking;
 test((i-1) % n); // check the left neighbor
 test((i+1) % n); // check the right neighbor
 }
 private void test(int k) {
 // if philosopher k is hungry and can eat, change her state and signal her queue.
 if ((state[k] == hungry) && (state[(k+n-1) % n] != eating) &&
 (state[(k+1) % n] != eating)) {
 state[k] = eating;
 self[k].signal(); // no affect if philosopher k is not waiting on self[k]
 }
 }
}

Philosopher i executes:
while (true) {
 /* thinking */
 dp1.pickUp(i);
 /* eating */
 dp1.putDown(i)
}

Listing 4.8 Class diningPhilosopher1.

class diningPhilosopher2 extends monitor {
 final int n = …; // number of philosophers
 final int thinking = 0; final int hungry = 1;
 final int starving = 2; final int eating = 3;
 int state[] = new int[n]; // state[i] indicates the state of philosopher i
 // philosopher i blocks herself on self[i] when she is hungry, but unable to eat
 conditionVariable[] self = new conditionVariable[n];
 diningPhilosopher2() {
 for (int i = 0; i < n; i++) state[i] = thinking;
 for (int j = 0; j < n; j++) self[j] = new conditionVariable();
 }
 public void pickUp(int i) {
 state[i] = hungry;
 test(i);
 if (state[i] != eating)
 self[i].wait();
 }
 public void putDown(int i) {
 state[i] = thinking;
 test((i-1) % n);
 test((i+1) % n);
 }
 private void test(int k) {
 // Determine whether the state of philosopher k should be changed to
 // eating or starving. A hungry philosopher is not allowed to eat if she has a
 // neighbor that’s starving or eating.
 if ((state[k] == hungry || state[k] == starving) &&
 (state[(k+n-1) % n] != eating && state[(k+n-1) % n] != starving) &&
 (state[(k+1) % n] != eating && state[(k+1) % n] !=starving)) {
 state[k] = eating;
 self[k].signal(); // no effect if phil. k is not waiting on self[k],
 } // which is the case if test() was called from pickUp().
 // a hungry philosopher enters the “starving” state if she cannot eat and her
 // neighbors are not starving
 else if ((state[k] == hungry) && (state[(k+n-1) % n] != starving) &&
 (state[(k+1) % n] != starving)) {
 state[k] = starving;
 }
 }
}

Listing 4.9 Class diningPhilosopher2.

4.2.4 Readers and Writers

Listing 4.10 is an SC monitor implementation of strategy R>W.1, which allows

concurrent reading and gives readers a higher priority than writers (see Section 3.5.4.)

Reader and writer threads have the following form:

 r_gt_w.1 rw;

 Reader Threads: Writer Threads:
 rw.startRead(); rw.startWrite();
 /* read shared data */ /* write to shared data */
 rw.endRead(); rw.endWrite();

Writers are forced to wait in method startWrite() if any writers are writing or any readers

are reading or waiting.

In method endWrite(), all the waiting readers are signaled since readers have priority.

However, one or more writers may enter method startWrite() before the signaled readers

reenter the monitor. Variable signaledReaders is used to prevent these barging writers

from writing when the signaled readers are waiting in the entry queue and no more

readers are waiting in readerQ.

Notice above that the shared data is read outside the monitor. This is necessary in order to

allow concurrent reading.

class r_gt_w_1 extends monitor {
 int readerCount = 0; // number of active readers
 boolean writing = false; // true if a writer is writing
 conditionVariable readerQ = new conditionVariable();
 conditionVariable writerQ = new conditionVariable();
 int signaledReaders = 0; // number of readers signaled in endWrite
 public void startRead() {
 if (writing) { // readers must wait if a writer is writing
 readerQ.wait();
 --signaledReaders; // another signaled reader has started reading
 }
 ++readerCount;
 }
 public void endRead() {
 --readerCount;
 if (readerCount == 0 && signaledReaders==0)
 // signal writer if no more readers are reading and the signaledReaders
 // have read
 writerQ.signal();
 }
 public void startWrite() {
 // the writer waits if another writer is writing, or a reader is reading or waiting,
 // or the writer is barging
 while (readerCount > 0 || writing || !readerQ.empty() || signaledReaders>0)
 writerQ.wait();
 writing = true;
 }
 public void endWrite() {
 writing = false;
 if (!readerQ.empty()) { // priority is given to waiting readers
 signaledReaders = readerQ.length();
 readerQ.signalAll();
 }
 else writerQ.signal();
 }
}

Listing 4.10 Class r_gt_w_1 allows concurrent reading and gives readers a higher priority
than writers.

4.3 Monitors in Java

Java’s wait, notify, and notifyAll operations combined with synchronized methods and

user-defined classes enables the construction of objects that have some of the

characteristics of monitors.

Adding synchronized to the methods of a Java class automatically provides mutual

exclusion for threads accessing the data members of an instance of this class.

However, if some or all of the methods are inadvertently not synchronized, a data race

may result. This enables the very types of bugs that monitors were designed to eliminate!

There are no explicit condition variables in Java. When a thread executes a wait

operation, it can be viewed as waiting on a single, implicit condition variable associated

with the object.

Operations wait, notify, and notifyAll use SC signaling:

� A thread must hold an object’s lock before it can execute a wait, notify, or notifyAll

operation. Thus, these operations must appear in a synchronized method or

synchronized block (see below); otherwise, an IllegalMonitorStateException is thrown.

� Every Java object has a lock associated with it. Methods wait, notify, and notifyAll are

inherited from class Object, the base class for all Java objects.

� When a thread executes wait, it releases the object’s lock and waits in the “wait set”

that is associated with the object:

� A notify operation awakens a single waiting thread in the wait set.

� A notifyAll operation awakens all the waiting threads.

� Operations notify and notifyAll are not guaranteed to wake up the thread that has

been waiting the longest.

