

5. Message-Passing

Threads can communicate and synchronize by sending and receiving messages across

channels.

A channel is an abstraction of a communication path between threads:

� If shared memory is available, channels can be implemented as objects that are shared

by threads.

� Without shared memory, channels can be implemented using kernel routines that

transport messages across a communication network (Chapter 6)

Outline:

� Basic message passing using send and receive commands.

� Rendezvous.

� Testing and debugging message-passing programs.

5.1 Channel Objects

Threads running in the same program (or process) can access channel objects in shared

memory.

 channel requestChannel = new channel();
 channel replyChannel = new channel();

 Thread1 Thread2
 requestChannel.send(request); � request = requestChannel.receive();
 reply = replyChannel.receive(); ⇐ replyChannel.send(reply);

A thread that calls send() or receive() may be blocked. Thus, send and receive operations

are used both for communication and synchronization.

Types of send and receive operations:

� blocking send: the sender is blocked until the message is received (by a receive()

operation).

� buffer-blocking send: messages are queued in a bounded message buffer, and the

sender is blocked only if the buffer is full.

� non-blocking send: messages are queued in an unbounded message buffer, and the

sender is never blocked.

� blocking receive: the receiver is blocked until a message is available.

� non-blocking receive: the receiver is never blocked. A receive command returns an

indication of whether or not a message was received.

Asynchronous message passing: blocking receive operations are used with either non-

blocking or buffer-blocking send operations.

Synchronous message passing:

� The send and receive operations are both blocking.

� Either the sender or the receiver thread will be blocked, whichever one executes its

operation first.

� Can be simulated using asynchronous message passing: the sender can issue a buffer-

blocking send followed immediately by a blocking receive.

5.1.1 Channel Objects in Java

Threads in the same Java Virtual Machine (JVM) can communicate and synchronize by

passing messages through user-defined channels that are implemented as shared objects.

 public abstract class channel {
 public abstract void send(Object m); // send a message object
 public abstract void send(); // acts as a signal to the receiver
 public abstract Object receive(); // receive an object.
 }

Three types of channels:

� mailbox: many senders and many receivers may access a mailbox object

� port: many senders but only one receiver may access a port object

� link: only one sender and one receiver may access a link object

Each type has a synchronous version and an asynchronous version.

A synchronous mailbox class is shown in Listing 5.1:

� A sending thread copies its message into the channel’s message object and issues

sent.V() to signal that the message is available.

� The sending thread executes received.P() to wait until the message is received.

� The receiving thread executes sent.P() to wait for a message from the sender.

� When the sender signals that a message is available, the receiver makes a copy of the

message object and executes received.V() to signal the sender that the message has

been received.

public class mailbox extends channel {
 private Object message = null;
 private final Object sending = new Object();
 private final Object receiving = new Object();
 private final binarySemaphore sent = new binarySemaphore(0);
 private final binarySemaphore received = new binarySemaphore(0);
 public final void send(Object sentMsg) {
 if (sentMsg == null) {throw new
 NullPointerException("Null message passed to send()");
 }
 synchronized (sending) {
 message = sentMsg;
 sent.V(); // signal that the message is available
 received.P(); // wait until the message is received
 }
 }
 public final void send() {
 synchronized (sending) {
 message = new Object(); // send a null message
 sent.V(); // signal that message is available
 received.P(); // wait until the message is received
 }
 }
 public final Object receive() {
 Object receivedMessage = null;
 synchronized (receiving) {
 sent.P(); // wait for message to be sent
 receivedMessage = message;
 received.V(); // signal the sender that the message has
 } // been received
 return receivedMessage;
 }
}

Listing 5.1 A synchronous mailbox class.

Note: A send() operation with no message acts as a signal to the receiver that some event

has occurred. Such a send is analogous to a V() operation on a semaphore.

The send() methods for classes port and mailbox are the same.

The receive() methods for classes port and link are also the same.

Only one thread can ever execute a receive operation on a port or link object. In Listing

5.2, an exception is thrown if multiple receivers are detected.

