
Computer and Software Division
The Aerospace Corporation
March 2011

Architectural Design Patterns for Flight
Software

Julie Fant1, Hassan Gomaa2, and Robert Pettit1
The Aerospace Corporation1 and George Mason University2

Outline

•  Introduction

•  Related Works

•  Research Approach

Ð  Selecting Patterns for FSW

Ð  Creating Design Pattern Templates for FSW

Ð  Capturing Software Performance in Design Pattern Templates

•  Real world case study

•  Conclusions and Future Work

Motivation for this research
•  Software design patterns are best practice solutions to common software problems

Ð  Avoid reinventing the wheel
Ð  Improvement in the -ilities

•  However, software design patterns can be difficult to apply in practice
Ð  Platform and domain independent
Ð  Can be applied at several different layers of abstraction

•  Taking advantage of design patterns is particularly import for the flight software (FSW)
domain

Ð  Increased FSW responsibilities has led to additional complexity and a greater
number of software related anomalies.
•  “In the period from 1998 to 2000, nearly half of all observed spacecraft

anomalies were related to software” [1]

Ð  NASA’s Study on Flight Software Complexity Report examined flight software
complexity and provided a series of recommendations to better manage the
associated challenge.
•  This presentation aligns with their recommendation to perform early analysis

and architecting [2]

Related Works

•  Several notable approaches and patterns for building real time software architectures
from design patterns

Ð  Only provide high level guidance applying design patterns
Ð  Do not take the additional step of providing domain specific executable design

pattern templates to make applying design patterns

•  Less research in applying design patterns to the FSW domain
Ð  Herrmann and Schöning use abstract factory and façade design patterns for

telemetry processing
•  Do not address how design patterns can be used for other FSW features

Ð  Several reference architectures for FSW that can be used as a starting point for FSW
•  Not design pattern based therefore they do not guarantee that the benefits of

design patterns will be leveraged in the architectures produced using them

•  Mission Data System (MDS) project provides a system level control architecture,
framework, and systems engineering methodology for developing state-based models for
planning and execution.

Ð  Our research complements and supports this work

Research Approach

•  Systematic approach for
designing common functionality
in FSW architectures from
software architectural design
patterns

Ð  Select Patterns for FSW

Ð  Create Design Pattern Templates for
FSW

Ð  Capture Software Performance in
Design Pattern Templates

Ð  Build FSW from design patterns Emphasis on common features that are
seen on a wide variety of spacecraft

Selecting Patterns for FSW
•  Select existing design patterns from the DRE domain that support FSW functionality

Ð  This can be accomplished because FSW is a type of DRE software
•  Emphasis on common features across the FSW domain

Ð  Command execution
Ð  Uplink/downlink telemetry
Ð  Others

•  Example : Command Execution involves determining the order in which spacecraft commands
are executed

Ð  Example patterns that can be used to support this feature
•  Centralized control

Ð  Single control component that conceptually executes a state machine
Ð  Benefits: control logic contained in single component therefore easier to maintain

and understand
Ð  Well suited for small spacecraft

•  Hierarchical control
Ð  Multiple control components that control some part of the system by conceptually

executing a state machine
Ð  Single coordinator that orchestrates overall control by determining next job and

sending it to controller for executing
Ð  Benefits: overall control handle by single component, but several controllers to

execute the work to avoid bottlenecks
Ð  Suited for larger spacecraft

Creating Design Pattern Templates for FSW

•  Create executable design pattern templates for the FSW domain
Ð  Makes the design patterns more directly applicable to FSW

architectures
Ð  Provide structure for design patterns
Ð  Save time when instantiating the design patterns

•  Executable design pattern templates
Ð  Captured using the UML

•  Both static and dynamic architectural views
Ð  State machines used to capture the internal behavior of each

concurrent component in the design pattern
•  Executed using Harl’s executable statechart semantics

Creating Design Pattern Templates for FSW
Example

Capturing Software Performance in Design
Pattern Templates
•  Platform independent software performance information captured with the MARTE

Profile

•  MARTE annotations are used in the sequence diagrams
Ð  MARTE stereotypes used depending on the type of performance analysis
Ð  For example, if the sequence diagram lends itself to analyzing response time

•  ÇGaWorkloadEventÈ stereotype is used to denote an event that triggers the
scenario on the sequence diagram.

