
Notes on Binary Heaps

February 15, 2008

(Adapted partially from Cormen et al’s Introduction to Algorithms).
Suppose we’re creating a (Max) heap with n elements to be placed in it. Here’s an algorithm

makeheap(h) (h is an array containing n values to be placed in the heap, in arbitrary order)
for i in bn/2c downto 1 do

heapify(h,i)
end for
heapify(A,i)
l = LEFT[i]; r = RIGHT[i]
if (l ≤ |A| AND A[l] > A[i]) then

largest = l
else

largest = i
end if
if (r ≤ |A| AND A[r] > A[largest]) then

largest = r
end if
if (largest 6= i) then

swap(A[i], A[largest])
heapify(A, largest)

end if
Algorithm 1: Algorithm for (max) heap creation

To prove correctness, we introduce the following loop invariant:
At the start of the loop in makeheap, each node i + 1, i + 2, . . . , n is the root of a max-heap.

At initialization, this is obvious, because every element in the array with index greater than
i is a leaf node. To show maintenance of the invariant, we know that i’s children l and r are the
roots of max-heaps to start. heapify only swaps (recursively down) if one is greater than i, thereby
maintaining the max-heap property. At termination, i = 0, so the node with index 1 is the root of
a max-heap (which contains all the elements).

Naive run-time analysis: There are n calls to the O(log n) heapify, so it is O(n log n). But this
log n is worst case behavior. We can improve on this analysis and get a tighter upper bound.

heapify takes time O(h) when called on a node of height h (that is, when the node is the root
of a heap of height h). How many nodes are there of height h? Convince yourself that the answer
is dn/2h+1e (for h = log n this gives 1, for h = 0 this gives dn/2e, etc.)

So now suppose we sum over all heights the product of two things: the number of nodes of
that height, and the amount of time heapify takes on one call to a node of that height. This should

1

give us the total running time. Working it out:

log n∑
h=0

dn/2h+1eO(h) = O

(
n

log n∑
h=0

h

2h

)

Now,

log n∑
h=0

h

2h
<
∞∑

h=0

h

(
1
2

)h

= 2

How do we get this last step? From
∑∞

h=0 hxh = x
(1−x)2

for x < 1, which can be obtained by
differentiating both sides of the sum of an infinite geometric progression.

Putting this into the equation above, we get a better bound for the running time: O(n)!

2