Since a link can have only one sender, a similar check is performed in the send() method

of class link.

public final Object receive() {
 synchronized(receiving) {
 if (receiver == null) // save the first thread to call receive
 receiver = Thread.currentThread();
 // if currentThread() is not first thread to call receive, throw an exception
 if (Thread.currentThread() != receiver) throw new
 InvalidLinkUsage("Attempted to use link with multiple receivers");
 Object receivedMessage = null;
 sent.P(); // wait for the message to be sent
 receivedMessage = message;
 received.V(); // signal the sender that the message has
 return receivedMessage; // been received
 }
}

Listing 5.2 Synchronous receive method for the link and port classes.

An asynchronous mailbox class is shown in Listing 5.3:

� The implementation of the buffer-blocking send() operation is based on the bounded-

buffer solution in Section 3.5.2.

� The send() will block if the message buffer is full.

� The messages that a thread sends to a particular mailbox are guaranteed to be received

in the order they are sent.

� Also, If Thread1 executes a send() operation on a particular mailbox before Thread2

executes a send() operation on the same mailbox, then Thr*ead1’s message will be

received from that mailbox before Thread2’s message.

Listing 5.4 shows how to use the link class.

� Producer and Consumer threads exchange messages with a Buffer thread using links

deposit and withdraw.

� The Buffer thread implements a 1-slot bounded buffer.

� The Producer builds a Message object and sends it to the Buffer over the deposit link.

� The Buffer then sends the Message to the Consumer over the withdraw link.

public final class asynchMailbox extends channel {

 private final int capacity = 100;
 private Object messages[] = new Object[capacity]; // message buffer
 private countingSemaphore messageAvailable = new countingSemaphore(0);
 private countingSemaphore slotAvailable = new
 countingSemaphore(capacity);
 private binarySemaphore senderMutex = new binarySemaphore(1);
 private binarySemaphore receiverMutex = new binarySemaphore(1);
 private int in = 0, out = 0;

 public final void send(Object sentMessage) {
 if (sentMessage == null) {
 throw new NullPointerException("null message passed to send()");
 }
 slotAvailable.P();
 senderMutex.P();
 messages[in] = sentMessage; in = (in + 1) % capacity;
 senderMutex.V();
 messageAvailable.V();
 }

Listing 5.3 Asynchronous asynchMailbox class.

 public final void send() {
 /* same as send(Object sentMessage) above except that the line
 “messages[in] = sentMessage;” becomes “messages[in] = new Object();” */
 }

 public final Object receive() {
 messageAvailable.P();
 receiverMutex.P();
 Object receivedMessage = messages[out]; out = (out + 1) % capacity;
 receiverMutex.V();
 slotAvailable.V();
 return receivedMessage;
 }
}

Listing 5.3 (cont.) Asynchronous asynchMailbox class.

public final class boundedBuffer {
 public static void main (String args[]) {
 link deposit = new link(); link withdraw = new link();
 Producer producer = new Producer(deposit);
 Consumer consumer = new Consumer(withdraw);
 Buffer buffer = new Buffer(deposit,withdraw);
 // buffer will be terminated when producer and consumer are finished
 buffer.setDaemon(true); buffer.start();
 producer.start(); consumer.start();
 }
}

final class Message {
 public int number;
 Message(int number) {this.number = number;}
}
final class Producer extends Thread {
 private link deposit;
 public Producer (link deposit) { this.deposit = deposit; }
 public void run () {
 for (int i = 0; i<3; i++) {
 System.out.println("Produced " + i);
 deposit.send(new Message(i));
 }
 }
}
Listing 5.4 Java bounded buffer using channels.

final class Consumer extends Thread {
 private link withdraw;
 public Consumer (link withdraw) { this.withdraw = withdraw; }
 public void run () {
 for (int i = 0; i<3; i++) {
 Message m = (Message) withdraw.receive(); // message from Buffer
 System.out.println("Consumed " + m.number);
 }
 }
}

final class Buffer extends Thread {
 private link deposit, withdraw;
 public Buffer (link deposit, link withdraw) { this.deposit = deposit;
 his.withdraw = withdraw; }
 public void run () {
 while (true) {
 Message m = ((Message) deposit.receive()); // message from Producer
 withdraw.send(m); // send message to Consumer
 }
 }
}

Listing 5.4 Java bounded buffer using channels.