•  ÇPaStepÈ stereotype is used on any step that is involved in the scenario

•  Contain platform independent software performance estimates
Ð  Captured in the tags of the MARTE stereotypes
Ð  Platform independent estimates are captured using comparative parameters

•  Example: 2t where t represents a platform specific multiplier relative to a
benchmark

Ð  When the design pattern templates are applied to a specific FSW architecture,
these parameters will be substituted for the platform specific values

SNOE Command and Data Handling (C&DH) Case
Study
•  Student Nitric Oxide Explorer (SNOE)

Ð  Real world, small satellite program from NASA
Ð  Mission involves using a spin stabilized

spacecraft in a low earth orbit to measure
thermospheric nitric oxide and its variability

Ð  The spacecraft instruments
•  ultraviolet spectrometer (UVS)
•  auroral photometer (AP)
•  solar soft X-ray photometer (SXP)
•  mircoGPS Bit-Grabber Space Receiver

Ð  All the science and engineering data collected is
downlinked to the ground for processing

Ð  The ground station is responsible for attitude
determination and monitoring long term health
and safety for the spacecraft and instruments

Ð  All data and commands are formatted using
Consultative Committee for Space Data Systems
(CCSDS) standards

Ð  Thermal control is passive and is handled solely
by the hardware

Ð  Limited hardware redundancy
Ð  One SC4A Single Board Spaceflight Computer

•  Five I/O blocks on two daughter boards that
handle interfacing to all subsystems

Building SNOE C&DH from Design Patterns

•  Selecting design patterns for SNOE
Ð  SNOE’s C&DH subsystem uses 11 patterns
Ð  Example: Command execution

•  SNOE controls a relatively small number of
hardware devices

•  Payload instruments require minimal
commanding from FSW

•  Centralized Control good match!

•  Executable templates are instantiated for SNOE
Ð  Example: Modified 5 Layer Pattern for FSW and

Layers Pattern

•  SNOE specific information is added to the templates

•  Finally, interconnect design pattern templates with
the rest of the architecture

Ð  Resulting software architecture can then be
validated using executable statechart semantics

SNOE Functional Validation

•  Example: Collect engineering data
scenario

Ð  Centralized_Controller receives,
validates, and determines response
to a ground command to collect the
spacecraft engineering data

Ð  Centralized_Controller sends this
command to the Eng_Data_Client to
execute

Ð  When the Eng_Data_Client receives
the command it moves into the
Preparing_Eng_Data_Request state
•  Prepares a request for the

Eng_Data_Server to get the
current engineering data

Eng_Data_Client state machine

Eng_Data_Server state machine

SNOE Functional Validation (cont)

•  Example: Collect engineering data
scenario (cont)

Ð  Eng_Data_Client then sends the
new request message to the
Eng_Data_Server through its
required port called REDServer
•  Eng_Data_Client transitions back

to the Idle state

•  Eng_Data_Server transitions into
Processing_Client_Request state

Ð  Eng_Data_Server processes the
request
•  Transitions to the

Preparing_Response state to
format a response message

Eng_Data_Client state machine

Eng_Data_Server state machine

SNOE Functional Validation (cont)

•  Example: Collect engineering data
scenario (cont)

Ð  Eng_Data_Server sends the
response to the Eng_Data_Client
through its required ported called,
REDClient
•  Eng_Data_Server transitions

back to the Idle state to wait for
the next request

Ð  Eng_Data_Client receives the
response message and transitions
into Processing Response State
•  Processes the response and

performs checks on the data

Eng_Data_Client state machine

Eng_Data_Server state machine

SNOE Functional Validation (cont)

•  Example: Collect engineering data
scenario (cont)

Ð  When processing is complete
Eng_Data_Client then sends the
data to the Telemetry_Formatter to
format that data into telemetry
packets for transmission through the
required port call RTFormat
•  Eng_Data_Client returns to the

Idle state

•  Process is repeated for other scenarios

Eng_Data_Client state machine

The Collect Engineering Data
scenario executed as expected

therefore it is validated!

Conclusions and Future Work

•  Conclusions
Ð  Presented an approach to building FSW from software architectural design patterns

•  Based on DRE software architecture patterns

•  Leverages the UML software modeling language
Ð  Using this approach will lead to

•  Better quality software architectures
•  Reduced number of onboard anomalies related to software design flaws

•  Future Work
Ð  Expand case study to include performance validation
Ð  Apply patterns to additional case studies
Ð  Look for ways to address feature variability in the FSW domain
Ð  Look for areas to automated the application of the executable design pattern templates
Ð  Expand research to other DRE domains
Ð  Explore state machine based code generators for rapid prototyping and software

performance benchmarking