� A waiting thread T may be removed from the wait set due to any one of the following

actions: a notify or notifyAll operation; an interrupt action being performed on T; a

timeout for a timed wait (e.g., wait(1000) allows T to stop waiting after one second); or

a “spurious wakeup”, which removes T without any explicit Java instructions to do so

(Huh?!).

� A notified thread must reacquire the object’s lock before it can begin executing in the

method. Furthermore, notified threads that are trying to reacquire an object’s lock

compete with any threads that have called a method of the object and are trying to

acquire the lock for the first time. The order in which these notified and calling threads

obtain the lock is unpredictable.

� If a waiting thread T is interrupted at the same time that a notification occurs, then the

result depends on which version of Java is being used:

In versions before J2SE 5.0 [JSR-133 2004], the notification may be “lost”.

o Suppose that thread T and several other threads are in the wait set and thread T is

notified and then interrupted before it reacquires the monitor lock. Then the wait

operation that was executed by T throws InterruptedException and the notification

gets lost, i.e., no waiting thread is allowed to proceed.

o Thus, it is recommended that the catch block for InterruptedException execute an

additional notify or notifyAll to make up for any lost notifications [Hartley 1999].

Alternately, the programmer should use notifyAll instead of notify to wake up all

waiting threads even when just one thread can logically proceed.

J2SE 5.0 removes the possibility of lost notifications. If the interrupt of T occurs

before T is notified then T’s interrupt status is set to false, wait throws

InterruptedException, and some other waiting thread (if any exist at the time of the

notification) receives the notification. If the notification occurs first, then T eventually

returns normally from the wait with its interrupt status set to true.

(A thread can determine its interrupt status by invoking the static method

Thread.isInterrupted(), and it can observe and clear its interrupt status by invoking the

static method Thread.interrupted().)

4.3.1 A Better countingSemaphore

Class countingSemaphore in Listing 4.11 has been revised to handle interrupts and

spurious wakeups. It assumes that J2SE 5.0 interrupt semantics are used, which prevents

notifications from being lost when a waiting thread is interrupted right before it is

notified.

public final class countingSemaphore {
 private int permits = 0; int waitCount = 0; int notifyCount=0;
 public countingSemaphore(int initialPermits) {
 if (initialPermits>0) permits = initialPermits;
 synchronized public void P() throws InterruptedException {
 if (permits <= waitCount) {
 waitCount++; // one more thread is waiting
 try {
 do { wait(); } // spurious wakeups do not increment
 while (notifyCount == 0); // notifyCount
 }
 finally { waitCount--; } // one waiting thread notified or interrupted
 notifyCount--; // one notification has been consumed
 }
 else {
 if (notifyCount > waitCount) // if some notified threads were
 notifyCount--; // interrupted, adjust notifyCount
 }
 permits--;
 }
 synchronized public void V() {
 permits++;
 if (waitCount > notifyCount) { // if there are waiting threads yet to be
 notifyCount++; // notified, notify one thread
 notify();
 }
 }
}

Listing 4.11 Java Class countingSemaphore that handles interrupts and spurious wakeups.

Variable notifyCount counts notifications that are made in method V():

� The if-statement in method V() ensures that only as many notifications are done as

there are waiting threads.

� A thread that awakens from a wait operation in P() executes wait again if notifyCount

is zero since a spurious wakeup must have occurred (i.e., a notification must have

been issued outside of V().)

Assume that two threads are blocked on the wait operation in method P() and the value of

permits is 0.

� Suppose that three V() operations are performed and all three V() operations are

completed before either of the two notified threads can reacquire the lock.

� Then the value of permits is 3 and the value of waitCount is still 2.

� A thread that then calls P() and barges ahead of the notified threads is not required to

wait and does not execute wait since the condition (permits <= waitCount) in the if-

statement in method P() is false.

Assume that two threads are blocked on the wait operation in method P()

� Suppose two V() operations are executed: notifyCount and permits become 2.

� Suppose further that the two notified threads are interrupted so that waitCount

becomes 0 (due to the interrupted threads decrementing waitCount in their finally

blocks).

� If three threads now call method P(), two of the threads will be allowed to complete

their P() operations, and before they complete P(), they will each decrement

notifyCount since both will find that the condition (notifyCount > waitCount) is true.

� Now permits, notifyCount and waitCount are all 0.

� If another thread calls P() it will be blocked by the wait operation in P(), and if it is

awakened by a spurious wakeup, it will execute wait again since notifyCount is zero.

Class Semaphore in J2SE 5.0 package java.util.concurrent provides methods acquire()

and release() instead of P() and V(), respectively. The implementation of acquire()

handles interrupts as follows.

� If a thread calling acquire() has its interrupted status set on entry to acquire(), or is

interrupted while waiting for a permit, then InterruptedException is thrown and the

calling thread's interrupted status is cleared.

� Any permits that were to be assigned to this thread are instead assigned to other

threads trying to acquire permits.

Class Semaphore also provides method acquireUninterruptibly():

� If a thread calling acquireUninterruptibly() is interrupted while waiting for a permit

then it will continue to wait until it receives a permit.

� When the thread does return from this method its interrupt status will be set.

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Thread.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/InterruptedException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Thread.html

4.3.2 notify vs. notifyAll

A Java monitor only has a single (implicit) condition variable available to it so notify

operations must be handled carefully.

Listing 4.12 shows Java class binarySemaphore.

� Threads that are blocked in P() or V() are waiting in the single queue associated with

the implicit condition variable.

� Any execution of notifyAll awakens all the waiting threads, even though one whole

group of threads, either those waiting in P() or those waiting in V(), cannot possibly

continue.

� The first thread, if any, to find that its loop condition is false, exits the loop and

completes its operation. The other threads may all end up blocking again.

If notify were used instead of notifyAll, the single thread that was awakened might be a

member of the wrong group. If so, the notified thread would execute another wait

operation and the notify operation would be lost, potentially causing deadlock.