Note: The receiver expects mutually exclusive access to the message. If the sender needs

to access a message after it is sent, or just to be completely safe, the sender should send a

clone (copy) of the message:

 final class Message implements Cloneable {
 public int number;
 Message(int number) {this.number = number;}
 }

 Message m(1);
 deposit.send((Message) m.clone());

This prevents the sending and receiving threads from referencing the same message

objects.

5.1.2 Channel Objects in C++/Win32

Listing 5.5 shows a C++ version of the synchronous mailbox class.

Methods send() and receive() operate on “smart pointer” objects of type

message_ptr<T>.

� Smart pointers mimic simple pointers by providing pointer operations like

dereferencing (using operator *) and indirection (using operator ->).

� A message_ptr<T> object contains a pointer to a message object of type T.

� Ownership and memory management are handled by maintaining a count of the

message_ptr objects that point to the same message. Copying a message_ptr object

adds one to the count. The message is deleted when count becomes zero.

Sending and receiving message_ptr<T> objects simulates message passing in Java.

� Messages are shared by the sending and receiving threads

� messages are automatically deleted when they are no longer being referenced.

� virtually any type T of message object can be used.

Example: A message containing an integer:
 class Message {
 public:
 int contents;
 Message(int contents_) : contents(contents_){}
 Message(const Message& m) : contents(m.contents) {}
 Message* clone() const {return new Message(*this);}
 };

A Message object can be sent over channel deposit using:
 mailbox<Message> deposit; // create a mailbox for Message objects

message_ptr<Message> m(new Message(i)); // create a message object m
deposit.send(m); // send message m

Message objects are received using:
 message_ptr<Message> m = deposit.receive();
 std::cout << "Received:" << m->contents << std::endl;

The receiver expects mutually exclusive access to the message.

If the sender needs to access a message after it is sent, or just to be completely safe, the
sender should send a copy of the message:

 Message m1(1);
 message_ptr<Message> m2(m1.clone()); // send copy of m1
 deposit.send(m2);

The link and port classes can easily be produced from C++ class mailbox<T> and the
Java link and port counterparts.

Listing 5.6 shows a C++/Win32/Pthreads version of the Java bounded buffer program in
Listing 5.4.

class Message {
public:
 int contents;
 Message(int contents_) : contents(contents_){}
 Message(const Message& m) : contents(m.contents) {}
 Message* clone() const {return new Message(*this);}
};

class Producer : public Thread {
private:
 mailbox<Message>& deposit;
public:
 Producer (mailbox<Message>& deposit_) : deposit(deposit_) {}
 virtual void* run () {
 for (int i=0; i<3; i++) {
 message_ptr<Message> m(new Message(i));
 std::cout << "Producing " << i << std::endl;
 deposit.send(m);
 }
 return 0;
 }
};

class Consumer : public Thread {
private:
 mailbox<Message>& withdraw;
public:
 Consumer (mailbox<Message>& withdraw_) : withdraw(withdraw_) {}
 virtual void* run () {
 for (int i=0; i<3; i++) {
 message_ptr<Message> m = withdraw.receive();
 std::cout << "Consumed " << m->contents << std::endl;
 }
 return 0;
 }
};

class Buffer : public Thread {
private:
 mailbox<Message>& deposit; mailbox<Message>& withdraw;
public:
 Buffer (mailbox<Message>& deposit_, mailbox<Message>& withdraw_)
 : deposit(deposit_), withdraw(withdraw_) {}
 virtual void* run () {
 for (int i=0; i<3; i++) {
 message_ptr<Message> m = deposit.receive(); withdraw.send(m);
 }
 return 0;
 }
};

int main () {
 mailbox<Message> deposit; mailbox<Message> withdraw;
 std::auto_ptr<Producer> producer(new Producer(deposit));
 std::auto_ptr<Consumer> consumer(new Consumer(withdraw));
 std::auto_ptr<Buffer> buffer(new Buffer(deposit,withdraw));
 producer->start(); consumer->start(); buffer->start();
 producer->join(); consumer->join(); buffer->join();
 return 0;
}

