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Steps in Using COMET/UML  

1  Develop Software Requirements Model  
–  Develop Use Case Model (Chapter 6) 

2  Develop Software Analysis Model 
–  Develop static model of problem domain (Chapter 7) 
–  Structure system into objects (Chapter 8) 
–  Develop statecharts for state dependent objects (Chapter 10) 
–  Develop object interaction diagrams for each use case (Chapter 9, 11) 

3  Develop Software Design Model 
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Outline 

•  Building blocks of static modeling: 
–  Objects and Classes 
–  Class Diagrams  
–  Relationships between classes 

•  Associations 
•  Composition / Aggregation 
•  Generalization / Specialization 

•  Preliminary Class Design 
–  Identifying candidate classes 
–  Conceptual static model 
–  System Context Class Diagram 
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Class Diagrams 

•  UML class diagrams capture the static structure of a system 
•  Class 

–  Analysis-level class often corresponds to real-world things 
–  Represents a collection of identical objects (instances) 
–  Described by means of attributes (data items) 
–  Has operations to access data maintained by objects 
–  Each object instance can be uniquely identified 

•  Relationships between classes 
–  Associations 
–  Composition / Aggregation 
–  Generalization / Specialization 



Copyright © 2014 H. Gomaa / R. Pettit 5 

Associations 

•  Association is  
–  Static, structural relationship between classes 
–  E.g, Employee works in  Department  

•  Multiplicity of Associations  
–  Specifies how many instances of one class may relate to a 

single instance of another class 
–  Options for multiplicity: 

•  1-to-1 
•  1-to-many 
•  0, 1, or many 
•  Many-to-many 
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1-to-1 Associations 

Located by 

1 

«entity»  
Real Estate Property 

propertyType : String   
lotSize :  Acre                    
residential:  Boolean       
assessedValue :  Dollar        
address:  Address 

«entity»  
Address 

street: String                    
city: String                         
state: String                          
zip: String 

1 

Class Stereotype 

Class Name 

Attributes 

Navigability 



Copyright © 2014 H. Gomaa / R. Pettit 7 

1-to-Many Associations 

Manages 

1..* 

«entity» 
Bank 

bankName : String 
bankAddress : String 

«entity» 
Account 

accountNumber : Integer 
balance: Real 

1 
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Optional (0, 1, or Many) 
Associations 

Owns 

0..1 

«entity» 
Customer 

customerName : String 
customerSSN : String 
customerAddress : String 

«entity» 
DebitCard 

cardId : Integer 
PIN: String 
startDate : Date 
expirationDate : Date 
status: Integer 
limit: Real 
total: Real 

1 Owns 

0..* 

«entity» 
Customer 

customerName : String 
customerSSN : String 
customerAddress : String 

«entity» 
CreditCard 

cardType : String  
cardId : Integer 
startDate : Date 
expirationDate : Date 
status: Integer 

1 
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Many-to-Many Associations 

Enrolls 

* 

* 

«entity»  
Course 

courseId : String  
courseName : String  

section#: Integer     
semester: String 

«entity»  
Student 

studentName : String  
studentSSN : String  

studentAddress : String  
studentType : String 
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Composition and Aggregation 
Hierarchies 

•  Whole/Part Relationships 
–  Show components of more complex class 
–  Composition is stronger relationship than aggregation 

•  Composition Hierarchy 
–  Whole and part objects are created, live, die together 
–  Often also has a physical association  
–  Association between instances 

•  Aggregation Hierarchy 
–  Part objects of aggregate object may be created and deleted 

independently of aggregate object 
–  Often used for more abstract whole/part relationships than 

composite objects 
–  UML provides “light” semantic support for aggregation 

•  Better to use composition in most cases 
•  Aggregation can be modeled with basic associations 
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Example - Composition 

1..* 1..* 1 1

ElevatorElevator

ElevatorButton

destinationFloor# : 

Integer

ElevatorButton

destinationFloor# : 

Integer

ElevatorLamp

destinationFloor# : 

Integer 

ElevatorLamp

destinationFloor# : 

Integer 

elevator# :Integer

currentFloor# : Integer

direction : DirectionType

Motor Door
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Example - Aggregation 

1 1..*
1..*

«aggregate» 

College

collegeName: String 

dean: String

«entity»      

Admin Office

location: String 

phone#: String 

administrator: String 

«entity» 

Department

deptName: String 

deptLocation: String 

deptPhone#: String 

chairPerson: String     

secretary: String

«entity» 

Research Center

name: String           

location: String       

phone#: String             

head: String            

funding: Real        

foundingDate: Date 

renewalDate: Date
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Generalization / Specialization 
Hierarchy 

•  Some classes are similar but not identical 
–  Have some attributes in common, others different 

•  Common attributes abstracted into generalized class (superclass) 
–  E.g., Account (Account number, Balance) 

•  Different attributes are properties of specialized class (subclass) 
–  E.g., Savings Account (Interest) 

•  Inheritance is best applied during design 
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Example - Generalization 

«entity»

Account

accountNumber: Integer

balance: Real

«entity»

CheckingAccount

lastDepositAmount: Real

«entity»

SavingsAccount

interest: Real
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Outline 

•  Building blocks of static modeling: 
–  Class Diagrams  
–  Relationships between classes 

•  Associations 
•  Composition / Aggregation 
•  Generalization / Specialization 

•  Preliminary Class Design 
–  System Context Class Diagram 
–  Identifying candidate classes 
–  Conceptual static model 
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Preliminary Class Design 

•  Static Model 
–  Represents static structure of system 

•  Static Modeling 
–  Analysis Modeling 

•  Defines system context 
•  Identifies problem-domain classes 
•  Defines attributes of classes 
•  Defines relationships between classes 