Use notifyAll instead of notify unless the following requirements are met:

1. all waiting threads are waiting on conditions that are signaled by the same

notifications. If one condition is signaled by a notification, then the other conditions

are also signaled by this notification. Usually, when this requirement is met, all the

waiting threads are waiting on the exact same condition.

2. each notification is intended to enable exactly one thread to continue. (In this case, it

would be useless to wake up more than one thread.)

Example: In class countingSemaphore in Listing 3.15, all threads waiting in P() are

waiting for the same condition (permits ≥ 0), which is signaled by the notify operation in

V(). Also, a notify operation enables one waiting thread to continue.

Even though both of these requirements might be satisfied in a given class, they may not

be satisfied in subclasses of this class, so using notifyAll may be safer. (Use the final

keyword to prevent subclassing.)

Monitor boundedBuffer in Listing 4.13 uses notifyAll operations since Producers and

Consumers wait on the same implicit condition variable and they wait for different

conditions that are signaled by different notifications.

final class boundedBuffer {
 private int fullSlots=0; private int capacity = 0;
 private int[] buffer = null; private int in = 0, out = 0;
 public boundedBuffer(int bufferCapacity) {
 capacity = bufferCapacity; buffer = new int[capacity];
 }
 public synchronized void deposit (int value) {
 while (fullSlots == capacity) // assume no interrupts are possible
 try { wait(); } catch (InterruptedException ex) {}
 buffer[in] = value; in = (in + 1) % capacity;
 if (fullSlots++ == 0) // note the use of post-increment.
 notifyAll(); // it is possible that Consumers are waiting for “not empty”
 }
 public synchronized int withdraw () {
 int value = 0;
 while (fullSlots == 0) // assume no interrupts are possible
 try { wait(); } catch (InterruptedException ex) {}
 value = buffer[out]; out = (out + 1) % capacity;
 if (fullSlots-- == capacity) // note the use of post-decrement.
 notifyAll(); // it is possible that Producers are waiting for “not full”
 return value;
 }
}

Listing 4.13 Java monitor boundedBuffer.

4.3.3 Simulating Multiple Condition Variables

It is possible to use simple Java objects to achieve an effect that is similar to the use of

multiple condition variables.

Listing 4.14 shows a new version of class binarySemaphore that uses objects allowP and

allowV in the same way that condition variables are used.

Notice that methods P() and V() are not synchronized since it is objects allowP and

allowV that must be synchronized in order to perform wait and notify operations on them.

(Adding synchronized to methods P() and V() would synchronize the binarySemaphore2

object, not objects allowP and allowV, and would result in a deadlock.)

The use of a synchronized block:

 synchronized (allowP) {
 /* block of code */
 }
creates a block of code that is synchronized on object allowP.

� A thread must acquire allowP’s lock before it can enter the block.

� The lock is released when the thread exits the block.

Note that a synchronized method:

 public synchronized void F() {
 /* body of F */
 }
is equivalent to a method whose body consists of a single synchronized block:

 public void F() {
 synchronized(this) {
 /* body of F */
 }
 }

public final class binarySemaphore2 {
 int vPermits = 0; int pPermits = 0;
 Object allowP = null; // queue of threads waiting in P()
 Object allowV = null; // queue of threads waiting in V()
 public binarySemaphore2(int initialPermits) {
 if (initialPermits != 0 && initialPermits != 1) throw new
 IllegalArgumentException("initial binary semaphore value must be 0 or 1");
 pPermits = initialPermits; // 1 or 0
 vPermits = 1 – pPermits; // 0 or 1
 allowP = new Object(); allowV = new Object();
 }
 public void P() {
 synchronized (allowP) {
 --pPermits;
 if (pPermits < 0) // assume no interrupts are possible
 try { allowP.wait(); } catch (InterruptedException e) {}
 }
 synchronized (allowV) {
 ++vPermits;
 if (vPermits <=0)
 allowV.notify(); // signal thread waiting in V()
 }
 }
 public void V() {
 synchronized (allowV) {
 --vPermits;
 if (vPermits < 0) // assume no interrupts are possible
 try { allowV.wait(); } catch (InterruptedException e) {}
 }
 synchronized (allowP) {
 ++pPermits;
 if (pPermits <= 0)
 allowP.notify(); // signal thread waiting in P()
 }
 }
}

Listing 4.14 Java class binarySemaphore2.

4.4 Monitors in Pthreads

Pthreads does not provide a monitor construct, but it provides condition variables, which

enables the construction of monitor-like objects.

4.4.1 Pthreads Condition Variables

The operations that can be performed on a Pthreads condition variable are

pthread_cond_wait(), pthread_cond_signal(), and pthread_cond_broadcast().

The signal and broadcast operations are similar to Java’s notify and notifyAll operations,

respectively.

Also like Java, wait operations are expected to be executed inside a critical section. Thus,

a condition variable is associated with a mutex and this mutex is specified when a wait

operation is performed.

� A condition variable is initialized by calling pthread_cond_init().

� When a thread waits on a condition variable it must have the associated mutex locked.

This means that a wait operation on a condition variable must be preceded by a lock

operation on the mutex associated with the condition variable.

� Each condition variable must be associated at any given time with only one mutex. On

the other hand, a mutex may have any number of condition variables associated with

it.

� A wait operation automatically unlocks the associated mutex if the calling thread is

blocked and automatically tries to lock the associated mutex when the blocked thread

is awakened by a signal or broadcast operation. The awakened thread competes with

other threads for the mutex.

� A signal operation wakes up a single thread while a broadcast operation wakes up all

waiting threads.

� A thread can signal or broadcast a condition variable without holding the lock for the

associated mutex. (This is different from Java since a Java notify or notifyAll operation

must be performed in a synchronized method or block.) A thread that executes a

signal or broadcast continues to execute. If the thread holds the lock for the associated

mutex when it performs a signal or broadcast, it should eventually release the lock.