Listing 5.6 C++ bounded buffer using channels.

5.2 Rendezvous

The following message-passing paradigm is common in a client-server environment:

 Clienti Server
 loop {
 request.send(clientRequest); � clientRequest = request.receive();
 /* process clientRequest and compute result */
 result = replyi.receive(); ⇐ replyi.send(result);
 }

Implementing this with basic message passing:

� one channel that the server can use to receive client requests

� one channel for each client’s reply. That is, each client uses a separate channel to

receive a reply from the server.

This paradigm can be implemented instead as follows:

 Client Server
 entry E;
 loop {
 E.accept(clientRequest, result) {
 E.call(clientRequest,result); ⇔ /* process Client’s request and compute result */
 } // end accept()
 } // end loop

The server uses a new type of channel called an entry.

In the client, the pair of send and receive statements:

 request.send(clientRequest);
 result = reply.receive();

is combined into the single entry call statement: E.call(clientRequest, result);

This call on entry E is very similar to a procedure call:

� Object clientRequest holds the message being sent to the server. When the call returns,

object result will hold the server’s reply.

In the server, the code that handles the client’s request is in the form an accept statement

for entry E:

 E.accept(clientRequest,result) {
 /* process the clientRequest and compute result*/
 result = ...;
 }

Only one thread can accept the entry calls made to a given entry. When a server thread

executes an accept statement for entry E:

� if no entry call for entry E has arrived, the server waits

� if one or more entry calls for E have arrived, the server accepts one call and executes

the body of the accept statement. When the execution of the accept statement is

complete, the entry call returns to the client with the server’s reply, and the client and

server continue execution.

This interaction is referred to as a rendezvous.

� Rendezvous are a form of synchronous communication.

� A client making an entry call is blocked until the call is accepted and a reply is

returned.

� Executing an accept statement blocks the server until an entry call arrives.

Listing 5.7 shows a Java class named entry that simulates a rendezvous [. Class entry

uses the link and port channels of section 5.1.

A client issues an entry call to entry E as follows:

 reply = E.call(clientRequest);

class entry {
 private port requestChannel = new port();
 private callMsg cm;
 public Object call(Object request) throws InterruptedException {
 link replyChannel = new link();
 requestChannel.send(new callMsg(request,replyChannel));
 return replyChannel.receive();
 }
 public Object call() throws InterruptedException {
 link replyChannel = new link();
 requestChannel.send(new callMsg(replyChannel));
 return replyChannel.receive();
 }
 public Object accept() throws InterruptedException {
 // check the for multiple callers is not shown
 cm = (callMsg) requestChannel.receive();
 return cm.request;
 }
 public void reply(Object response) throws InterruptedException {
 cm.replyChannel.send(response);
 }
 public void reply() throws InterruptedException { cm.replyChannel.send(); }
 public Object acceptAndReply() throws InterruptedException {
 // the check for multiple callers is not shown
 cm = (callMsg) requestChannel.receive();
 cm.replyChannel.send(new Object()); // send empty reply back to client
 return cm.request;
 }
 private class callMsg {
 Object request;
 link replyChannel;
 callMsg(Object m, link c) {request=m; replyChannel=c;}
 callMsg(link c) {request = new Object(); replyChannel=c;}
 }
}

Listing 5.7 Java class entry.

Implementation of method call():

� a send() operation is issued on a port named requestChannel.