–  Design Modeling  
•  Defines operations of each class 
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Approach to Static Modeling 

•  Practitioners differ on how to apply static modeling 
–  Model all classes 
–  Only model entity (data) classes 
–  Different modeling levels between analysis and design 

•  COMET Approach: 
–  Conceptual static model early in analysis 

•  Captures problem-domain entity classes and 
relationships 

•  Deviation for this class: 
– Model all types of classes, not just entity classes 

–  Context diagram 
•  Identifies system context with respect to classes 

–  Static model refined in “Class Design” to include solution-
domain details 
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Preliminary Class Identification 
•  Determine all software objects in system 

–  Use Object Structuring Criteria 
–  Guidelines for identifying objects 
–  Approach is iterative  

•  Between analysis & design and static & dynamic models 
•  Structuring criteria depicted using stereotypes  
•  Stereotype used to further indicate types of classes 

–  Can be thought of as a behavioral pattern for the class 
•   «entity», «control», etc. 

•  Identify classes from: 
–  Walking through use case specifications 
–  Interface requirements 
–  Persistent data requirements 
–  Dynamic models 



Copyright © 2014 H. Gomaa / R. Pettit 

Application Class Stereotypes 

•  «boundary» 
–  Provides the interface for external interactions 
–  1:1 correlation with «external» classes 

•  «entity» 
–  Manages persistent data 

•  «control» 
–  Central controller for one or more use case scenarios 

•  «timer» 
–  Special purpose controller specifically used for time-

triggered control 
•  «algorithm» 

–  Encapsulates application specific algorithms 

19 
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Analysis Classes: Level of Detail 

•  Each class represents a problem domain abstraction 
–  Maps to real-world concept for your application 

•  Each class should contain: 
–  Name 
–  Stereotype 
–  Attributes 

•  Attribute name is mandatory 
•  Attribute type and visibility are optional 

–  Operations 
•  Optional during object-structuring 
•  Only high-level at this stage 

–  Indicate main responsibilities of the class 
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Quality Factors of Analysis 
Classes 

•  The makings of a good analysis class: 
–  Name indicates its purpose 
–  Represents problem-domain abstraction 

•  Recognizable by stakeholders 
–  Single-purpose 

•  Cohesive grouping of data and functions 
•  Relatively small and focused set of responsibilities 

–  Loosely coupled 
•  Minimized dependencies on other classes 



Copyright © 2014 H. Gomaa / R. Pettit 22 

General Guidelines 

•  Keep it simple 
–  3-5 responsibilities per class 

•  No isolated classes 
•  Beware of classes that should really be attributes 

–  Question models with many very small classes 
•  Beware of omnipotent classes 

–  Question models with very few, but very large classes 
•  Beware of structured (functional) analysis disguised as OO 
•  Avoid overuse of inheritance 
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Identifying «boundary» Classes 

•  One-to-one mapping with «external» objects 

Copyright 2000 H. Gomaa 

«boundary» 
aTemperature 

SensorInterface 

Temperature  
Sensor Input 

Temperature  
Sensor data «external» 

aReal-World 
Temperature 

Sensor 

Real-world  
hardware object Software object 

Hardware/software boundary  
(for illustration only – not UML) 
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System Context Class 
Diagram 

•  Defines boundary between system and external environment 
–  May be depicted on System Context Class Diagram  

•  External classes 
–  External entities that the software system interfaces to 

•  Devices, users, systems, timers, etc. 
–  Not implemented by the software system 

•  Abstract classes used to define the system boundaries 
–  Stereotyped as «external» 
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Example - Context Diagram 
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Identifying Entity Classes 

•  Entity classes 
–  Long lasting objects that store information 

•  Same object typically accessed by many use cases 
•  Information persists over access by several use cases 

–  E.g., Account, Customer  
–  Entity classes and relationships shown on static model 
–  Entity classes often mapped to relational database during 

design 
–  Examples: Figs. 9.9 – 9.10 
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Example – Entity Class 

Copyright 2000 H. Gomaa 
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Identifying Control Classes 
•  Control classes 

–  Provide  overall coordination for execution of use case 
–  Glue that unites other objects that participate in use case 
–  Makes overall decisions 
–  Decides when, and in what order, other objects participate in 

use case. 
•  Entity objects 
•  boundary objects 

–  Simple use cases do not need control classes 
–  More complex use case usually has at least one control 

class 
–  Often discovered during dynamic modeling 



Copyright © 2014 H. Gomaa / R. Pettit 

Example – Control Objects 

29 
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Identifying Algorithm Classes 

•  «algorithm» 
–  Encapsulates algorithm used in problem domain 
–  Application specific logic 
–  Used when you want to capture a specific algorithm or piece 

of business logic that needs to be maintained as its own 
class 

•  For maintainability 
•  To be able to easily change algorithms in the application 

–  Example: Fig. 9.14 
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Example – Algorithm Object 
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Identifying Classes - Recap 

•  Analysis 
–  Classes should directly relate to problem domain 

•  Design 
–  Software objects added to address solution domain 

•  Identify objects from… 
–  Use case model 
–  Requirements specification 
–  Dynamic model 

•  Classes created on a UML class diagram 
•  Static model captures structural relationships between classes 

and class instances (objects) 
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Summary: Analysis Level Static 
Modeling 

•  During Analysis Modeling 
–  Conceptual static model 
–  Emphasizes real-world classes in the problem domain 
–  Does not specifically address software solution classes 
–  Preliminary set of problem-domain classes and their 

structural relationships 
–  In COMET, the use of inheritance is minimized until later in 

the design process 
–  Initial static model will continue to evolve through the design 

lifecycle 