Listing 4.15 shows a C++/Pthreads monitor class named boundedBuffer that solves the

bounded buffer problem.

Producers wait on condition variable notFull and Consumers wait on condition variable

notEmpty. The use of two explicit condition variables makes this Pthreads version similar

to the solution in Listing 4.3.

Note that the wait operations appear in loops since Pthreads uses the SC signaling

discipline.

Also, it is recommended to always use loops because of the possibility of “spurious

wakeups”, i.e., threads can be awakened without any signal or broadcast operations

being performed.

#include <iostream>
#include <pthread.h>
#include "thread.h"
class boundedBuffer {
private:
 int fullSlots; // # of full slots in the buffer
 int capacity; int* buffer; int in, out;
 pthread_cond_t notFull; // Producers wait on notFull
 pthread_cond_t notEmpty; // Consumers wait on notEmpty
 pthread_mutex_t mutex; // exclusion for deposit() and withdraw()
public:
 boundedBuffer(int capacity_) : capacity(capacity_), fullSlots(0), in(0),
 out(0), buffer(new int[capacity_]) {
 pthread_cond_init(¬Full,NULL); pthread_cond_init(¬Empty,NULL);
 pthread_mutex_init(&mutex,NULL);
 }
 ~boundedBuffer() {
 delete [] buffer;
 pthread_cond_destroy(¬Full); pthread_cond_destroy(¬Empty);
 pthread_mutex_destroy(&mutex);
 }
 void deposit(int value) {
 pthread_mutex_lock(&mutex);
 while (fullSlots == capacity)
 pthread_cond_wait(¬Full,&mutex);
 buffer[in] = value;
 in = (in + 1) % capacity; ++fullSlots;
 pthread_mutex_unlock(&mutex);
 pthread_cond_signal(¬Empty);
 }
 int withdraw() {
 pthread_mutex_lock(&mutex);
 int value;
 while (fullSlots == 0)
 pthread_cond_wait(¬Empty,&mutex);
 value = buffer[out]; out = (out + 1) % capacity; --fullSlots;
 pthread_mutex_unlock(&mutex);
 pthread_cond_signal(¬Full);
 return value;
 }
};

class Producer : public Thread {
private:
 boundedBuffer& b;
 int num;
public:
 Producer (boundedBuffer* b_, int num_) : b(*b_), num(num_) { }
 virtual void* run () {
 std::cout << "Producer Running" << std::endl;
 for (int i = 0; i < 3; i++) {
 b.deposit(i);
 std::cout << "Producer # " << num << " deposited " << i << std::endl;
 }
 return NULL;
 }
};

class Consumer : public Thread {
private:
 boundedBuffer& b;
 int num;
public:
 Consumer (boundedBuffer* b_, int num_) : b(*b_), num(num_) { }
 virtual void* run () {
 std::cout << "Consumer Running" << std::endl;
 int value = 0;
 for (int i = 0; i < 3; i++) {
 value = b.withdraw();
 std::cout << "Consumer # " << num << " withdrew " <<
 value << std::endl;
 }
 return NULL;
 }
};

int main () {
 boundedBuffer* b1 = new boundedBuffer(3);
 Producer p1(b1, 1); Consumer c1(b1, 1);
 p1.start(); c1.start();
 p1.join(); c1.join();
 delete b1;
 return 0;
}

Listing 4.15 C++/Pthreads class boundedBuffer.

4.4.2 Condition Variables in J2SE 5.0

Package java.util.concurrent.locks in Java release J2SE 5.0, contains a lock class called

ReentrantLock (see Section 3.6.4) and a condition variable class called Condition.

A ReentrantLock replaces the use of a synchronized method, and operations await and

signal on a Condition replace the use of methods wait and notify.

A Condition object is bound to its associated ReentrantLock object. Method

newCondition() is used to obtain a Condition object from a ReentrantLock:

 ReentrantLock mutex = new ReentrantLock();
 // notFull and notEmpty are bound to mutex
 Condition notFull = mutex.newCondition();
 Condition notEmpty = mutex.newCondition();

Conditions provide operations await, signal, and signallAll, including those with

timeouts.

Listing 4.16 shows a Java version of class boundedBuffer using Condition objects.

� The try-finally clause ensures that mutex is unlocked no matter how the try block is

executed.

� If an interrupt occurs before a signal then the await method must, after re-acquiring

the lock, throw InterruptedException. (If the interrupted thread is signaled, then some

other thread (if any exist at the time of the signal) receives the signal.)

� if the interrupted occurs after a signal, then the await method must return without

throwing an exception, but with the current thread’s interrupt status set.

import java.util.concurrent.locks;
final class boundedBuffer {
 private int fullSlots=0; private int capacity = 0; private int in = 0, out = 0;
 private int[] buffer = null;
 private ReentrantLock mutex;
 private Condition notFull;
 private Condition notEmpty;

 public boundedBuffer(int bufferCapacity) {
 capacity = bufferCapacity; buffer = new int[capacity];
 mutex = new ReentrantLock();
 // notFull and notEmpty are both attached to mutex
 notFull = mutex.newCondition(); notEmpty = mutex.newCondition();
 }
 public void deposit (int value) throws InterruptedException {
 mutex.lock();
 try {
 while (fullSlots == capacity)
 notFull.await();
 buffer[in] = value;
 in = (in + 1) % capacity;
 notEmpty.signal();
 } finally {mutex.unlock();}
 }
 public synchronized int withdraw () throws InterruptedException {
 mutex.lock();
 try {
 int value = 0;
 while (fullSlots == 0)
 notEmpty.await();
 value = buffer[out];
 out = (out + 1) % capacity;
 notFull.signal();
 return value;
 } finally {mutex.unlock();}
 }
}

Listing 4.16 Java class boundedBuffer using Condition objects.

4.5 Signaling Disciplines

4.5.1 Signal-and-Urgent-Wait (SU)

When a thread executes cv.signal():

 � if there are no threads waiting on condition variable cv, this operation has no effect.