� The send() operation sends the clientRequest, along with a link named replyChannel,

to the server.

� A new replyChannel is created on each execution of call(), so that each client sends its

own replyChannel to the server.

� The call() operation ends with replyChannel.receive(), allowing the client to wait for

the server’s reply.

The server accepts entry calls from its client and issues a reply:

 request = E.accept(); // accept client’s call to entry E
 …
 E.reply(response); // reply to the client

The accept() method in class Entry is implemented using a receive() operation on the

requestChannel (see Fig. 5.8):

� accept() receives the clientRequest and the replyChannel that was sent with it.

� accept() saves the replyChannel and returns the clientRequest to the server thread.

� method reply() sends the server’s response back to the client using

replyChannel.send().

� the client waits for the server’s response by executing replyChannel.receive() in

method call().

 Figure 5.8 Implementing entries.

If the server does not need to compute a reply for the client, the server can execute

method acceptAndReply():

� accepts the client’s request and sends an empty reply back to the client so that the

client is not delayed.

� The client simply ignores the reply.

Listing 5.9 shows a client and server program using Java entries and rendezvous.

public final class clientServer {
 public static void main (String args[]) {
 entry E = new entry();
 Client c1 = new Client(E, 2); // send value 2 to the server using entry E
 Client c2 = new Client(E, 4); // send value 4 to the server using entry E
 Server s = new Server(E);
 s.setDaemon(true);
 s.start(); c1.start(); c2.start();
 }
}
final class Message {
 public int number;
 Message(int number) { this.number = number; }
}
final class Client extends Thread {
 private entry E;
 int number;
 public Client (entry E, int number) { this.E = E; this.number = number; }
 public void run () {
 try {
 // send number and wait for reply
 int i = ((Integer)E.call(new Message(number))).intValue();
 System.out.println (number + " x " + number + " = " + i); // e.g., 2x2=4.
 }
 catch(InterruptedException e) {}
 }
}
final class Server extends Thread {
 private entry E;
 public Server (entry E) { this.E = E; }
 public void run () {
 Message m; int number;
 while (true) {
 try {
 m = ((Message) E.accept()); // accept number from Client
 number = m.number;
 E.reply(new Integer(number*number)); // reply to client

 }
 catch(InterruptedException e) {}
 }
 }
}
Listing 5.9 Client and server using Java entries and rendezvous.

5.3 Selective Wait

Assume that server thread boundedBuffer has entries deposit and withdraw. Two possible

implementations of the run() method of thread boundedBuffer are shown below:

 Implementation 1 Implementation 2
 while (true) { while (true) {
 if (buffer is not full) { if (buffer is not empty) {
 item = deposit.acceptAndReply(); withdraw.accept();
 … …
 } withdraw.reply(item);
 }
 if (buffer is not empty) {
 withdraw.accept(); if (buffer is not full) {
 … item = deposit.acceptAndReply();
 withdraw.reply(item); …
 } }
 } }

Both implementations create unnecessary delays for threads calling entries deposit and

withdraw:

� Implementation 1: while boundedBuffer is blocked waiting to accept an entry call to

deposit, it is possible that a call to withdraw has arrived and is waiting to be accepted.

� Implementation 2: while boundedBuffer is blocked waiting to accept an entry call to

withdraw, it is possible that a call to deposit has arrived and is waiting to be accepted.
� allow a thread to wait for a set of entries instead of a single entry:

 select:
 when (the buffer is not full) => accept a call to entry deposit and deposit the item;
 or
 when (the buffer is not empty) => accept a call to entry withdraw and return item;
 end select;

When one of the entries is acceptable and the other is not, then the acceptable entry is

selected for execution. When both entries are acceptable, then one of them is selected for

execution.

The Ada language provides a select statement just like the one above.

A select statement can optionally contain either a delay or else alternative:

� A delay t alternative is selected if no entry can be accepted within t seconds.

� An else alternative is executed immediately if no entries are acceptable.

