Notes on Binary Heaps

February 15, 2008
(Adapted partially from Cormen et al's Introduction to Algorithms).
Suppose we're creating a (Max) heap with n elements to be placed in it. Here's an algorithm

```
makeheap( \(\mathbf{h}\) ) ( \(h\) is an array containing \(n\) values to be placed in the heap, in arbitrary order)
\(\overline{\text { for } i}\) in \(\lfloor n / 2\rfloor\) downto 1 do
    heapify(h,i)
end for
heapify(A,i)
\(\overline{l=\operatorname{LEFT}[i] ;} r=\operatorname{RIGHT}[i]\)
if \((l \leq|A|\) AND \(A[l]>A[i])\) then
    largest \(=l\)
else
    largest \(=i\)
end if
if \((r \leq|A|\) AND \(A[r]>A[\) largest \(])\) then
        largest \(=r\)
end if
if (largest \(\neq i\) ) then
    swap \((A[i], A[\) largest \(])\)
    heapify ( \(A\), largest)
end if
```

Algorithm 1: Algorithm for (max) heap creation
To prove correctness, we introduce the following loop invariant:
At the start of the loop in makeheap, each node $i+1, i+2, \ldots, n$ is the root of a max-heap.
At initialization, this is obvious, because every element in the array with index greater than i is a leaf node. To show maintenance of the invariant, we know that i 's children l and r are the roots of max-heaps to start. heapify only swaps (recursively down) if one is greater than i, thereby maintaining the max-heap property. At termination, $i=0$, so the node with index 1 is the root of a max-heap (which contains all the elements).

Naive run-time analysis: There are n calls to the $O(\log n)$ heapify, so it is $O(n \log n)$. But this $\log n$ is worst case behavior. We can improve on this analysis and get a tighter upper bound.
heapify takes time $O(h)$ when called on a node of height h (that is, when the node is the root of a heap of height h). How many nodes are there of height h ? Convince yourself that the answer is $\left\lceil n / 2^{h+1}\right\rceil$ (for $h=\log n$ this gives 1 , for $h=0$ this gives $\lceil n / 2\rceil$, etc.)

So now suppose we sum over all heights the product of two things: the number of nodes of that height, and the amount of time heapify takes on one call to a node of that height. This should
give us the total running time. Working it out:

$$
\sum_{h=0}^{\log n}\left\lceil n / 2^{h+1}\right\rceil O(h)=O\left(n \sum_{h=0}^{\log n} \frac{h}{2^{h}}\right)
$$

Now,

$$
\sum_{h=0}^{\log n} \frac{h}{2^{h}}<\sum_{h=0}^{\infty} h\left(\frac{1}{2}\right)^{h}=2
$$

How do we get this last step? From $\sum_{h=0}^{\infty} h x^{h}=\frac{x}{(1-x)^{2}}$ for $x<1$, which can be obtained by differentiating both sides of the sum of an infinite geometric progression.

Putting this into the equation above, we get a better bound for the running time: $O(n)$!