� otherwise, the thread executing signal (which is called the “signaler” thread) awakens

one thread waiting on cv, and blocks itself in a queue, called the reentry queue. The

signaled thread reenters the monitor immediately.

When a thread executes cv.wait():

� if the reentry queue is not empty, the thread awakens one signaler thread from the

reentry queue and then blocks itself on the queue for cv.

� otherwise, the thread releases mutual exclusion (to allow a new thread to enter the

monitor) and then blocks itself on the queue for cv.

When a thread completes and exits a monitor method:

� if reentry queue is not empty, it awakens one signaler thread from the reentry queue.

� otherwise, it releases mutual exclusion to allow a new thread to enter the monitor.

In an SU monitor, the threads waiting to enter a monitor have three levels of priority

(from highest to lowest):

� the awakened thread (A), which is the thread awakened by a signal operation

� signaler threads (S), which are the threads waiting in the reentry queue

� calling threads (C), which are the threads that have called a monitor method and are

waiting in the entry queue.

The relative priority associated with the three sets of threads is A > S > C.

Considering again the boundedBuffer monitor in Listing 4.3. Assume that SU signals are

used instead of SC signals. Assume we start with Fig. 4.17a.

deposit() {..}

withdraw() {..}
C2 P1 C1

deposit() {..}

withdraw() {..}
C2 P1

C1

deposit() { }

withdraw() { }
C2

P1

C1

deposit() { }

withdraw() {..}

(a) (b)

(c) (d)

entry queue

entry queue

entry queue

entry queue

notFull

notFull

notFull

notFull

notEmpty

notEmpty

notEmpty

notEmpty

reentry queue reentry queue

reentry queue reentry queue

deposit() { }

withdraw() {..}

C2
P1

(e)

entry queue
notFull

notEmptyreentry queue

C2

When Consumer1 enters method withdraw(), it executes the statement

 while (fullSlots == 0)

 notEmpty.wait();

Since the buffer is empty, Consumer1 is blocked by the wait() operation on condition

variable notEmpty (Fig. 4.17b).

Producer1 then enters the monitor:

� Since the buffer is not full, Producer1 deposits its item, and executes

notEmpty.signal().

� This signal awakens Consumer1 and moves Producer1 to the Reentry queue (Fig.

4.17c).

Consumer1 can now consume an item.

� When Consumer1 executes notFull.signal(), there are no Producers waiting so none

are signaled and Consumer1 does not move to the Reentry queue.

� When Consumer1 exits the monitor, Producer1 is allowed to reenter the monitor since

the Reentry queue has priority over the Entry queue (Fig. 4.17d).

Producer1 has no more statements to execute so Producer1 exits the monitor.

� Since the Reentry queue is empty, Consumer2 is now allowed to enter the monitor.

� Consumer2 finds that the buffer is empty and blocks itself on condition variable

notEmpty (Fig. 4.17e).

Unlike the scenario that occurred when SC signals were used, Consumer2 was not

allowed to barge ahead of Consumer1 and consume the first item.

Since signaled threads have priority over new threads, a thread waiting on a condition

variable in an SU monitor can assume that the condition it is waiting for will be true

when it reenters the monitor.

In the boundedBuffer monitor, we can replace the while-loops with if-statements and

avoid the unnecessary reevaluation of the loop condition after a wait() operation returns.

As another example, Listing 4.18 shows an SU monitor implementation of strategy

R>W.1. This implementation is simpler than the SC monitor in Section 4.2.4 since there

is no threat of barging - when a writer signals waiting readers, these waiting readers are

guaranteed to reenter the monitor before any new writers are allowed to enter

startWrite().

class r_gt_w_1SU extends monitorSU {
 int readerCount = 0; // number of active readers
 boolean writing = false; // true if a writer is writing
 conditionVariable readerQ = new conditionVariable();
 conditionVariable writerQ = new conditionVariable();

 public void startRead() {
 if (writing) // readers must wait if a writer is writing
 readerQ.wait();
 ++readerCount;
 readerQ.signal(); // continue cascaded wakeup of readers
 }
 public void endRead() {
 --readerCount;
 if (readerCount == 0)
 writerQ.signal(); // signal writer if there are no more readers reading
 }
 public void startWrite() {
 // writers wait if a writer is writing, or a reader is reading or waiting, or the
 // writer is barging
 while (readerCount > 0 || writing || !readerQ.empty())
 writerQ.wait();
 writing = true;
 }
 public void endWrite() {
 writing = false;
 if (!readerQ.empty()) { // priority is given to waiting readers
 readerQ.signal(); // start cascaded wakeup of readers
 }
 else
 writerQ.signal();
 }
}
Listing 4.18 Class r_gt_w_1SU allows concurrent reading and gives readers a higher
priority than writers.

4.5.2 Signal-and-Exit (SE)

Signal-and-Exit (SE) is a special case of Signal-and-Urgent-Wait (SU).

When a thread executes an SE signal operation it does not enter the reentry queue; rather,

it exits the monitor immediately.

� An SE signal statement is either the last statement of a method or it is followed

immediately by a return statement.

� As with SU signals, the thread awakened by a signal operation is always the next

thread to enter the monitor.

Since there are no signaling threads that want to remain in or reenter the monitor, the

relative priority of the sets of awakened (A) and calling (C) threads is A > C.

When a signal statement appears in a monitor method, it is very often the last statement

of the method, regardless of the type of signal. This was the case for all of the SC

monitor examples in Section 4.2 and for the SU monitor in Listing 4.18.

Using SE semantics for these special SU signal operations avoids the extra cost of having

a thread exit a monitor and join the reentry queue, and then later reenter the monitor only

to immediately exit the monitor again.

The Java and C++ monitor classes shown later have a Signal-and-Exit operation that

allows SE signals to be used at the end of SU monitor methods.

