
Copyright © 2014 H. Gomaa / R. Pettit

Static Modeling
SWE 321
Fall2014

Copyright © 2014 Hassan Gomaa and Robert Pettit

All rights reserved. No part of this document may be reproduced in any form or by
any means, without the prior written permission of the author.

This electronic course material may not be distributed by e-mail or posted on any
other World Wide Web site without the prior written permission of the authors.

1

Copyright © 2014 H. Gomaa / R. Pettit Copyright 2006 H. Gomaa
15

Requirements
Modeling

Analysis
Modeling

Incremental
Software

Construction
Incremental

Software
Integration

Incremental
Prototyping

System
Testing

Throwaway
Prototyping

Design
Modeling

User

Customer

1
2

34 5

6

7

8

14
9

15

10
11
12
13

2

Steps in Using COMET/UML

1 Develop Software Requirements Model
–  Develop Use Case Model (Chapter 6)

2 Develop Software Analysis Model
–  Develop static model of problem domain (Chapter 7)
–  Structure system into objects (Chapter 8)
–  Develop statecharts for state dependent objects (Chapter 10)
–  Develop object interaction diagrams for each use case (Chapter 9, 11)

3 Develop Software Design Model

Copyright © 2014 H. Gomaa / R. Pettit 3

Outline

•  Building blocks of static modeling:
–  Objects and Classes
–  Class Diagrams
–  Relationships between classes

•  Associations
•  Composition / Aggregation
•  Generalization / Specialization

•  Preliminary Class Design
–  Identifying candidate classes
–  Conceptual static model
–  System Context Class Diagram

Copyright © 2014 H. Gomaa / R. Pettit 4

Class Diagrams

•  UML class diagrams capture the static structure of a system
•  Class

–  Analysis-level class often corresponds to real-world things
–  Represents a collection of identical objects (instances)
–  Described by means of attributes (data items)
–  Has operations to access data maintained by objects
–  Each object instance can be uniquely identified

•  Relationships between classes
–  Associations
–  Composition / Aggregation
–  Generalization / Specialization

Copyright © 2014 H. Gomaa / R. Pettit 5

Associations

•  Association is
–  Static, structural relationship between classes
–  E.g, Employee works in Department

•  Multiplicity of Associations
–  Specifies how many instances of one class may relate to a

single instance of another class
–  Options for multiplicity:

•  1-to-1
•  1-to-many
•  0, 1, or many
•  Many-to-many

Copyright © 2014 H. Gomaa / R. Pettit 6

1-to-1 Associations

Located by

1

«entity»
Real Estate Property

propertyType : String
lotSize : Acre
residential: Boolean
assessedValue : Dollar
address: Address

«entity»
Address

street: String
city: String
state: String
zip: String

1

Class Stereotype

Class Name

Attributes

Navigability

Copyright © 2014 H. Gomaa / R. Pettit 7

1-to-Many Associations

Manages

1..*

«entity»
Bank

bankName : String
bankAddress : String

«entity»
Account

accountNumber : Integer
balance: Real

1

Copyright © 2014 H. Gomaa / R. Pettit 8

Optional (0, 1, or Many)
Associations

Owns

0..1

«entity»
Customer

customerName : String
customerSSN : String
customerAddress : String

«entity»
DebitCard

cardId : Integer
PIN: String
startDate : Date
expirationDate : Date
status: Integer
limit: Real
total: Real

1 Owns

0..*

«entity»
Customer

customerName : String
customerSSN : String
customerAddress : String

«entity»
CreditCard

cardType : String
cardId : Integer
startDate : Date
expirationDate : Date
status: Integer

1

Copyright © 2014 H. Gomaa / R. Pettit 9

Many-to-Many Associations

Enrolls

*

*

«entity»
Course

courseId : String
courseName : String

section#: Integer
semester: String

«entity»
Student

studentName : String
studentSSN : String

studentAddress : String
studentType : String

Copyright © 2014 H. Gomaa / R. Pettit 10

Composition and Aggregation
Hierarchies

•  Whole/Part Relationships
–  Show components of more complex class
–  Composition is stronger relationship than aggregation

•  Composition Hierarchy
–  Whole and part objects are created, live, die together
–  Often also has a physical association
–  Association between instances