Ada’s selective wait statement can be simulated in Java by a class named selectiveWait:

1. Create a selectiveWait object

 selectiveWait select = new selectiveWait();

2. Add one or more selectableEntry objects to the selectiveWait:

 selectableEntry deposit = new selectableEntry();
 selectableEntry withdraw = new selectableEntry();
 select.add(deposit);
 select.add(withdraw);

selectableEntry objects are entry objects that have been extended so they can be used as

alternatives in a selectiveWait.

A selectiveWait can also contain one delayAlternative:

 selectiveWait.delayAlternative delayA = select.new delayAlternative(500); // .5 sec.

or one elseAlternative (but not both):

 selectiveWait.elseAlternative elseA = select.new elseAlternative();

A delay or else alternative is added to a selective wait in the same way as a

selectableEntry: select.add(delayA);

Each selectableEntry and delayAlternative is associated with a condition, called a guard,

which determines whether the alternative is allowed to be selected.

The guard for each selectableEntry and delayAlternative must be evaluated before a

selection takes place.

Method guard() is called with a boolean expression that sets the guard to true or false:

 deposit.guard (fullSlots<capacity); // guard set to boolean value (fullSlots<capacity)
 withdraw.guard(fullSlots>0); // guard set to boolean value (fullSlots>0)
 delayA.guard(true); // guard is always set to true

Method choose() selects one of the alternatives with a true guard:

 switch (select.choose()) {
 case 1: deposit.acceptAndReply(); /* alternative 1 */
 …
 break;
 case 2: withdraw.accept(); /* alternative 2 */
 …
 withdraw.reply(value);
 break;
 case 3: delayA.accept(); /* alternative 3 */
 break;
 }

Method choose() returns the alternative number of the selected alternative. Alternative

numbers are based on the order in which the alternatives are added to the selective wait.

In the example above,
� selectableEntry object deposit was added first, thus its alternative number is 1.

� the alternative number for withdraw is 2

� the number for delayA is 3.

A switch statement uses the alternative number to execute the appropriate alternative.

When the selectiveWait contains no delay or else alternatives:

� choose() will select an open accept() alternative (i.e., one with a true guard) that has a

waiting entry call.

� if several accept() alternatives are open and have waiting entry calls, the one whose

entry call arrived first is selected.

� if one or more accept() alternatives are open but none have a waiting entry call,

choose() blocks until an entry call arrives for one of the open accept() alternatives.

When the selectiveWait has an else or delay alternative:

� an else alternative is executed if all the accept() alternatives are closed, or all the open

accept() alternatives have no waiting entry calls.

� an open delay alternative is selected when its expiration time is reached if no open

accept() alternatives can be selected prior to the expiration time.

When all of the guards of the accept alternatives are false, and there is no delay

alternative with a true guard and no else alternative, method choose() throws a

SelectException indicating that a deadlock has been detected.

Listing 5.10 shows a boundedBuffer server class that uses a selective wait. The

delayAlternative simply displays a message when it is accepted.

Note that the guards of all the alternatives are evaluated each iteration of the while-loop.

� Changes made to variables fullSlots and emptySlots in the alternatives of the switch

statement may change the values of the guards for entries deposit and withdraw.

� This requires each guard to be reevaluated before the next selection occurs.

final class boundedBuffer extends Thread {
 private selectableEntry deposit, withdraw;
 private int fullSlots=0; private int capacity = 0;
 private Object[] buffer = null; private int in = 0, out = 0;
 public boundedBuffer(selectableEntry deposit, selectableEntry withdraw, int capacity)
 { this.deposit = deposit; this.withdraw = withdraw; this.capacity = capacity;
 buffer = new Object[capacity];
 }