4.5.3 Urgent-Signal-and-Continue (USC)

� A thread that executes an USC signal operation continues to execute just as it would

for an SC signal.

� A thread awakened by a signal operation has priority over threads waiting in the entry

queue.

When signal operations appear only at the end of monitor methods, which is usually the

case, this discipline is the same as the SE discipline, which is a special case of the SU

discipline.

A thread waiting in the entry queue is allowed to enter a monitor only when no other

threads are inside the monitor and there are no signaled threads waiting to reenter.

Thus, the relative priority associated with the three sets of threads is S > A > C.

Table 4.1 lists the signaling disciplines and shows the relative priorities associated with

the three sets of threads. Another signaling discipline is described in Exercise 4.17.

Relative priority Name
S > A = C Signal-and-Continue [Lampson and Redell 1980]
A > S > C Signal-and-Urgent-Wait [Hoare 1974]
A > C Signal-and-Exit [Brinch Hansen 1975]
S > A > C Urgent-Signal-and-Continue [Howard 1976]

Table 4.1 Signaling Disciplines

4.5.4 Comparing SU and SC signals

If a thread executes an SU signal to notify another thread that a certain condition is true,

this condition remains true when the signaled thread reenters the monitor.

A signal operation in an SC monitor is only a “hint” to the signaled thread that it may be

able to proceed. Other threads may “barge” into the monitor and make the condition false

before the signaled thread reenters the monitor.

That is why SC monitors use a while-loop instead of an if-statement.

� Using a while-loop instead of an if-statement in an SC monitor requires an extra

evaluation of condition (permits == 0) after a wait().

� On the other hand, the execution of an SU monitor requires additional context

switches for managing the signaler threads in the Reentry queue.

Using Signal-and-Exit semantics for a signal operation that appears at the end of an SU

method avoids the costs of the extra condition evaluation and the extra context switches.

4.6 Using Semaphores to Implement Monitors

Semaphores can be used to implement monitors with SC, SU, or SE signaling.

Even though Java provides built-in support for monitors, our custom Java monitor classes

are still helpful since it is not easy to test and debug built-in Java monitors. Also, we can

choose which type of monitor - SC, SU, SE, or USC - to use in our Java programs.

4.6.1 SC Signaling.

The body of each public monitor method is implemented as

 public returnType F(…) {
 mutex.P();
 /* body of F */
 mutex.V();
 }

Semaphore mutex is initialized to 1. The calls to mutex.P() and mutex.V() ensure that

monitor methods are executed with mutual exclusion.

Java class conditionVariable in Listing 4.20 implements condition variables with SC

signals:

� since it is not legal to overload final method wait() in Java, methods named waitC()

and signalC() are used instead of wait() and signal().

� the signalCall() operation behaves the same as Java’s notifyAll

� operations empty() and length() are also provided

final class conditionVariable {
 private countingSemaphore threadQueue = new countingSemaphore(0);
 private int numWaitingThreads = 0;
 public void waitC() {
 numWaitingThreads++; // one more thread is waiting in the queue
 threadQueue.VP(mutex); // release exclusion and wait in threadQueue
 mutex.P(); // wait to reenter the monitor
 }
 public void signalC() {
 if (numWaitingThreads > 0) { // if any threads are waiting
 numWaitingThreads--; // // wakeup one thread in the queue
 threadQueue.V();
 }
 }
 public void signalCall() {
 while (numWaitingThreads > 0) { // if any threads are waiting
 --numWaitingThreads; // wakeup all the threads in the queue
 threadQueue.V(); // one-by-one
 }
 }
 // returns true if the queue is empty
 public boolean empty() { return (numWaitingThreads == 0); }
 // returns the length of the queue
 public int length() { return numWaitingThreads; }
}
Listing 4.20 Java class conditionVariable.

Each conditionVariable is implemented using a semaphore named threadQueue:

� When a thread executes waitC(), it releases mutual exclusion, and blocks itself using

threadQueue.VP(mutex). VP() guarantees that threads executing waitC() are blocked

on semaphore threadQueue in the same order that they entered the monitor.

� An integer variable named numWaitingThreads is used to count the waiting threads.

The value of numWaitingThreads is incremented in waitC() and decremented in

signalC() and signalCall():

� signalC() executes threadQueue.V() to signal one waiting thread.

� signalCall() uses a while-loop to signal all the waiting threads one-by-one.

4.6.2 SU Signaling.

Java class conditionVariable in Listing 4.21 implements condition variables with SU

signals.

Each SU monitor has a semaphore named reentry (initialized to 0), on which signaling

threads block themselves.

If signalC() is executed when threads are waiting on the condition variable,

reentry.VP(threadQueue) is executed to signal a waiting thread, and block the signaler in

the reentry queue.

Integer reentryCount is used to count the number of signaler threads waiting in reentry.

� When a thread executes waitC(), if signalers are waiting, the thread releases a signaler

by executing reentry.V(); otherwise, the thread releases mutual exclusion by executing

mutex.V().

� Method signalC() increments and decrements reentryCount as threads enter and exit

the reentry queue.

The body of each public monitor method is implemented as

 public returnType F(…) {
 mutex.P();
 /* body of F */
 if (reentryCount >0)
 reentry.V(); // allow a signaler thread to reenter the monitor
 else mutex.V(); // allow a calling thread to enter the monitor
 }

final class conditionVariable {
 private countingSemaphore threadQueue = new countingSemaphore(0);
 private int numWaitingThreads = 0;
 public void signalC() {
 if (numWaitingThreads > 0) {
 ++reentryCount;
 reentry.VP(threadQueue); // release exclusion and join reentry queue
 --reentryCount;
 }
 }
 public void waitC() {
 numWaitingThreads++;
 if (reentryCount > 0) threadQueue.VP(reentry); // the reentry queue has
 else threadQueue.VP(mutex); // priority over entry queue
 --numWaitingThreads;
 }
 public boolean empty() { return (numWaitingThreads == 0); }
 public int length() { return numWaitingThreads; }
}

Listing 4.21 Java class conditionVariable for SU monitors.