•  Aggregation Hierarchy
–  Part objects of aggregate object may be created and deleted

independently of aggregate object
–  Often used for more abstract whole/part relationships than

composite objects
–  UML provides “light” semantic support for aggregation

•  Better to use composition in most cases
•  Aggregation can be modeled with basic associations

Copyright © 2014 H. Gomaa / R. Pettit 11

Example - Composition

1..* 1..* 1 1

ElevatorElevator

ElevatorButton

destinationFloor# :

Integer

ElevatorButton

destinationFloor# :

Integer

ElevatorLamp

destinationFloor# :

Integer

ElevatorLamp

destinationFloor# :

Integer

elevator# :Integer

currentFloor# : Integer

direction : DirectionType

Motor Door

Copyright © 2014 H. Gomaa / R. Pettit 12

Example - Aggregation

1 1..*
1..*

«aggregate»

College

collegeName: String

dean: String

«entity»

Admin Office

location: String

phone#: String

administrator: String

«entity»

Department

deptName: String

deptLocation: String

deptPhone#: String

chairPerson: String

secretary: String

«entity»

Research Center

name: String

location: String

phone#: String

head: String

funding: Real

foundingDate: Date

renewalDate: Date

Copyright © 2014 H. Gomaa / R. Pettit 13

Generalization / Specialization
Hierarchy

•  Some classes are similar but not identical
–  Have some attributes in common, others different

•  Common attributes abstracted into generalized class (superclass)
–  E.g., Account (Account number, Balance)

•  Different attributes are properties of specialized class (subclass)
–  E.g., Savings Account (Interest)

•  Inheritance is best applied during design

Copyright © 2014 H. Gomaa / R. Pettit 14

Example - Generalization

«entity»

Account

accountNumber: Integer

balance: Real

«entity»

CheckingAccount

lastDepositAmount: Real

«entity»

SavingsAccount

interest: Real

Copyright © 2014 H. Gomaa / R. Pettit 15

Outline

•  Building blocks of static modeling:
–  Class Diagrams
–  Relationships between classes

•  Associations
•  Composition / Aggregation
•  Generalization / Specialization

•  Preliminary Class Design
–  System Context Class Diagram
–  Identifying candidate classes
–  Conceptual static model

Copyright © 2014 H. Gomaa / R. Pettit 16

Preliminary Class Design

•  Static Model
–  Represents static structure of system

•  Static Modeling
–  Analysis Modeling

•  Defines system context
•  Identifies problem-domain classes
•  Defines attributes of classes
•  Defines relationships between classes

–  Design Modeling
•  Defines operations of each class

Copyright © 2014 H. Gomaa / R. Pettit 17

Approach to Static Modeling

•  Practitioners differ on how to apply static modeling
–  Model all classes
–  Only model entity (data) classes
–  Different modeling levels between analysis and design

•  COMET Approach:
–  Conceptual static model early in analysis

•  Captures problem-domain entity classes and
relationships

•  Deviation for this class:
– Model all types of classes, not just entity classes

–  Context diagram
•  Identifies system context with respect to classes

–  Static model refined in “Class Design” to include solution-
domain details

Copyright © 2014 H. Gomaa / R. Pettit 18

Preliminary Class Identification
•  Determine all software objects in system

–  Use Object Structuring Criteria
–  Guidelines for identifying objects
–  Approach is iterative

•  Between analysis & design and static & dynamic models
•  Structuring criteria depicted using stereotypes
•  Stereotype used to further indicate types of classes

–  Can be thought of as a behavioral pattern for the class
•  «entity», «control», etc.

•  Identify classes from:
–  Walking through use case specifications
–  Interface requirements
–  Persistent data requirements
–  Dynamic models

Copyright © 2014 H. Gomaa / R. Pettit

Application Class Stereotypes

•  «boundary»
–  Provides the interface for external interactions
–  1:1 correlation with «external» classes

•  «entity»
–  Manages persistent data

•  «control»
–  Central controller for one or more use case scenarios

•  «timer»
–  Special purpose controller specifically used for time-

triggered control
•  «algorithm»

–  Encapsulates application specific algorithms

19

Copyright © 2014 H. Gomaa / R. Pettit 20

Analysis Classes: Level of Detail

•  Each class represents a problem domain abstraction
–  Maps to real-world concept for your application

