AEROSPACE

Assuring Space Mission Success

Architectural Design Patterns for Flight
Software

Julie Fant!, Hassan Gomaa?, and Robert Pettit!

The Aerospace Corporation! and George Mason University?

Computer and Software Division
The Aerospace Corporation
March 2011

Outline

Introduction

Related Works

Research Approach

b Selecting Patterns for FSW

D Creating Design Pattern Templates for FSW

b Capturing Software Performance in Design Pattern Templates

Real world case study

Conclusions and Future Work

@AEROSPACE

Motivation for this research

® Software design patterns are best practice solutions to common software problems
b Avoid reinventing the wheel
b Improvement in the -ilities

®* However, software design patterns can be difficult to apply in practice
b Platform and domain independent
b Can be applied at several different layers of abstraction

® Taking advantage of design patterns is particularly import for the flight software (FSW)
domain

b Increased FSW responsibilities has led to additional complexity and a greater
number of software related anomalies.

* “In the period from 1998 to 2000, nearly half of all observed spacecraft
anomalies were related to software” [1]

D NASA’s Study on Flight Software Complexity Report examined flight software
complexity and provided a series of recommendations to better manage the
associated challenge.

* This presentation aligns with their recommendation to perform early analysis
and architecting [2]

@AEROSPAGE

Related Works

® Several notable approaches and patterns for building real time software architectures
from design patterns

D Only provide high level guidance applying design patterns

D Do not take the additional step of providing domain specific executable design
pattern templates to make applying design patterns

® Less research in applying design patterns to the FSW domain

b Herrmann and Schéning use abstract factory and fagade design patterns for
telemetry processing

® Do not address how design patterns can be used for other FSW features
b Several reference architectures for FSW that can be used as a starting point for FSW

* Not design pattern based therefore they do not guarantee that the benefits of
design patterns will be leveraged in the architectures produced using them

¢ Mission Data System (MDS) project provides a system level control architecture,
framework, and systems engineering methodology for developing state-based models for
planning and execution.

D Our research complements and supports this work

@AEROSPAGE

Research Approach

® Systematic approach for
designing common functionality
in FSW architectures from
software architectural design
patterns

b Select Patterns for FSW

b Create Design Pattern Templates for
FSW

b Capture Software Performance in
Design Pattern Templates

Emphasis on common features that are
seen on a wide variety of spacecraft

b Build FSW from design patterns

@AEROSPACE

Selecting Patterns for FSW

® Select existing design patterns from the DRE domain that support FSW functionality
D This can be accomplished because FSW is a type of DRE software
®* Emphasis on common features across the FSW domain
B Command execution
B Uplink/downlink telemetry
b Others

e Example : Command Execution involves determining the order in which spacecraft commands
are executed

b Example patterns that can be used to support this feature
¢ Centralized control
b Single control component that conceptually executes a state machine

D Benefits: control logic contained in single component therefore easier to maintain
and understand

b Well suited for small spacecraft
¢ Hierarchical control

D Multiple control components that control some part of the system by conceptually
executing a state machine

b Single coordinator that orchestrates overall control by determining next job and
sending it to controller for executing

D Benefits: overall control handle by single component, but several controllers to
execute the work to avoid bottlenecks

D Suited for larger spacecraft @ AEROSPACE

Creating Design Pattern Templates for FSW

® Create executable design pattern templates for the FSW domain

b Makes the design patterns more directly applicable to FSW
architectures

D Provide structure for design patterns
b Save time when instantiating the design patterns

® Executable design pattern templates
b Captured using the UML
* Both static and dynamic architectural views

b State machines used to capture the internal behavior of each
concurrent component in the design pattern

e Executed using Harl’ s executable statechart semantics

@AEROSPAGE

Creating Design Pattern Templates for FSW

Example

Initializing @

eventNotification

Controlling @|

processingComplete

~_ 7

Initializing (%)
e ——_)
go 4 Normal_Mode
Launch_Mode (" N
[_— normall\@@-’ Idle eventMaotification Controlling
Idle eventNotification
__/ Validating_Command
Controlling '
@ ‘ validCrmd rejectCrmd
processingComplete I Executing_Command |
Safe_mode processingComplete lexecuteomd Rejecting_Command ‘
eventNotification saipMods l Logaing_Command I J
Controlling W”-di
processingComplete e

ROSPACE

Capturing Software Performance in Design
Pattern Templates

* Platform independent software performance information captured with the MARTE
Profile

* MARTE annotations are used in the sequence diagrams
D MARTE stereotypes used depending on the type of performance analysis
b For example, if the sequence diagram lends itself to analyzing response time

e CGaWorkloadEventE stereotype is used to denote an event that triggers the
scenario on the sequence diagram.

e CPaStepE stereotype is used on any step that is involved in the scenario

® Contain platform independent software performance estimates
b Captured in the tags of the MARTE stereotypes
b Platform independent estimates are captured using comparative parameters

* Example: 2t where t represents a platform specific multiplier relative to a
benchmark

b When the design pattern templates are applied to a specific FSW architecture,
these parameters will be substituted for the platform specific values