4.7 A Monitor Toolbox for Java

A monitor toolbox is a program unit that is used to simulate the monitor construct. The

Java monitor toolboxes are class monitorSC for SC monitors and class monitorSU for SU

monitors.

Classes monitorSC and monitorSU implement operations enterMonitor and exitMonitor,

and contain a member class named conditionVariable that implements waitC and signalC

operations on condition variables.

A regular Java class can be made into a monitor class by doing the following:

1. extend class monitorSC or monitorSU

2. use operations enterMonitor() and exitMonitor() at the start and end of each public

method

3. declare as many conditionVariables as needed

4. use operations waitC(), signalC(), signalCall(), length(), and empty(), on the

conditionVariables.

Listing 4.22 shows part of a Java boundedBuffer class that illustrates the use of class

monitorSC.

Simulated monitors are not as easy to use or as efficient as real monitors, but they have

some advantages:

� A monitor toolbox can be used to simulate monitors in languages that do not support

monitors directly, e.g., C++/Win32/Pthreads.

� Different versions of the toolbox can be created for different types of signals, e.g., an

SU toolbox can be used to allow SU signaling in Java.

� The toolbox can be extended to support testing and debugging.

final class boundedBuffer extends monitorSC {
 …
 private conditionVariable notFull = new conditionVariable();
 private conditionVariable notEmpty = new conditionVariable();
 …
 public void deposit(int value) {
 enterMonitor();
 while (fullSlots == capacity)
 notFull.waitC();
 buffer[in] = value;
 in = (in + 1) % capacity;
 ++fullSlots;
 notEmpty.signalC();
 exitMonitor();
 }
 …
}

Listing 4.22 Using the Java monitor toolbox class monitorSC.

4.7.1 A Toolbox for SC Signaling in Java

Listing 4.23 shows a monitor toolbox that uses semaphores to simulate monitors with SC

signaling.

Class conditionVariable is nested inside class monitor, which gives class

conditionVariable access to member object mutex in the monitorSC class.

public class monitorSC { // monitor toolbox with SC signaling
 private binarySemaphore mutex = new binarySemaphore(1);
 protected final class conditionVariable {
 private countingSemaphore threadQueue = new countingSemaphore(0);
 private int numWaitingThreads = 0;
 public void signalC() {
 if (numWaitingThreads > 0) {
 numWaitingThreads--;
 threadQueue.V();
 }
 }
 public void signalCall() {
 while (numWaitingThreads > 0) {
 --numWaitingThreads;
 threadQueue.V();
 }
 }
 public void waitC() {
 numWaitingThreads++; threadQueue.VP(mutex); mutex.P();
 }
 public boolean empty() { return (numWaitingThreads == 0); }
 public int length() { return numWaitingThreads; }
 }
 protected void enterMonitor() { mutex.P(); }
 protected void exitMonitor() { mutex.V(); }
}

Listing 4.23 Java monitor toolbox monitorSC with SC signaling.

4.7.2 A Toolbox for SU Signaling in Java

Listing 4.24 shows a Java monitor toolbox with SU signaling. The SU toolbox provides

method signalC_and_exitMonitor(), which can be used when a signal operation is the last

statement in a method (other than a return statement). When this method is called, the

signaler does not wait in the reentry queue.

For example, method deposit() using signalC_and_exitMonitor() becomes:

 public void deposit(int value) {
 enterMonitor();
 if (fullSlots == capacity)
 notFull.waitC();
 buffer[in] = value;
 in = (in + 1) % capacity;
 ++fullSlots;
 notEmpty.signalC_and_exitMonitor();
 }

public class monitorSU { // monitor toolbox with SU signaling

 private binarySemaphore mutex = new binarySemaphore(1);
 private binarySemaphore reentry = new binarySemaphore(0);
 private int reentryCount = 0;
 proteced final class conditionVariable {
 private countingSemaphore threadQueue = new countingSemaphore(0);
 private int numWaitingThreads = 0;
 public void signalC() {
 if (numWaitingThreads > 0) {
 ++reentryCount;
 reentry.VP(threadQueue);
 --reentryCount;
 }
 }
 public void signalC_and_exitMonitor() { // does not execute reentry.P()
 if (numWaitingThreads > 0) threadQueue.V();
 else if (reentryCount > 0) reentry.V();
 else mutex.V();
 }
 public void waitC() {
 numWaitingThreads++;
 if (reentryCount > 0) threadQueue.VP(reentry);
 else threadQueue.VP(mutex);
 --numWaitingThreads;
 }
 public boolean empty() { return (numWaitingThreads == 0); }
 public int length() { return numWaitingThreads; }
 }
 public void enterMonitor() { mutex.P(); }
 public void exitMonitor() {
 if (reentryCount > 0) reentry.V();
 else mutex.V();
 }
}

Listing 4.24 Java monitor toolbox monitorSU with SU signaling.

4.8 A Monitor Toolbox for Win32/C++/Pthreads

Listing 4.25 shows how to use the C++ monitorSC toolbox class to define a monitor for

the bounded buffer problem.

class boundedBuffer : private monitorSC { // Note the use of private inheritance –
private: // methods of monitorSC cannot be called outside of boundedbuffer.
 int fullSlots; // # of full slots in the buffer
 int capacity; // # of slots in the buffer
 int* buffer;
 int in, out;
 conditionVariable notFull;
 conditionVariable notEmpty;
public:
 boundedBuffer(int bufferCapacity);
 ~boundedBuffer();
 void deposit(int value, int ID);
 int withdraw(int ID);
};

Listing 4.25 Using the C++ monitorSC Toolbox class.