 public void run() {
 try {
 selectiveWait select = new selectiveWait();
 selectiveWait.delayAlternative delayA = select.new delayAlternative(500);
 select.add(deposit); // alternative 1
 select.add(withdraw); // alternative 2
 select.add(delayA); // alternative 3
 while(true) {
 withdraw.guard(fullSlots>0);
 deposit.guard (fullSlots<capacity);
 delayA.guard(true);
 switch (select.choose()) {
 case 1: Object o = deposit.acceptAndReply();
 buffer[in] = o;
 in = (in + 1) % capacity; ++fullSlots;
 break;
 case 2: withdraw.accept();
 Object value = buffer[out];
 withdraw.reply(value);
 out = (out + 1) % capacity; --fullSlots;
 break;
 case 3: delayA.accept();
 System.out.println("delay selected");
 break;
 }
 }
 } catch (InterruptedException e) {}
 catch (SelectException e) {
 System.out.println("deadlock detected"); System.exit(1);
 }
 }
}

Listing 5.10 Java bounded buffer using a selectiveWait.

5.4 Message-Based Solutions to Concurrent Programming Problems

5.4.1 Readers and Writers

Listing 5.11 shows a solution to the readers and writers problem for strategy R>W.1

(many readers or one writer, with readers having a higher priority).

Class Controller uses a selectiveWait with selectablePort objects startRead, endRead,

startWrite, and endWrite.

(A selectablePort object is a synchronous port that can be used in selective waits.)

� The guard for startRead is (!writerPresent), which ensures that no writers are writing

when a reader is allowed to start reading.

� The guard for startWrite is (!writerPresent && readerCount == 0 &&

startRead.count() == 0). This allows a writer to start writing only if no other writer is

writing, no readers are reading, and no reader is waiting for its call to startRead to be

accepted.

� Note: the call to startRead.count() returns the number of startRead.send() operations

that are waiting to be received.

The selectablePorts are private members of Controller and thus cannot be directly

accessed by reader and writer threads:

� readers and writers call public methods read() and write(), respectively.

� public methods read() and write() their calls on to the private entries, ensuring that the

entries are called in the correct order (i.e., startRead is called before endRead, and

startWrite is called before endWrite).

final class Controller extends Thread {
//Strategy R>W.1 : Many readers or one writer; readers have a higher priority
 private selectablePort startRead = new selectablePort ();
 private selectablePort endRead = new selectablePort ();
 private selectablePort startWrite = new selectablePort ();
 private selectablePort endWrite = new selectablePort ();
 private boolean writerPresent = false;
 private int readerCount = 0; private int sharedValue = 0;
 public int read() {
 try {startRead.send();} catch(Exception e) {}
 int value = sharedValue;
 try {endRead.send();} catch(Exception e) {}
 return value;
 }
 public void write(int value) {
 try {startWrite.send();} catch(Exception e) {}
 sharedValue = value;
 try {endWrite.send();} catch(Exception e) {}
 }
 public void run() {
 try {
 selectiveWait select = new selectiveWait();
 select.add(startRead); // alternative 1
 select.add(endRead); // alternative 2
 select.add(startWrite); // alternative 3
 select.add(endWrite); // alternative 4
 while(true) {
 startRead.guard(!writerPresent);
 endRead.guard(true);
 startWrite.guard(!writerPresent && readerCount == 0 &&
 startRead.count() == 0);
 endWrite.guard(true);
 switch (select.choose()) {
 case 1: startRead.receive(); ++readerCount; break;
 case 2: endRead.receive(); --readerCount; break;
 case 3: startWrite.receive(); writerPresent = true; break;
 case 4: endWrite.receive(); writerPresent = false; break;
 }
 }
 } catch (InterruptedException e) {}
 }
}

Listing 5.11 Readers and writers using a selectiveWait.

5.4.2 Resource Allocation

Listing 5.12 shows a solution to the resource allocation problem.

� A resourceServer manages three resources.

� A client calls entry acquire to get a resource and entry release to return the resource.

� Vector resources contains the IDs of the available resources.

� The integer available is used to count the number of available resources.

� A resource can be acquired if the guard (available>0) is true.

� A resource’s ID is given to the client that acquires the resource. The client gives the

resource ID back when it releases the resource.