@AEROSPAGE

SNOE Command and Data Handling (C&DH) Case
Study

¢ Student Nitric Oxide Explorer (SNOE)

b
b

Real world, small satellite program from NASA

Mission involves using a spin stabilized
spacecraft in a low earth orbit to measure
thermospheric nitric oxide and its variability

The spacecraft instruments
® ultraviolet spectrometer (UVS)
® auroral photometer (AP)
* solar soft X-ray photometer (SXP)
* mircoGPS Bit-Grabber Space Receiver

All the science and engineering data collected is
downlinked to the ground for processing

The ground station is responsible for attitude
determination and monitoring long term health
and safety for the spacecraft and instruments

All data and commands are formatted using
Consultative Committee for Space Data Systems
(CCSDS) standards

Thermal control is passive and is handled solely
by the hardware

Limited hardware redundancy
One SCA4A Single Board Spaceflight Computer

® Five I/O blocks on two daughter boards that
handle interfacing to all subsystems

@AEROSPACE

Building SNOE C&DH from Design Patterns

¢ Selecting design patterns for SNOE
D SNOE’s C&DH subsystem uses 11 patterns
b Example: Command execution

® SNOE controls a relatively small number of
hardware devices

¢ Payload instruments require minimal
commanding from FSW

¢ Centralized Control good match!

® Executable templates are instantiated for SNOE

b Example: Modified 5 Layer Pattern for FSW and
Layers Pattern

®* SNOE specific information is added to the templates

* Finally, interconnect design pattern templates with
the rest of the architecture
D Resulting software architecture can then be
validated using executable statechart semantics

Application I

Control_Layer |

Data_Handling_Layer I &V/f

|t Telemetry_Layer |

I|I f Device_Interface_Layer |

Data_Server_Layer | \ I[
|
|

Fault_Detection_Layer I\!/ VR

Communication I

¢]

l
|
»
\ //%m'ﬁ\

4 e
Ab st?é’/ct_H&V, | b |

@AEROSPACE

SNOE Functional Validation

¢ Example: Collect engineering data
scenario

b Centralized Controller receives,
validates, and determines response
to a ground command to collect the
spacecraft engineering data

b Centralized_Controller sends this
command to the Eng Data Client to
execute

Db When the Eng_Data Client receives
the command it moves into the
Preparing_Eng Data_Request state

* Prepares a request for the
Eng_Data_Server to get the
current engineering data

Eng_Data_Client state machine

Eng_Data_Server state machine

Idle request
. '

‘--_—\q__—_

response/REDClient.gen(new response(msg));

'

.| Processing_Client_Request @|

processingComplete

y

Preparing_Response @'|

@AEROSPACE

SNOE Functional Validation (cont)

* Example: Collect engineering data
scenario (cont)

D Eng Data Client then sends the
new request message to the
Eng Data_Server through its
required port called REDServer

* Eng_Data_Client transitions back
to the Idle state

* Eng_Data_Server transitions into
Processing_Client_Request state

D Eng Data Server processes the
request

* Transitions to the
Preparing_Response state to
format a response message

Eng_Data_Client state machine

X J Processing_Client_Request '33;*;‘

i S I

\ l processingComplete

v Preparing_Response @|

response/REDClient.gen(new response(msg));

@AEROSPACE

SNOE Functional Validation (cont)

* Example: Collect engineering data
scenario (cont)

Db Eng Data Server sends the
response to the Eng_Data Client
through its required ported called,
REDClient

* Eng_Data_Server transitions
back to the Idle state to wait for
the next request

Db Eng Data Client receives the
response message and transitions
into Processing Response State

* Processes the response and
performs checks on the data

Eng_Data_Client state machine

Eng_Data_Server state machine

‘ Idle ’ request

.| Processing_Client_Request @|
.____\\bir’ Lall ’

processingComplete

4

Preparing_Response ‘Ié‘}

response/REDClient.gen(new response(msg)); W

@AEROSPACE

SNOE Functional Validation (cont)

* Example: Collect engineering data Eng_Data_Client state machine
scenario (cont) = =
b When processing is complete
Eng Data_Client then sends the
data to the Telemetry Formatter to
format that data into telemetry
packets for transmission through the
required port call RTFormat
* Eng_Data_Client returns to the
Idle state

® Process is repeated for other scenarios

The Collect Engineering Data

scenario executed as expected
therefore it is validated!

@AEROSPACE

Conclusions and Future Work

® Conclusions
b Presented an approach to building FSW from software architectural design patterns
* Based on DRE software architecture patterns
* |Leverages the UML software modeling language
D Using this approach will lead to
* Better quality software architectures
* Reduced number of onboard anomalies related to software design flaws
® Future Work
b Expand case study to include performance validation
Apply patterns to additional case studies
Look for ways to address feature variability in the FSW domain
Look for areas to automated the application of the executable design pattern templates
Expand research to other DRE domains

Explore state machine based code generators for rapid prototyping and software
performance benchmarking

VAVEIVEIVIRU)

@AEROSPAGE