The conditionVariable constructor receives a pointer to the monitor object that owns the

variable and uses this pointer to access the mutex object of the monitor.

 boundedBuffer(int bufferCapacity_) : fullSlots(0), capacity(bufferCapacity),

 in(0), out(0), notFull(this), notEmpty(this), buffer(new int[capacity]) {}

Monitor methods are written just as they are in Java:

 void boundedBuffer::deposit(int value) {
 enterMonitor();
 while (fullSlots == capacity)
 notFull.waitC();
 buffer[in] = value;
 in = (in + 1) % capacity;
 ++fullSlots;
 notEmpty.signalC();
 exitMonitor();
 }

4.8.1 A Toolbox for SC Signaling in C++/Win32/Pthreads

Listing 4.26 shows a C++/Win32/Pthreads monitor toolbox with SC signaling. Class

conditionVariable is a friend of class monitorSC. This gives conditionVariables access to

private member mutex of class monitor.

4.8.2 A Toolbox for SU Signaling in C++/Win32/Pthreads

Listing 4.27 shows a C++/Win32/Pthreads monitor toolbox with SU signaling.

class monitorSC { // monitor toolbox with SC signaling
protected:
 monitorSC() : mutex(1) {}
 void enterMonitor() { mutex.P(); }
 void exitMonitor() { mutex.V(); }
private:
 binarySemaphore mutex;
 friend class conditionVariable; // conditionVariable needs access to mutex
};
class conditionVariable {
private:
 binarySemaphore threadQueue;
 int numWaitingThreads;
 monitorSC& m; // reference to monitor that owns this conditionVariable
public:
 conditionVariable(monitorSC* mon) : threadQueue(0),numWaitingThreads(0),
 m(*mon) {}
 void signalC();
 void signalCall();
 void waitC();
 bool empty() { return (numWaitingThreads == 0); }
 int length() { return numWaitingThreads; }
};

void conditionVariable::signalC() {
 if (numWaitingThreads > 0) {
 --numWaitingThreads;
 threadQueue.V();
 }
}
void conditionVariable::signalCall() {
 while (numWaitingThreads > 0) {
 --numWaitingThreads;
 threadQueue.V();
 }
}
void conditionVariable::waitC(int ID) {
 numWaitingThreads++;
 threadQueue.VP(&(m.mutex));
 m.mutex.P();
}

Listing 4.26 C++ monitor toolbox for SC signaling.

class monitorSU { // monitor toolbox with SU signaling
protected:
 monitorSU() : reentryCount(0), mutex(1), reentry(0) { }
 void enterMonitor() { mutex.P(); }
 void exitMonitor(){
 if (reentryCount > 0) reentry.V();
 else mutex.V();
 }
private:
 binarySemaphore mutex; binarySemaphore reentry;
 int reentryCount; friend class conditionVariable;
};
class conditionVariable {
private:
 binarySemaphore threadQueue;
 int numWaitingThreads;
 monitorSU& m;
public:
 conditionVariable(monitorSU* mon):threadQueue(0),numWaitingThreads(0),
 m(*mon){}
 void signalC(); void signalC_and_exitMonitor();
 void waitC();
 bool empty() { return (numWaitingThreads == 0); }
 int length() { return numWaitingThreads; }
};
void conditionVariable::signalC() {
 if (numWaitingThreads > 0) {
 ++(m.reentryCount);
 m.reentry.VP(&threadQueue);
 --(m.reentryCount);
 }
}
void conditionVariable::signalC_and_exitMonitor() {
 if (numWaitingThreads > 0) threadQueue.V();
 else if (m.reentryCount > 0) m.reentry.V();
 else m.mutex.V();
}
void conditionVariable::waitC() {
 numWaitingThreads++;
 if (m.reentryCount > 0) threadQueue.VP(&(m.reentry));
 else threadQueue.VP(&(m.mutex));
 --numWaitingThreads;
}
Listing 4.27 C++ monitor toolbox for SU signaling.

4.9 Nested Monitor Calls

A thread T executing in a method of monitor M1 may call a method in another monitor

M2. This is called a nested monitor call.

If thread T releases mutual exclusion in M1 when it makes the nested call to M2, it is said

to be an open call. If mutual exclusion is not released, it is a closed call. Closed calls are

prone to create deadlocks.

 class First extends monitorSU { class Second extends monitorSU {
 Second M2;
 public void A1() { public void A2() {
 … …
 M2.A2(); wait(); // Thread A is blocked
 … …
 } }
 public void B1() { public void B2() {
 M2.B2(); …
 … signal-and-exit(); // wakeup Thread A
 } }
}

Suppose that we create an instance M1 of the First monitor and that this instance is used

by two threads: Thread A Thread B

 M1.A1(); M1.B1();

� Assume that Thread A enters method A1() of monitor M1 first and makes a closed

monitor call to M2.A2().

� Assume that Thread A is then blocked on the wait statement in method A2().

� Thread B intends to signal Thread A by calling method M1.B1, which issues a nested

call to M2.B2() where the signal is performed.

� But this is impossible since Thread A retains mutual exclusion for monitor M1 while

Thread A is blocked on the wait statement in monitor M2.

� Thus, Thread B is unable to enter M1 and a deadlock occurs.

Open monitor calls are implemented by having the calling thread release mutual

exclusion when the call is made and reacquire mutual exclusion when the call returns.

The monitor toolboxes described in the previous section make this easy to do. For

example, method A1() above becomes:

 public void A1() {
 enterMonitor(); // acquire mutual exclusion
 …
 exitMonitor(); // release mutual exclusion
 M2.A2();
 enterMonitor(); // reacquire mutual exclusion
 …
 exitMonitor(); // release mutual exclusion

}

This gives equal priority to the threads returning from a nested call and the threads trying

to enter the monitor for the first time, since both groups of threads call enterMonitor().

Open calls can create a problem if shared variables in monitor M1 are used as arguments

and passed by reference on nested calls to M2.

This allows shared variables of M1 to be accessed concurrently by a thread in M1 and a

thread in M2, violating the requirement for mutual exclusion.