Listing 5.13 shows an SU monitor solution for this same resource allocation problem.

Monitor resourceMonitor and thread resourceServer demonstrate a mapping between

monitors and server threads:

� Thread resourceServer is an active object that executes concurrently with the threads

that call it.

� The resourceMonitor is a passive object, not a thread, which does not execute until it

is called.

� A monitor cannot prevent a thread from entering one of its methods (although the

monitor can force threads to enter one at a time). However, once a thread enters the

monitor, the thread may be forced to wait on a condition variable until a condition

becomes true.

� Condition synchronization in a server thread works in the opposite way. A server

thread will prevent an entry call from being accepted until the condition for accepting

the call becomes true.

It has been shown elsewhere that a program that uses shared variables with semaphores

or monitors can be transformed into an equivalent program that uses message passing,

and vice versa.

final class resourceServer extends Thread {
 private selectableEntry acquire;
 private selectableEntry release;
 private final int numResources = 3;
 private int available = numResources;
 Vector resources = new Vector(numResources);
 public resourceServer(selectableEntry acquire, selectableEntry release) {
 this.acquire = acquire;
 this.release = release;
 resources.addElement(new Integer(1));
 resources.addElement(new Integer(2));
 resources.addElement(new Integer(3));
 }
 public void run() {
 int unitID;
 try {
 selectiveWait select = new selectiveWait();
 select.add(acquire); // alternative 1
 select.add(release); // alternative 2
 while(true) {
 acquire.guard(available > 0);
 release.guard(true);
 switch (select.choose()) {
 case 1: acquire.accept();
 unitID = ((Integer) resources.firstElement()).intValue();
 // Replying early allows the client to proceed as soon as possible
 acquire.reply(new Integer(unitID));
 --available;
 resources.removeElementAt(0);
 break;
 case 2: unitID = ((Integer)
 release.acceptAndReply()).intValue();
 ++available;
 resources.addElement(new Integer(unitID));
 break;
 }
 }
 } catch (InterruptedException e) {}
 }
}

Listing 5.12 Resource allocation using a selectiveWait.

final class resourceMonitor extends monitorSU {
 private conditionVariable freeResource = new conditionVariable();
 private int available = 3;
 Vector resources = new Vector(3);
 public resourceMonitor() {
 resources.addElement(new Integer(1));
 resources.addElement(new Integer(2));
 resources.addElement(new Integer(3));
 }
 public int acquire() {
 int unitID;
 enterMonitor();
 if (available == 0)
 freeResource.waitC();
 else
 --available;
 unitID = ((Integer)resources.firstElement()).intValue();
 resources.removeElementAt(0);
 exitMonitor();
 return unitID;
 }
 public void release(int unitID) {
 enterMonitor();
 resources.addElement(new Integer(unitID));
 if (freeResource.empty()) {
 ++available;
 exitMonitor();
 }
 else
 freeResource.signalC_and_exitMonitor();
 }
}

Listing 5.13 Resource allocation using a monitor.

5.4.3 Simulating Counting Semaphores

Listing 5.14 shows an implementation of a countingSemaphore that uses a selectiveWait

with selectablePorts named P and V.

Clients call public methods P() and V(), which pass the calls on to the (private) ports.

A P() operation can be performed only if the guard (permits>0) is true.

final class countingSemaphore extends Thread {
 private selectablePort V, P;
 private int permits;
 public countingSemaphore(int initialPermits) {permits = initialPermits;}
 public void P() { P.send();}
 public void V() {V.send();}
 public void run() {
 try {
 selectiveWait select = new selectiveWait();
 select.add(P); // alternative1
 select.add(V); // alternative 2
 while(true) {
 P.guard(permits>0);
 V.guard(true);
 switch (select.choose()) {
 case 1: P.receive();
 --permits;
 break;
 case 2: V.receive();
 ++permits;
 break;
 }
 }
 } catch (InterruptedException e) {}
 }
}

Listing 5.14 Using a selectiveWait to simulate a counting semaphore.