•  Each class should contain:
–  Name
–  Stereotype
–  Attributes

•  Attribute name is mandatory
•  Attribute type and visibility are optional

–  Operations
•  Optional during object-structuring
•  Only high-level at this stage

–  Indicate main responsibilities of the class

Copyright © 2014 H. Gomaa / R. Pettit 21

Quality Factors of Analysis
Classes

•  The makings of a good analysis class:
–  Name indicates its purpose
–  Represents problem-domain abstraction

•  Recognizable by stakeholders
–  Single-purpose

•  Cohesive grouping of data and functions
•  Relatively small and focused set of responsibilities

–  Loosely coupled
•  Minimized dependencies on other classes

Copyright © 2014 H. Gomaa / R. Pettit 22

General Guidelines

•  Keep it simple
–  3-5 responsibilities per class

•  No isolated classes
•  Beware of classes that should really be attributes

–  Question models with many very small classes
•  Beware of omnipotent classes

–  Question models with very few, but very large classes
•  Beware of structured (functional) analysis disguised as OO
•  Avoid overuse of inheritance

Copyright © 2014 H. Gomaa / R. Pettit 23

Identifying «boundary» Classes

•  One-to-one mapping with «external» objects

Copyright 2000 H. Gomaa

«boundary»
aTemperature

SensorInterface

Temperature
Sensor Input

Temperature
Sensor data «external»

aReal-World
Temperature

Sensor

Real-world
hardware object Software object

Hardware/software boundary
(for illustration only – not UML)

Copyright © 2014 H. Gomaa / R. Pettit 24

System Context Class
Diagram

•  Defines boundary between system and external environment
–  May be depicted on System Context Class Diagram

•  External classes
–  External entities that the software system interfaces to

•  Devices, users, systems, timers, etc.
–  Not implemented by the software system

•  Abstract classes used to define the system boundaries
–  Stereotyped as «external»

Copyright © 2014 H. Gomaa / R. Pettit

Example - Context Diagram

Copyright © 2014 H. Gomaa / R. Pettit 26

Identifying Entity Classes

•  Entity classes
–  Long lasting objects that store information

•  Same object typically accessed by many use cases
•  Information persists over access by several use cases

–  E.g., Account, Customer
–  Entity classes and relationships shown on static model
–  Entity classes often mapped to relational database during

design
–  Examples: Figs. 9.9 – 9.10

Copyright © 2014 H. Gomaa / R. Pettit 27

Example – Entity Class

Copyright 2000 H. Gomaa

Copyright © 2014 H. Gomaa / R. Pettit 28

Identifying Control Classes
•  Control classes

–  Provide overall coordination for execution of use case
–  Glue that unites other objects that participate in use case
–  Makes overall decisions
–  Decides when, and in what order, other objects participate in

use case.
•  Entity objects
•  boundary objects

–  Simple use cases do not need control classes
–  More complex use case usually has at least one control

class
–  Often discovered during dynamic modeling

Copyright © 2014 H. Gomaa / R. Pettit

Example – Control Objects

29

Copyright © 2014 H. Gomaa / R. Pettit 30

Identifying Algorithm Classes

•  «algorithm»
–  Encapsulates algorithm used in problem domain
–  Application specific logic
–  Used when you want to capture a specific algorithm or piece

of business logic that needs to be maintained as its own
class

•  For maintainability
•  To be able to easily change algorithms in the application

–  Example: Fig. 9.14

Copyright © 2014 H. Gomaa / R. Pettit 31

Example – Algorithm Object

Copyright © 2014 H. Gomaa / R. Pettit 32

Identifying Classes - Recap

•  Analysis
–  Classes should directly relate to problem domain

•  Design
–  Software objects added to address solution domain

•  Identify objects from…
–  Use case model
–  Requirements specification
–  Dynamic model

•  Classes created on a UML class diagram
•  Static model captures structural relationships between classes

and class instances (objects)

Copyright © 2014 H. Gomaa / R. Pettit 33

Summary: Analysis Level Static
Modeling

•  During Analysis Modeling
–  Conceptual static model
–  Emphasizes real-world classes in the problem domain
–  Does not specifically address software solution classes
–  Preliminary set of problem-domain classes and their

structural relationships
–  In COMET, the use of inheritance is minimized until later in

the design process
–  Initial static model will continue to evolve through the design

lifecycle

